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I would like to thank Petr Malý and Petr Němec for the preparation of the
nanocrystalline CdS samples and for the discussions on the investigation of this
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Summary

Title: Dynamics of delocalized states in molecular systems studied by
time-resolved THz spectroscopy
Author: Mgr. Zoltán Mics
Institute: Institute of Physics, Academy of Sciences of the Czech Republic
Supervisor: RNDr. Petr Kužel, PhD.
Supervisor’s e-mail address: kuzelp@fzu.cz
Abstract: This thesis is devoted to a study of the conductivity of confined
charge carriers in various nanocrystalline materials. The experimental method –
THz spectroscopy – involves measurements of the conductivity of carriers
generated by doping or by optical excitation. In the theoretical interpretation of
measured data we address important aspects of carrier transport, connected to
the microscopic inhomogeneity of samples and the nanoscale confinement of
carriers. We focus on the study of nanocrystalline ZnO and CdS using
simulations and experiments in a wide range of carrier densities and for several
temperatures. In ZnO, the interplay of highly mobile electron-hole gas, dense
electron-hole plasma and population of excitons was observed. In CdS the
investigation reveals the importance of clusters of nanocrystals in the electron
confinement. The dynamics of the electron mobility at different carrier densities
show the role of the kinetic energy of electrons and its relaxation in the carrier
transport in nanostructured systems. At temperatures 20 K and at low carrier
densities a crossover between localized transport and Drude-like free electron
behaviour was observed for the first time.
Keywords: THz time-resolved spectroscopy, carrier mobility and transport,
effective medium theory, Monte Carlo method, nanocrystals

Název: Studium dynamiky delokalizovaných stav̊u v molekulových systémech
pomoćı časově rozlǐsené THz spektroskopie
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Ústav: Fyzikálńı ústav Akademie věd České republiky
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Shrnut́ı: Tato práce je zaměřena na studium vodivosti lokalizovaných nositel̊u
náboje v r̊uzných nanokrystalických materiálech. Použitá experimentálńı
metoda – THz spektroskopie – umožňuje měřeńı vodivosti nositel̊u generovaných
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dotováńım nebo optickou excitaćı. Při interpretaci naměřených dat bereme v
úvahu d̊uležité aspekty transportu náboje, souvisej́ıćı zejména s nehomogenitou
vzork̊u na mikroskopické úrovni a s omezeńım pohybu nosič̊u v d̊usledku
lokalizace. Těžǐstě práce tvoř́ı studium nanokrystalického ZnO a CdS za použit́ı
experiment̊u a simulaćı v širokém rozsahu hustoty nosič̊u a teplot. V ZnO byla
pozorována současně př́ıtomnost nosič̊u s velikou pohyblivost́ı, hustého
elektron-děrového plazmatu a exciton̊u. Ve vzorćıch CdS naše studium odhaluje
kĺıčovou roli klastr̊u nanokrystal̊u při lokalizaci náboje. Dynamika pohyblivosti
elektron̊u poukazuje na význam kinetické energie elektron̊u a jej́ı relaxace pro
transport náboje. Při teplotě 20 K a při ńızké hustotě nosič̊u jsme poprvé
pozorovali přechod mezi režimy lokalizovaných a zcela volných nositel̊u náboje.
Kĺıčová slova: časově rozlǐsená THz spektroskopie, pohyblivost a transport
náboje, efektivńı prostřed́ı, metoda Monte Carlo, nanokrystaly

Ćım: Delokalizált elektronok dinamikájának vizsgálata molekuláris
rendszerekben időfelbontott THz spektroszkópia seǵıtségével
Szerző: Mgr. Mics Zoltán
Intézet: Fizikai Intézet, Cseh Tudományos Akadémia
Témavezető: RNDr. Petr Kužel, PhD.
A témavezető e-mail ćıme: kuzelp@fzu.cz
Összefoglaló: A jelen munka lokalizált töltések vezetőképességének a
vizsgálatával foglalkozik különböző nanokristályos anyagokban. A felhasznált
ḱısérleti módszer THz spektroszkópia, amely lehetővé teszi fény vagy adalékolás
seǵıtségével létrehozott töltéshordozók vezetőképességének a mérését. A
ḱısérleti eredmények kiértékeléséhez és interpretációjához szükséges a
nanokristályos anyagok egyedi tulajdonságainak a figyelembe vétele: a
legfontosabb ezen anyagok inhomogenitása és a töltéshordozóik lokalizációja. A
munka fő témája nanokristályos CdS és ZnO vizsgálata mérések és szimulációk
seǵıtségével különböző hőmérsékleteken és a töltéshordozók sűrűségének széles
skáláján. Cink-oxidban nagy mozgékonyságú töltéshordozókat, elektron-lyuk
plazmát és excitonokat figyeltünk meg. Kadmium-szulfidban eredményeink
megmutatják a nanokristályok klasztereinek a jelentőségét a töltéshordozók
lokalizációjában. Az elektronok mozgékonyságának a dinamikája ráviláǵıt az
elektronok mozgási energiájának és annak relaxációjának a szerepére az
elektromos töltés transzportjában. 20 K hőmérsékleten és alacsony elektron
sűrűség mellett megfigyeltük, hogy az elektronok lokalizációja megszűnik és
mozgékonyságuk a Drude modellel ı́rható le.
Kulcsszavak: időfelbontott THz spektroszkópia, elektromostöltés-transzport,
effekt́ıv közeg, Monte Carlo módszer, nanokristály



Chapter 1

Preface

Electron transport plays a crucial role in every aspect of electronics. It is well un-
derstood in bulk materials and at their interfaces (PN junctions etc.). Recently,
nanotechnology – the technology of fabrication of nanoobjects – emerged as a
promising way to develop new types of electronic elements with improved param-
eters. The improvements often originate from the special features of nanodevices
like reduced dimensionality, high surface/volume ratio etc. For example, dye-
sensitized nanocrystals are used to improve the efficiency of Grätzel solar cells.
Here the light from the Sun is absorbed in the dye layer which leads to electron
injection into nanocrystals, thus generating electric current. Due to the high
surface/volume ratio of nanocrystals the light harvesting is enhanced compared
to dye-sensitized, bulk semiconductors. Owing to an efficient generation of con-
ducting electrons, dye-sensitized nanocrystalline solar cells are a promising cheap
alternative to conventional solar cells based on PN junctions. [2]

Grätzel cells are also an example of application of nanomaterials where the
electron transport becomes essential. The electron localization in these cells can
lead to a reduction of the conductivity in comparison with bulk materials. Con-
sequently, the conversion of photon energy to the electric current may become
less efficient. This example and a number of others which can be easily found in
the literature show that it is important to understand the mechanisms of carrier
transport in nanostructured materials. Still a large number of open questions
exists in this topic and this thesis aims to contribute to the solution of a number
of them, such as the role of depolarization fields and the impact of the carrier
backscattering on grain boundaries. A review of the current state of understand-
ing of the carrier transport in nanostructured systems is presented in Chapter
2.

In the applications, the most important quantity is usually the dc conductivity.
Nevertheless, a study of the ac conductivity may provide essential information
about the nature of electron transport on shorter length scales, and therefore it
can finally lead to a better understanding of the dc transport and of the ways how
to improve it. The frequency range 0.1-3 THz, commonly referred to as the THz
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6 CHAPTER 1.

frequency range, has been shown to contain the pertinent information about the
carrier transport on the nanoscale. [3–6] The diffusion length of charge carriers
during the period of a THz electromagnetic wave is typically several or tens
of nanometers in semiconductors. Consequently, determining the conductivity
in the THz range can reveal characteristic fingerprints of carrier transport inside
nanoobjects as well as between them. This is the reason why we have chosen THz
spectroscopy to study the carrier transport in nanomaterials. To probe the sample
in equilibrium, THz time-domain spectroscopy is used. This is useful for materials
where the conducting carriers are generated by doping. The conductivity of a
sample out of equilibrium (i.e. with photoinjected carriers) is studied by time-
resolved THz spectroscopy. Both types of measurements are described in detail
in Chapter 3.

We take the following advantages of THz spectroscopy:

• THz spectroscopy is phase-sensitive – from one measurement, the real and
the imaginary parts of the conductivity can be obtained simultaneously for
the entire THz frequency range.

• The conductivity is measured in a non-contact way, without the need of elec-
trodes on the sample. Connecting an electrode to semiconductor nanocrys-
tals with good conductive coupling is a difficult task.

• In THz spectroscopy, pulsed radiation is used. Consequently, it is straight-
forward to perform time-resolved THz measurements, i.e. to probe the THz
conductivity of an optically excited sample. In this case the transport of
photogenerated carriers is studied. By changing the excitation power ,
the number of photogenerated carriers can be controlled. This opens up
a simple possibility to tune the contrast of the conductivity between the
constituents of the (inhomogeneous) nanomaterials; for example, between
semiconductor nanocrystals and the nonconducting matrix filling the voids
among the nanocrystals. This way, the effect of the inhomogeneities on the
conductivity of the nanomaterial can be explored. By changing the time
delay between the optical excitation pulse and the THz probe pulse the de-
cay of the conductivity of the carriers can be examined with subpicosecond
time resolution.

In Chapter 4 equilibrium THz spectroscopy is used for the investigation of
carrier transport in pellets of niobium-doped TiO2 nanoparticles. This material
has a potential in applications as a nanostructured transparent conductive oxide.
To explain the THz response of the material a model of effective medium theory
based on the Bergman theorem is developed, which accounts for both percolated
and isolated nanocrystals. The effective medium theory in combination with
carrier hopping gives a complete picture about the response of the nanocrystalline
material for different preparation conditions.
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In the rest of the thesis the transport of carriers generated by optical excitation
is studied using time-resolved THz spectroscopy. The measurements are supple-
mented with classical Monte Carlo simulations of the carrier thermal motion.
The simulations connect the carrier mobility with the fundamental parameters
of carrier motion and localization, such as carrier scattering time, probability of
backscattering from nanocrystal boundaries etc. It means that a comparison of
simulated and measured carrier mobility can directly yield these parameters.

In Chapter 5 we are looking for delocalized electron states in water and aque-
ous solutions immediately after photoexcitation. The lack of signal from these
electrons allows us to estimate the maximum possible degree of delocalization of
these states. The expected mobility of electrons was obtained from Monte Carlo
simulations. This study can serve also as an evaluation of the possibilities and
limitations of THz spectroscopy in the study of mobile carrier states.

In Chapter 6 the carrier transport in bulk and nanocrystalline ZnO is studied.
ZnO is an interesting material with high exciton binding energy which leads to
a significant population of exciton states even at high temperatures. The study
is carried out at different temperatures and in a wide range of carrier densities.
In nanocrystalline ZnO, the mobility of carriers is modeled using Monte Carlo
simulations.

In Chapter 7 the carrier transport is investigated in nanocrystalline CdS pre-
pared by chemical bath deposition. This material is used in new generation
Cu(In, Ga)Se2 solar cells as a buffer layer. From the comparison of simulations
and measurements it is revealed that electron localization occurs on two length
scales corresponding to nanocrystals and their clusters. We show a direct con-
nection between the structure of nanocrystalline CdS and its photoconductivity
spectra. Moreover, a connection between the kinetic energy of carriers and their
degree of localization is observed.





Chapter 2

Charge transport and localization

Electromagnetic radiation interacts with charged particles in the irradiated ma-
terial. Under the effect of the electromagnetic field the charges move. This
motion results in the generation of electric polarization for bound charges or in
the transport of free charge carriers – electric current – and it is described by a
dielectric response function. (In this thesis we focus on nonmagnetic materials,
therefore only electric phenomena will be discussed.) For example in an isotropic
linear material the generated time-dependent electric current originates from the
time-dependent electric field as follows:

j(t) =

t∫
−∞

Ω(t − t′) E(t′) dt′ (2.0.1)

where j (t) is the generated current, E (t) the local electric field and Ω (t) the
response function of the system of free carriers. The electromagnetic field is
more frequently represented by its spectrum, so it is useful to apply the Fourier
transform to the equation 2.0.1:

j(ω) = σ(ω) E(ω) (2.0.2)

where ω = 2πf is the angular frequency of the electromagnetic radiation and
σ (ω) is the conductivity of the system. For a system consisting of identical free
carriers it is often convenient to normalize the conductivity by the charge density
of the free carriers Ne0. In this case the mobility as a response function of a
single unit charge is obtained:

µ(ω) =
σ(ω)

Ne0

(2.0.3)

For bound charges, a similar equation as Eq. 2.0.2 can be derived between the
induced polarization and the applied electromagnetic field :

P (ω) = ε0 χ(ω) E(ω) (2.0.4)

9



10 CHAPTER 2.

where χ (ω) is the dielectric susceptibility of the system of bound charges. How-
ever, the dielectric permittivity ε = 1 + χ is used more frequently to describe
the dielectric properties of a material with bound charges. It relates together the
electric field and the electric displacement field in the material:

D(ω) = ε0 E(ω) + P (ω) = ε0 E(ω) (1 + χ(ω)) = ε0 ε(ω) E(ω) (2.0.5)

The two properties – conductivity and permittivity are introduced intuitively
as convenient response functions for two qualitatively different simple systems,
where the free and bound charges can be clearly distinguished. However, in
nanoscaled systems the properties of charge localization or delocalization may
depend on the length scale (related to the probing frequency), time scale and
e.g. carrier energy. This smears the principal difference between localized and
delocalized carriers: a carrier which appears as bound in one experiment may
behave as free in another one. Therefore it is convenient to describe the free and
bound charges on an equal footing by a generalized permittivity and conductivity,
which become now equivalent and are related by the equation:

ε(ω) =
iσ(ω)

ωε0

(2.0.6)

Both these quantities describe equivalently the response of any dielectric and
conducting system. As mentioned above, in some systems it cannot be definitely
determined whether the probed charge carriers are free or bound. A good exam-
ple is a system of conducting nanocrystals located in a nonconducting matrix,
where the electrons can move inside the nanocrystals but cannot be transferred
between nanocrystals. Then the DC conductivity (ω = 0) is zero and the electrons
can be considered as bound. However, at high frequencies, where the diffusion
length during one period of the electromagnetic field is smaller than the size of
the nanocrystals, the electrons appear to be free. In our experiments and further
analysis these charge carriers are typically the objects to be examined and we will
use the complex conductivity σcarrier or mobility to describe their dielectric re-
sponse. The rest of the material response will be characterized by its background
permittivity εbackground. The total permittivity of the material then reads:

εNC(ω) = εbackground(ω) +
iσcarrier(ω)

ωε0

(2.0.7)

When examining photoexcited nanocrystalline semiconductors, the background
permittivity is simply the permittivity of the sample without photoexcitation and
the conductivity of the photoexcited carriers is directly measured. In doped semi-
conductors we are interested in the conductivity/mobility of the charge carriers
introduced by doping and of the intrinsic charge carriers.

From the shape of the spectra and from its dependence e.g. on the carrier
concentration or on the temperature we attempt to deduce a quantitative model
for the motion of charge carriers in nanocrystalline materials. The difficulty of
this task in nanostructured materials lies in two important aspects: [6]
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lfree ¿ dlfree ¼ d

d

Figure 2.1: Illustration of the carrier movement in a nanoscopic object. If the
mean free path of carriers is comparable with the size of the object, the scattering
of carriers on the boundaries can significantly change their microscopic mobility.
In a large object, i.e. when their size is much larger than the mean free length, the
carriers’ movement (and microscopic mobility) is similar to that in bulk materials.

• The movement of charge carriers is directly affected by the local electric field
acting on them. However, nanocrystalline materials are inhomogeneous and
the local field may differ from the electric field of an external electromagnetic
wave probing the sample (macroscopic field). Therefore the microscopic
(or intrinsic) mobility of carriers µmicro (i.e. the carrier response to the
local electric field) and the macroscopic mobility µmacro (the carrier re-
sponse to the externally applied electric field) can be substantially different.
Let us consider again the system of conducting nanocrystals in an isolating
matrix as an example. If the mean free path of the carriers moving in the
nanocrystals is much shorter than the nanocrystal size, their microscopic
conductivity is the same as it would be in a bulk semiconductor. However,
if we examine the macroscopic dielectric response of the material (for ex-
ample, by measuring its THz transmission or by applying a low frequency
electric field), we come to the conclusion that its spectral shape cannot re-
semble that of the bulk crystal in some frequency range. [6,7] In particular,
the low frequency part of the spectra is more affected by this effect as it
can be deduced from the simple fact that the macroscopic DC conductivity
of the sample is zero, whereas the DC microscopic conductivity is non-
zero. The relation between the microscopic and macroscopic conductivities
is established by effective medium theory (see Section 2.1).

• The mechanisms of the microscopic conductivity, i.e. the nature of carrier
motion in nanocrystalline materials can be complex. It depends both on
the character of the motion in the bulk (e.g. band-like motion or hopping)
and on the interaction of carriers with the nanocrystal boundaries (isotropic
scattering, backscattering, energy barriers) (see Fig. 2.1). Depending on the
morphology of the nanostructure several different transport mechanisms can
occur on different time and length scales. A review of the models describing
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Effective medium
theory

"m

"p

"p

"p

"p

"eff

Figure 2.2: Illustration of the averaging procedure of effective medium theory.

the microscopic conductivity will be given in Section 2.2.

In this chapter we summarize the existing approaches for modelling these aspects.

2.1 Effective medium theory

The dielectric properties of a composite inhomogeneous system are characterized
by its complex dielectric function, which is a function of position. If the inclusions
are much smaller than the wavelength of the probing electromagnetic radiation,
but large enough that they can be characterized by a dielectric function (≥10 Å),
the material can be treated as dielectrically homogeneous with an effective dielec-
tric function. The effective medium theory is used in the averaging process, i.e.
in relating the geometrical arrangement and dielectric properties of components
to the effective dielectric function (see Fig. 2.2):

εeff = EMT (s1, ε1, ..., sn, εn, morphology) (2.1.1)

where n is the number of the components, sj and εj are the volume fraction
and the permittivity of the components, respectively. Clearly

∑
sj = 1 is valid.

Based on equation 2.0.7 the dielectric permittivity of the components and the
effective permittivity of the homogenized medium can be all decomposed into
two contributions: a background permittivity and the conductive contribution
of mobile charges. This decomposition allows us to write a relation between the
effective (macroscopic) conductivity σeff and the (microscopic) conductivities
σ1...σn of the components:

σeff = −iωε0

[
EMT

(
s1, ε1 +

iσ1

ωε0

, ..., sn, εn +
iσn

ωε0

)
− EMT (s1, ε1, ..., sn, εn)

]
(2.1.2)

In order to get a useful connection between the macroscopic and microscopic
response, the behaviour of the function EMT must be more specifically given. In
this thesis we examine two-component systems, where generally one component
forms inclusions in the other one considered as a matrix. For two-component
systems, the Bergman theorem is the most concrete yet general representation of
effective medium theory. [8] The theorem connects the effective dielectric function
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of a two-phase composite with the morphology of the composite described by the
spectral function G(L) and with the dielectric functions of the components:

εeff = ε2

1 − s

1∫
0

G(L)
ε2

ε2−ε1
− L

dL

 (2.1.3)

where ε1 and ε2 are the permittivities of the components, s is the volume fraction
of the first component (with permittivity ε1). The spectral function G(L) has
the following interpretation:

• The percolated part of the component ε1 contributes to G(L) a Dirac delta
function at L = 0: G(L) = 2C1 δ(L). The integral in equation 2.1.3 then
yields sC1

ε1−ε2

ε2
, where C1 is called the strength of percolation of the com-

ponent 1.

• For L > 0 the spectral function G(L) represents the contribution from dif-
ferent shapes of inclusions in the system. L is called the depolarization
factor of the inclusion. The depolarization factor L determines the depo-
larization field Ed induced in the object placed into a uniform electric field:

Ed = −L
P

ε0

(2.1.4)

where P is the electric polarization induced by the local electric field. The
value of L depends on the geometrical shape of the inclusion and on its
orientation with respect to the applied field. For example L = 1/3 for a
spherical inclusion; for a needle L = 0 if the field is oriented along the
needle and L = 1/2 if it is perpendicular; for a thin infinite plate L = 1 if
the field is perpendicular to the disc and L = 0 for an in-plane field. G(L)
then represents the distribution of the contributions to the total dielectric
function of shapes with the depolarization factor L. All such contributions
are summed up in equation 2.1.3.

The spectral function has to fulfill the following normalization condition: [9]

1∫
0

G(L) dL = 1 (2.1.5)

And additionally for isotropic systems:

1∫
0

LG(L) dL =
1 − s

3
(2.1.6)
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We now use the Bergman theorem to study the properties of the effective
medium theory on the system most extensively studied in this thesis: nanocrys-
talline semiconductor inclusions in a non-conducting matrix. By substituting
2.1.3 into 2.1.2 and assuming that the second component is an insulator (i.e.
σ2 = 0), we get an equation relating the microscopic conductivity of inclusions
to the measured macroscopic conductivity:

σeff = s ε2
2

1∫
0

G(L)

ε2 − L (ε2 − ε1)

σ1

ε2 − L (ε2 − ε1) + iσ1L
ωε0

dL (2.1.7)

From this equation the contribution of the percolated part of the material to the
macroscopic conductivity can be evaluated. By substituting the percolated part
of the spectral function 2C1δ into the equation one founds σpercolated = 2sC1σ1.
Therefore the percolated part of the nanocrystals contributes to the macroscopic
conductivity with a term proportional to the microscopic conductivity. If the
components of the spectral functions with L 6= 0 become dominant, the effec-
tive conductivity exhibits a saturation behaviour for an increasing microscopic
conductivity σ1 (i.e. for an increasing pump fluence). To make this analysis even
more specific, we choose a commonly used model for the microscopic conductivity
of nanocrystals; if the nanocrystals are much larger than the carrier mean free
path in the material, the microscopic conductivity of the nanocrystals follows the
Drude formula:

σ1(ω) =
Nq2τ

m

1

1 − iωτ
(2.1.8)

where N is the carrier density, m is the effective mass, τ is their momentum
scattering time and q the carrier charge. By substituting 2.1.8 into the equation
2.1.7, we obtain:

σeff = s ε2
2

Nq2

m

1∫
0

G(L)

(ε2 − L (ε2 − ε1))
2

−iω

ω0(L)2 − ω2 − iω
τ

dL (2.1.9)

Therefore the non-percolated parts with a specific depolarization coefficient con-
tribute with an oscillator-like response to the macroscopic conductivity. The
frequency of resonance depends on the plasma frequency and the depolarization
coefficient:

ω0(L) =

√
Nq2

ε0m

L

ε2 − L (ε2 − ε1)
=

√
L

ε2 − L (ε2 − ε1)
× ωp (2.1.10)

In some cases the geometrical arrangement of nanocrystals is not complicated
and it is possible to assume a simple model for the spectral function. The next
subsections discuss some of these models. In other cases a special functional form
is assumed, which is known to give good results for a large variety of systems
with the correct parametrization. [9, 10]
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Figure 2.3: Illustration of charge separation in a conducting inclusion under the
effect of external electric field. The electric field drives the charge carriers to the
opposite sides of the inclusion. The attracting electric force between the carriers
of opposite charge leads to their oscillation in an oscillating electric field.

2.1.1 Maxwell-Garnett theory

The Maxwell-Garnett theory is one of the simplest and most widely used effective
medium theories. [11] It assumes that one component forms small ellipsoidal
particles sparsely embedded in a matrix composed of another material – the
second component. The distance of the particles is much larger than their size.
In such a case, the effective permittivity of the material is related to the properties
of the components by the following equation: [11]

ε − εm

ε + Kεm

= s
εp − εm

εp + Kεm

(2.1.11)

where ε is the effective permittivity of the composite material, εp is the permit-
tivity of the particles, K is the shape factor of the particles (2 for spheres and
1 for cylinders perpendicular to the applied field or to the polarization of the
probing radiation), εm is the permittivity of the matrix in which the particles are
embedded.

To establish a relation between the conductivity of the effective medium and
the conductivity of the components the equation 2.1.11 can be generalized in the
same way as the equation 2.1.1:

ε + i∆σ
ωε0

−
(
εm + i∆σm

ωε0

)
ε + i∆σ

ωε0
+ K

(
εm + i∆σm

ωε0

) = s
εp + i∆σp

ωε0
−

(
εm + i∆σm

ωε0

)
εp + i∆σp

ωε0
+ K

(
εm + i∆σm

ωε0

) (2.1.12)

where ∆σp, ∆σm and ∆σ are the conductivities of the particles, matrix and
effective medium, respectively. When conductive particles are embedded in a
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non-conducting matrix, ∆σm = 0 and the equation 2.1.12 reduces to:

∆σ =
s (K + 1)2 ε2

m

(εm (s + K) + εp (1 − s))

∆σp(
εm (s + K) + εp (1 − s) + i∆σp

ωε0
(1 − s)

)
(2.1.13)

Here we can see that the Maxwell-Garnett model is in fact a special case of
the Bergman theorem with only one type of inclusions. The spectral function is
therefore a delta-function:

GMG = δ

(
1 − s

K + 1

)
(2.1.14)

Assuming again a Drude-like response of the carriers inside the inclusions, we
obtain the effective mobility of charge carriers in the material by substituting
2.1.8 into 2.1.13 :

µeff =
s (K + 1)2 ε2

m

(εm (s + K) + εp (1 − s))2

q

m

−iω

ω2
0 − ω2 − iω

τ

(2.1.15)

If the permittivity of the particles and that of the matrix do not depend on
the probing frequency ω, the effective mobility is characterized by a spectrum of
damped harmonic oscillator (see section 2.2.2) with the resonance frequency:

ω0 =

√
1 − s

εm (s + K) + εp (1 − s)
ωp (2.1.16)

where ωp =
√

Nq2

ε0m
is the plasma frequency of the charge carriers inside the

nanocrystals. The conductivity of diluted non-percolated conductive nanocrys-
tals shows a harmonic oscillator-like response; the resonance frequency depends
directly on the plasma frequency of the carrier gas in the nanocrystal (see an
illustration in Fig. 2.4). It means that the spectral shape of the effective response
changes substantially with the density of carriers, i.e. with the magnitude of the
intrinsic conductivity. This result of effective medium theory was observed in
Si [12] and TiO2 [7] nanocrystals and it was also interpreted as a direct conse-
quence of the charge separation on the edges of the nanocrystals caused by the
applied electric field. This charge separation results in an attracting electrostatic
force between the positive and negative charges and causes transverse plasma
oscillations (see Fig. 2.3 for illustration). [12, 13] This interpretation has a very
similar background to that of the Maxwell-Garnett model. However, the impor-
tant difference between the two approaches is that the Maxwell-Garnett model
accounts for the effects of the depolarization fields on an electron from all the
inclusions, not just from the inclusion containing the electron.
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Figure 2.4: Illustration of the influence of the depolarization fields (within the
Maxwell-Garnett effective medium theory) on the response of inclusions with
Drude-like charge carrier mobility. With increasing carrier concentration the
shape of the macroscopic carrier mobility substantially changes. The effective
carrier mobility has an oscillator-like shape. The imaginary part of the mobility
(dashed lines) becomes negative below the resonance frequency which depends
on the carrier concentration inside the nanocrystals.
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Figure 2.5: Illustration of the usage of the Maxwell-Garnett effective medium the-
ory for nanocrystalline semiconductors. For non-percolated material (left panel),
the nanocrystals are diluted in an isolating matrix. For percolated material (right
panel), the nanocrystalline semiconductors form the matrix and the insulating
voids are treated as particles.
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“Inverted” Maxwell-Garnett model

The Maxwell-Garnett theory can be used also in strongly percolated systems, i.e.
in samples where the nanocrystal particles touch each other. The percolated part
can be then viewed as a conducting matrix (∆σm 6= 0) in Eq. 2.1.12 in which non-
conducting voids (regarded as particles, ∆σp = 0) are embedded. Additionally if
εp � εm (the nanocrystal has much higher permittivity than the nonconducting
material), the equation 2.1.12 is reduced to: [6]

∆σ = ∆σm
K (1 − s)

K + s
(2.1.17)

Consequently, the macroscopic mobility and the microscopic mobility of the ma-
trix are proportional to each other:

µmacro = kEMAµmicro (2.1.18)

This effective medium theory was used to explain the electron transport in nanocrys-
talline ZnO [5] and nanocrystalline TiO2 [14].

2.1.2 Bruggeman theory

In contrast with the Maxwell-Garnett model, the Bruggeman model treats the
effective medium components symmetrically and it can be straightforwardly gen-
eralized for an arbitrary number of components. It assumes that if the structure
is placed in a homogeneous electric field, the average electric field in the structure
equals the electric field far from the sample. Thus the total contribution of the
dipole moment of every inclusion to the far field is zero. Then the relation be-
tween the effective permittivity and the permittivity of the components consisting
of spherical inclusions (K = 2) reads: [15]∑

i

si

(
εi − εeff

εi + 2εeff

)
= 0 (2.1.19)

For two-component systems the spectral function of the theory reads [16]:

GBrugg(L) =
3s − 1

2s
δ(L) Θ(3s − 1) +

3

4πsL

√
(L − L−) (L+ − L) Θ

(
L+ − L

)
(2.1.20)

where Θ is the Heaviside step function and:

L+/− =
1

3

(
1 + s ± 2

√
2s − 2s2

)
(2.1.21)

It can be immediately seen that the model predicts a percolated structure when
s > 1/3. This effective medium theory together with the Drude model was used
to model the response of nanocrystalline CdSe. [17]
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Figure 2.6: Spectrum of charge carrier mobility for several models of transport.
The solid lines present the real part and the dashed lines show the imaginary part
of the mobility

2.2 Models of conductivity spectra

In this section the most often used phenomenological charge carrier transport
models will be introduced and summarized. In addition a Monte Carlo simulation
based on classical equations of motion is presented, which was developed in our
group. [5] This approach is able to model the charge carrier motion in more
complicated structures than those assumed in the common phenomenological
models.

2.2.1 Drude model

The Drude model is the most simple and widely used model of the conductivity. It
describes the motion of free (conduction band) charge carriers in a bulk material.
In this model the carriers do not experience any potential and their velocity
changes randomly upon scattering on impurities, phonons etc. All the scattering
events are elastic and isotropic with an average time interval τ . The scattering
introduces a frictional force which is proportional to the velocity of the charge
carriers:

d

dt
p(t) = qE(t) − p(t)

τ
(2.2.1)
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where p(t) is the momentum of a particle, E(t) is the local electric field and q is
the charge. This equation yields the following spectrum of the charge mobility:

µ(ω) =
qτ

m

1

1 − iωτ
(2.2.2)

where m is the carrier effective mass. The complex mobility spectra of free
charge carriers are characterized by decreasing real part with increasing frequency
and a positive imaginary part, which displays a maximum at ω = 1/τ (see Fig.
2.6 a). This behaviour is characteristic for an inductive response and describes
charge carriers without any confinement. It is in striking contrast with the carrier
response in systems where the charge carriers are confined. There the real part
of the mobility increases with increasing frequency and the imaginary part is
negative (capacitive response).

Despite this contrast between the Drude-like response and the response of
localized carriers, the Drude model was successfully used for nanocrystalline sys-
tems in combination with effective medium theory (see section 2.1.1), for example,
for nanocrystalline silicon [12] and TiO2 [7].

2.2.2 Oscillator model

Long-range transport of charge carriers is suppressed if a restoring force exists
driving them back into an equilibrium position. This is the situation for example
for excitons and for charge carriers trapped at defect levels. In this case the
equation of motion for a carrier reads:

m
d2x

dt2
+ mγ

dx

dt
+ mω2

0x = qE(t) (2.2.3)

where x is the displacement of the carrier, γ the damping coefficient and ω0 the
resonant frequency. By solving the equation we obtain the complex mobility of
carriers:

µ(ω) =
q

m

−iω

ω2
0 − ω2 − iγω

(2.2.4)

Below the resonance frequency, the real part of the mobility is increasing from
zero and it reaches its maximum at ω0; the imaginary part is negative below ω0

(see Fig. 2.6 b). Above ω0 the conductivity qualitatively resembles that of the
Drude model - the real part is decreasing with frequency and the imaginary part
is positive. It follows that the particle experiences localization only at frequencies
below ω0. The oscillator model has been used for the modeling of bound and free
excitons in semiconductors, for example in bulk ZnO [18] and in GaAs quantum
wells [19].
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2.2.3 Debye model

For an overdamped oscillator (ω0 � γ) the behaviour (spectrum) of the mobility
tends to the Debye model with a relaxation time θ = γ/ω2

0:

µ(ω) =
q

mγ

iωθ

iωθ − 1
(2.2.5)

The real part of the mobility increases with frequency and the imaginary part of
the mobility is negative (see Fig. 2.6 c). Therefore, the Debye model describes a
localized response. However, this model can be used for low frequencies only; at
high frequencies (ω → ∞) the real part of the mobility does not vanish, i.e. the
model does not fulfill the sum rule.

The Debye relaxator model was found to be useful for describing the conduc-
tivity due to diffusive motion in a one-dimensional system of charge carriers with
energy barriers (e.g. a polymer molecule). It was proven analytically [20], that
if the energy barriers are perfectly reflecting, i.e. infinitely high, the mobility of
such carriers is equal to a sum of relaxators with different relaxation times:

µ(ω) = 8D
q

kBT

∞∑
k=0

c−2
k

D
iL2ω

c2
k + 1

(2.2.6)

where ck = 2π (k + 1/2), D is the diffusion constant in the system without the
barriers, L is the distance between the barriers and T is the temperature of
the system. The first term dominates. It has been shown that the sum of two
relaxation terms is sufficient to characterize diffusive motion on 1D chains even
with energy barriers of finite height. [21]

2.2.4 Hopping

The transport of charge carriers is possible not only by band conduction but
also by hopping between localized states. There is a large number of models
which describe the conductivity due to hopping motion. For example, the Dyre
random free-energy model has been successfully used to describe electron hopping
in microcrystalline silicon. [22] The model is based on the assumption that charge
carriers can jump randomly over energy barriers with frequency between 1/τmax

and 1/τmin [23]:

µ(ω) = iωµ∞

(
1 − ln(τmin/τmax)

ln[(1 − iωτmin) / (1 − iωτmax)]

)
ln(τmax/τmin)

1/τmin − 1/τmax

(2.2.7)

The model predicts an increase of the real part of conductivity between frequen-
cies 1/τmax and 1/τmin (see Fig. 2.6 d). These two frequencies delimit the range
of conductivity dispersion within the model.



22 CHAPTER 2.

� � � � � ��

���	
���������

����

����

����

�����

�
�
��
��
�
�
�
��
�
��
�

�����������	
����	����

�����	�����	��

����������������	


�������������	���	


����������������	���������


��������������	��������������


� � � � � ��

���	
���������

����

����

����

����

�

��
��
��
�
�
�
��
�
��
�

Figure 2.7: Shape of conductivity spectra described by the generalized Drude
model for several parameters of α and β. The left panel shows the real part, the
right panel displays the imaginary part of the carrier mobility.

2.2.5 Generalized Drude models

The Drude model is based on an assumption that the scattering in the system
of carriers can be characterized by a single scattering time τ . However, some-
times it may not be valid – for example due to multiple-scattering mechanisms,
non-elastic scattering, or non-equilibrium carrier distribution (for photoexcited
systems). These complicated systems are modelled phenomenologically by intro-
ducing a parametrized distribution of scattering times. The most widely used
models are the Cole-Cole and Cole-Davidson model. The combination of these
two models gives a generalized Drude-model for the carrier mobility: [24]

µ(ω) =
qτ

m

1(
1 − (iωτ)1−α)β

(2.2.8)

where 0 ≤ α < 1 accounts for the correction used in the Cole-Cole model and
the exponent 0 ≤ β < 1 is used in the Cole-Davidson model (see Fig. 2.7 for
the shape of the mobility spectra). [24] The real part of the mobility in the Cole-
Cole model is negative for some frequency range (see Fig. 2.7). Nevertheless,
these models were used for the characterization of the conductivity in doped
silicon [25], GaAs [24] and ZnO [26].

2.2.6 Drude-Smith model

The Drude-Smith model [1] is a modification of the Drude model accounting
for non-elastic and non-isotropic scattering of charge carriers. In the following
reasoning we calculate the electric current induced by an electric delta-pulse. The
Fourier transform of this time-dependent current (which equals to the response
function) gives the conductivity of the system of carriers. The carriers experience
scattering with an average time interval τ between scattering events as in the
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Figure 2.8: Illustration of the first-order Drude-Smith model for several param-
eters of backscattering (c). The left panel shows the real part, the right panel
displays the imaginary part of the carrier mobility. For an increasing probability
of backscattering the real part of the mobility is suppressed and the imaginary
part becomes negative at low frequencies. This behaviour is typical for localized
charge carriers.

Drude model. Therefore the density of occurrence of scattering events follows
the Poisson distribution. The probability of n scattering events in a time interval
(0, t) then reads:

pn(0, t) =
1

n!

(
t

τ

)n

exp

(
− t

τ

)
(2.2.9)

With every scattering event the carrier’s contribution to the total electric current
is reduced by a factor cn for the n-th collision. Then the electric current reads:

j(t) = j(0) exp

(
− t

τ

) [
1 +

∞∑
n=1

cn

n!

(
t

τ

)n
]

(2.2.10)

In the Drude model due to the isotropic character of the scattering the carrier
ceases to participate in the drift current already after the first collision event
(cn = 0 for n ≥ 1). Therefore the zero-order contribution corresponds to the
Drude current:

j(0) =
Nq2

m
(2.2.11)

The coefficient cn has the meaning of the average value of the product rn cos ϕn

over an ensemble of collisions. Here ϕn is an angle between the direction of the
original velocity (before the first collision) and after n collisions (see Fig. 2.9) and
r denotes the relative change of the velocity magnitude with respect to the original
velocity. If ϕn is smaller than π/2, cn is in the interval (0, 1). If ϕn is greater than
π/2, cn lies in the interval (−1, 0) and the collision of the charge carriers occurs
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c1 = cosÁ1

-

Á1

Á2
c2 < 0

-

c3 = 0

hj0i

hj1i

hj2i

hj3i = 0

Figure 2.9: Illustration of the Drude-Smith model. The first scattering is elas-
tic, therefore its contribution scales down by a factor equal to the cosine of the
scattering angle. The second scattering event sends the particle to a direction
opposite with the original direction, c2 is then negative. The third scattering is
isotropic, therefore the carrier does not contribute to the total current after the
scattering event and c3 = 0.

mainly in the backward direction with respect to the original velocity vector (for
example the reflection of a carrier from nanocrystal boundaries). By applying
Fourier transformation to equation 2.2.10 and substituting 2.2.11 one obtains for
the average carrier mobility:

µDS(ω) =
qτ

m

1

1 − iωτ

[
1 +

∞∑
n=1

cn

(1 − iωτ)n

]
(2.2.12)

Smith suggested that cn = 0 for n > 1, i.e. only the first scattering event occurs
into a preferred direction. Then the carrier mobility reads:

µDS(ω) =
qτ

m

1

1 − iωτ

[
1 +

c1

1 − iωτ

]
(2.2.13)

The influence of the parameter c1 can be seen in Fig. 2.8. If c1 is negative, the
backscattering of charges decreases the current and leads to the suppression of the
real part of the low-frequency mobility. The imaginary part of the low-frequency
mobility decreases, too, and for c1 < −0.5 it becomes negative. Therefore, for
c1 < −0.5 the Drude-Smith model can describe the localized response.

The Drude-Smith model has been successfully used to fit the conductivity
spectra in various systems, for example poor metals [1], polymers [27], metallic
thin films [28] and semiconductor nanostructures [29–33]. However, this model
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has a serious shortcoming: it does not respect the homogeneity in time. [12]
Indeed, if c1 is the only nonzero coefficient, the first carrier collision is anisotropic
with a preferential scattering direction: thus it is different from the other isotropic
scattering events. This involves an unphysical ordering of the collisions. The only
case when the reasoning above can be physically correct is when the collisions
are identical and independent and therefore cn = cn

1 . In this case the sum in the
equation 2.2.12 can be carried out directly:

µDS(ω) =
qτ

m

1

1 − iωτ

[
1 +

∞∑
n=1

cn
1

(1 − iωτ)n

]
=

qτ

m

1

1 − iωτ

1

1 − c1
1−iωτ

=
qτc

m

1

1 − iωτc

(2.2.14)
With identical collisions we get again a Drude-like carrier mobility with a reduced
scattering time τc = τ/ (1 − c). [1]

2.2.7 Monte-Carlo simulations of charge transport in semi-
conductor nanocrystals

All the above mentioned models of charge transport can provide a phenomeno-
logical description of the microscopic conductivity in various systems. However,
phenomenological coefficients obtained by fitting the experimental data often do
not provide a deeper insight into the underlying microscopic processes. A quan-
titative microscopic model of charge transport in nanocrystalline semiconductors
is required. Such a model should account for the following additional aspects of
charge carrier motion:

• Charge carriers may interact with the boundaries. In this case, the Drude
model cannot be considered as a correct description of the microscopic con-
ductivity. The interaction with the boundaries can cause carrier scattering
in a preferential direction (for example reflection from nanocrystal bound-
aries), which has to be accounted for.

• Transport of carriers among nanocrystals may occur. The probability of
these transitions can influence the long-range conductivity substantially.

To address these problems, application of Monte-Carlo simulations was proposed
by our group [5,6,34]. Within this approach, the motion of charge carriers inside
nanocrystals is simulated as a free motion in the conduction band of a bulk semi-
conductor. Such motion is interrupted by scattering events either in the bulk (due
to phonons, impurities etc.) or on the grain (nanocrystal) boundaries. Band-like
motion of charge carriers is possible in nanoscopic systems, if the characteristic
size of the confining nanoobjects is larger than the charge carrier Bohr radius in
the material (weak localization). [35] This constitutes a limit of application of
these simulations.
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It is assumed that, upon interaction with nanocrystal boundaries, a carrier
is either reflected back (backscattered) into the same nanocrystal (into a ran-
dom direction within the half-sphere in the backward direction) or scattered into
a completely random direction or transmitted to another nanocrystal without
feeling the nanocrystal boundary at all. The interaction of charge carriers with
nanocrystal boundaries is then entirely described by the probability values of
these events. We can use two kinds of parameter sets for the quantitative repre-
sentation of the interaction between the carriers and the grain boundaries:

• As an input into the simulation procedure we use the probability of backscat-
tering pr (carrier reflection into the same nanocrystal), scattering ps (into
random direction) and tunnelling pt (the carrier does not change its velocity
vector upon the interaction).

• For an intuitive picture about the carrier motion it is also appropriate to in-
troduce the probability that, upon interaction with the grain boundaries, a
carrier stays in the same nanocrystal pB or transmits into another nanocrys-
tal pF .

There is a trivial connection between the two sets, because in case of the isotropic
scattering on a grain boundary there is 50% probability that the carrier stays in
the same nanocrystal. Therefore the connection is described by the equations:

pB = pr +
1

2
ps and pF = pt +

1

2
ps (2.2.15)

It is also evident that the two parameter sets are not equivalent, because one pair
of (pB, pF ) may correspond to several triads of (pr, ps, pt). For example, (pB, pF ) =
(0.8, 0.2) corresponds both to (pr, ps, pt) = (0.8, 0, 0.2) and to (0.7, 0.2, 0.1). If the
scattering time in the bulk semiconductor τ is smaller than the time of round-
trip of a carrier inside a nanocrystal (i.e. τ . 2d/v, where d is the nanocrystal
size and v is the carrier velocity), the simulated spectra for these different sets
are identical in shape and very similar in amplitude. The small difference in
amplitude originates from the slightly different number of scattering events (for
example, in a simulation with (pr, ps, pt) = (0.8, 0, 0.2) carriers are in average less
often scattered than with (0.7, 0.2, 0.1)).

Upon every bulk scattering event the velocity of the carrier changes to a
random direction. After every scattering event the absolute value of the velocity is
chosen randomly within the Maxwell-Boltzmann or Fermi-Dirac distribution. The
Maxwell-Boltzmann distribution is used for a system of carriers, where the Fermi-
level is deeply below the conduction band edge – typically for EF < −kBT . In
this case the mobility spectra are independent of the carrier density. However, for
high carrier concentrations or low temperatures the Maxwell-Boltzmann statistics
is not sufficient for characterizing the energy distribution of the carriers. In this
case, the Fermi-Dirac distribution must be utilized. The carrier mobility may
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then strongly depend on the concentration of carriers, which is connected with
the Fermi-level through the equation (it is assumed that the conduction band of
the semiconductor is parabolic):

N = 2

(
2πmkBT

h2

) 3
2

F 1
2

(
EF

kBT

)
(2.2.16)

where T is the temperature of the system of carriers, h is the Planck-constant,
kB is the Boltzmann-constant and F is the Fermi-integral:

Fj(x) =
1

Γ(j + 1)

∞∫
0

tjdt

1 + exp(t − x)
(2.2.17)

For example, when the system of carriers becomes degenerated, i.e. EF � 4kBT ,
only carriers close to the Fermi-level participate in the carrier transport. If the
Fermi-level (and the carrier concentration) further increases, the velocity of car-
riers (which equals the Fermi-velocity) becomes higher and the carriers interact
more often with the nanocrystal boundaries. Consequently, the shape of carrier
mobility spectra changes substantially with the carrier concentration.

From the simulation the autocorrelation function of the carrier velocity is
calculated and the carrier mobility is obtained using the Kubo formula [36], which
for the Maxwell-Boltzmann distribution reads:

µij(ω) =
e

kBT

∞∫
0

〈vi(0) vj(t)〉 exp(iωt) dt (2.2.18)

and for the Fermi-Dirac distribution [37]:

µij(ω) =
e

kBT

F− 1
2

(
EF

kBT

)
F 1

2

(
EF

kBT

) ∞∫
0

〈vi(0) vj(t)〉 exp(iωt) dt (2.2.19)

The brackets denote the averaging carried out over a canonical ensemble with
temperature T .

To demonstrate the main features of our model, electron motion is simulated
in a system of spherical nanocrystals with well-defined diameter d. In this case
the electron mobility is isotropic, therefore the mobility obtained from the Kubo
relation becomes a scalar.

The most important parameters of the carrier motion are:

• nanocrystal diameter d

• probabilities of distinct electron interactions with nanocrystal boundaries
(pr, ps, pt)
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Figure 2.10: Carrier mobility in nanocrystalline systems with spherical nanocrys-
tals calculated by Monte-Carlo simulations. The data are displayed for different
ratios of nanocrystal diameter and mean free path. When the nanocrystal size
is much larger than the mean free path, the carrier mobility follows the Drude
model. If the nanocrystal size is comparable to or lower than the mean free path,
the carriers interact often with the nanocrystal boundaries. Consequently, the
real part of the mobility decreases at low frequencies and the imaginary part
becomes negative. The image is taken from Ref. 5.
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Figure 2.11: Carrier mobility in nanocrystalline systems with spherical nanocrys-
tals calculated by Monte-Carlo simulations. The data are displayed for different
probabilities of reflection on the grain boundaries. The dotted lines display the
fit of the data by the Drude-Smith model. The image is taken from Ref. 5.
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Figure 2.12: Carrier mobility in nanocrystalline systems with spherical nanocrys-
tals calculated by Monte-Carlo simulations. The data are displayed for different
temperatures and for low carrier densities (Boltzmann statistics).
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Figure 2.13: Carrier mobility in nanocrystalline systems with spherical nanocrys-
tals calculated by Monte-Carlo simulations. The data are displayed for a degen-
erated system of carriers (Fermi-Dirac statistics) and for different Fermi-levels.
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hj0i

hj1i < 0
hj2i = 0
c2 = 0

Figure 2.14: Comparison of the Monte-Carlo simulation of electron motion in a
spherical nanocrystal and the Drude-Smith model. The first collision after the
acceleration of the carriers by an electric delta-pulse involves a backscattering on
the nanocrystal surface, therefore the direction of the averaged current after the
collision is opposite to the direction of the current before the scattering event and
c1 < 0. The second collision can occur on the whole surface of the nanocrystal.
Consequently, the average current after the second scattering event is zero and
c2 = 0.

• electron scattering time in the bulk τ or, equivalently, its mean free path
lfree

• electron velocity (determined by the temperature T and the Fermi-level EF )

In Fig. 2.10 the influence of the reflection probability and of the mean free path
can be seen. If the nanocrystal size is large compared to lfree (α = d/lfree � 1),
the majority of the electron scattering events occur in the bulk and the interac-
tion with the nanocrystal boundary is very rare. Consequently, the mobility of
the carriers becomes Drude-like. This is also the case when the probability of
reflection (pr) at the nanocrystal boundary approaches zero (see Fig. 2.11).

With increasing carrier velocity the carriers interact more often with nanocrys-
tal boundaries and therefore feel more localized. At low carrier densities the
velocity is determined by the temperature T. With increasing temperature, the
carrier mobility exhibits a higher degree of localization and the real part of the
mobility decreases (see Fig. 2.12). At high carrier densities, when the Fermi-level
is much higher than the thermal energy of carriers (EF � kBT ), the carrier ve-
locity is determined by the Fermi velocity (vF =

√
2EF /m). With increasing

carrier density the Fermi velocity increases and therefore carriers exhibit a higher
localization and the real part of their mobility decreases (see Fig. 2.13).
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The simulated mobility can be fitted by the first-order Drude-Smith model
(i.e. when only c1 is nonzero). When pt = 0, pr is considerable and the size
of the nanocrystal is smaller than the mean free path, −c1 in the Drude-Smith
model equals to the to the probability of reflection of carriers on the nanocrystal
boundaries pr. To explain the behaviour of the simulation spectra, let us follow
the same reasoning as in the derivation of the Drude-Smith model. The carriers
are placed in a spherical nanocrystal and accelerated by an electric delta-pulse.
Let us examine the possibilities for the first scattering events. If the carrier
scatters in the bulk, due to the isotropic nature of scattering the carrier ceases
to contribute to the carrier transport. If the carrier reaches the nanocrystal
boundary, a scattering event with preferential direction opposite to the original
current j0 occurs, therefore 〈j1〉 < 0 and c1 < 0. As the first (back)scattering
event is equally probable in every direction back into the nanocrystal, the second
one can occur on every point of the nanocrystal boundary. Consequently, the
averaged current after the second collision 〈j2〉 becomes zero and c2 = 0 (see Fig.
2.14).

It has been shown semi-empirically that fits by the Drude-Smith model in a
limited spectral range give the parameters pr and τ . A detailed discussion of
the connection between the parameters of the simulation and the Drude-Smith
model is presented in [5]. Although the simulated mobility spectra resemble those
obtained from the Drude-Smith model, the simulation approach is superior to the
Drude-Smith model due to the following reasons:

• The simulation parameters have a clear connection with the carrier motion,
whereas the Drude-Smith model is purely phenomenological.

• Our model avoids any unphysical assumptions like ordering of collision
events.

• The Monte Carlo simulation makes it possible to simulate the carrier mo-
bility in any structure; the geometry of the structure is one of the input
parameters of the simulation.





Chapter 3

Experimental methods and data
analysis

The principal experimental method used in this thesis is THz time-domain spec-
troscopy, which provides the complex THz response (permittivity or conductivity)
of a sample (photoexcited or in equilibrium). The following configurations need
to be mentioned:

• The transmission spectroscopy is the most widely used method to char-
acterize samples transparent in the THz frequency range. This method
is used in this thesis to study thick pellets of nanocrystalline materials,
therefore it is described more in detail in section 3.2.

• The reflection spectroscopy is applied to the characterization of mate-
rials which are not transparent in the THz frequency range. The dielectric
function of the sample is calculated from its reflection function. [38]

• In emission spectroscopy the sample plays a role of the THz emitter. It
is photoexcited by an ultrashort laser pulse and emits THz radiation. By
measuring the time profile of the emitted THz pulse the carrier dynamics
of the sample can be characterized. [39]

• In optical pump–THz probe spectroscopy the THz response of a sam-
ple, which is photoexcited by an ultrashort laser pulse, is measured. The
method is used in this thesis to study the photoconductivity of nanocrys-
talline materials and it will be described more in detail in section 3.3.

• By an imaging setup the THz response of a sample is studied as a function
of position on the sample’s surface. By introducing near-field techniques
the imaging of the THz response was enabled with spatial resolution of a
fraction of the wavelength of THz radiation. [40,41]

33
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Optical pump–optical probe spectroscopy was used in this work as a complemen-
tary time-resolved technique to characterize the transient optical absorption of
various materials. We describe this method in Section 3.4.

3.1 Basics of THz spectroscopy

Every THz setup used in this thesis is driven by ultrashort laser pulses. We use
two kinds of laser sources:

• For steady-state THz spectroscopy we use laser pulses from a titan-sapphire
oscillator with temporal length of ∼ 80 fs, wavelength 810 nm, pulse energy
5 nJ and repetition rate 76 MHz. The power of these laser pulses is sufficient
for generation and detection of THz pulses and the high repetition rate
allows measurements with high sensitivity and high precision.

• For pump-probe experiments we use amplified laser pulses with temporal
length of ∼ 60 fs, wavelength 810 nm, pulse energy 1 mJ and repetition
rate 1 kHz. This source enables not only generation and detection of THz
pulses, but it also provides enough power for the photoexcitation of (and
for inducing nonlinear phenomena in) a large variety of systems including
semiconductors, liquids and gases.

In the next subsections we discuss the methods of THz generation and detection
used in our experiments.

3.1.1 Generation of THz pulses

Photoconductive antennas

For steady-state THz spectroscopy we use a photoconductive antenna as the
THz emitter. This is a well established method for generation of THz radiation
using non-amplified laser pulses. The emitter consists of a semiconductor wafer
with an applied bias voltage. Upon irradiation by the ultrashort laser pulses free
charge carriers are generated in the semiconductor and accelerated by the applied
electric bias. This results in an ultrashort current pulse. The decay time of the
current is determined by carrier trapping which takes typically a few hundreds
of femtoseconds. This current burst is leads to an ultrafast change of the dipole
moment and thus to the generation of a picosecond THz pulse (see Fig. 3.1 a). [43]

In our setup, we use an emitter with a specific interdigitated electrode struc-
ture. [42] The characteristics of the THz emission depend strongly on the geom-
etry of the antenna. The structure of our emitter further increases the efficiency
of the THz emitter. The electrodes on the semiconductor surface are prepared
in a finger-like metal-semiconductor-metal structure (see Fig. 3.1 b), where the
incident light is partially blocked to reach (and excite) the semiconductor only
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Figure 3.1: a) Principle of THz generation in a biased photoconductive antenna.
The incident optical pulse generates free charge carriers in a semiconductor wafer,
which are accelerated by externally applied bias. A short burst of current leads to
the emission of a THz pulse. b) The electrodes are deposited on the semiconductor
surface in a finger-like structure. Every second period of the structure is covered
with a metal layer isolated from the electrodes (black), therefore the laser pulse
irradiates only every second period. The emitter then consists of a series of small
photoconductive antennas under strong bias. The constructive interference of the
generated THz pulses leads to the emission of a THz pulse with strong electric
field. [42]

at every second period. This is accomplished by a series of thin metallic layers
deposited on the surface of the semiconductor and ensures that the bias on the
irradiated part of the semiconductor has an identical polarity. This way, the
structure consists of many small emitters with the emitted THz beams construc-
tively interfering with each other in the far field (see Fig. 3.1 b). Consequently,
the peak field of the THz pulse can reach several hundreds of V/cm. [42]

Optical rectification

For optical pump–THz probe experiments we use a THz emitter working on
the principle of THz generation by optical rectification. Optical rectification
is a three-wave mixing nonlinear optical effect. It leads to difference-frequency
generation, i.e. the mixing of optical photons with frequencies ω1 and ω2 results
in a photon with frequency Ω = |ω1 − ω2|. When a femtosecond laser pulse
propagates through the nonlinear medium, the mixing of spectral components of
the laser pulse leads to an efficient generation of THz pulses. [44]

Our emitter consists of a (110)-oriented, 1 mm thick ZnTe crystal. We use
∼ 0.3 mJ laser pulses to irradiate the ZnTe crystal and generate THz pulses
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covering the frequency range 0.2 − 2.5 THz with 4 kV/cm peak electric field.

3.1.2 THz detection

The principle of the detection of THz pulses is based on the Pockels electrooptic
effect. The Pockels effect is a three-wave nonlinear optical effect which involves a
change in the refractive index of the nonlinear medium in response to an electric
field. This change of the refractive index is linear with respect to the electric
field and may be anisotropic. Consequently, during the presence of the electric
field the polarization of the light transmitted through the nonlinear medium may
be modified. In the electrooptic THz detection method, the THz pulse plays the
role of the slowly varying electric field. Collinearly with the THz pulse an optical
(sampling) pulse originating from the main laser source propagates through the
nonlinear medium. The change of the polarization of the sampling pulse is moni-
tored. As the optical pulse is typically much shorter than the THz pulse, the THz
electric field is constant over the duration of the optical pulse. The polarization
of the optical pulse is then affected only by the instantaneous electric field of the
THz pulse. By varying the delay between the THz and optical pulses the time
profile of the THz electric field can be measured.

The detection scheme used in our experiments is the following. As a sensor
we use a 1 mm thick ZnTe electrooptic crystal. The crystal is oriented as shown
in Fig. 3.2. The optical sampling beam has vertical polarization before reaching
the ZnTe crystal. After passing through the sensor the optical beam transmits
through a Babinet compensator and then it is divided into two linearly polarized
beams by a Wollaston prism. The intensity of the two beams is measured by a
pair of balanced photodiodes. Before starting the measurements (i.e. when the
THz pulse is blocked before the sensor but the sampling beam is not), the Babi-
net compensator is set to a quarter waveplate position such that the difference
between the intensities of the two beams at the output of the Wollaston prism
(corresponding to the horizontally and vertically polarized part of the sampling
beam) is zero. Consequently, any disruption of the balance of intensity between
the two beams during the measurements is linearly proportional to the electric
field of the THz pulse:

ETHz ∝ |I‖ − I⊥| (3.1.1)

The temporal delay between the THz and sampling pulses is controlled by a delay
line. By varying the delay between the optical gating pulse and the THz pulse the
whole time profile of the THz pulse can be measured. A more detailed discussion
of the method is presented in [45] and [46].
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Figure 3.2: Principle of electrooptic THz detection. The THz pulse and a
vertically polarized optical sampling pulse pass through an electrooptic crystal
collinearly.

3.2 Steady-state THz spectroscopy

3.2.1 Experimental setup

The scheme of the experimental setup is displayed in Fig. 3.3. The optical laser
beam is divided into two parts: a small part of the laser power is used for the
electrooptic sampling (sampling branch), the other for the generation of THz
radiation in the THz branch. The delay between the two pulses is controlled by
a delay line. The THz branch consists of the emitter, the sample, the sensor
and two ellipsoidal mirrors. The first mirror focuses the emitted beam on to the
sample and the second one directs the THz beam transmitted through the sample
to the detector. The sample may be placed in a cryostat allowing measurements
at temperatures between 20 K and 300 K. In our setup it is also possible to study
liquids in the form of jets [47] or in cuvettes. The whole THz branch is enclosed
into a box which is evacuated or filled with an inert gas during the experiment.
This eliminates the unwanted water vapor absorption of the THz wave, which is
strong at several frequencies in the THz range.

The signal to noise ratio of the measurement is increased by utilizing syn-
chronous detection using a lockin amplifier and by modulating the electric bias
on the THz emitter. The lockin amplifier processes the input signal using Fourier
transformation. Every component of the signal is filtered out, except for the one
at the frequency equal to the modulation frequency of the signal.
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Figure 3.3: A common setup for THz transmission time-domain spectroscopy,
used in our group.

3.2.2 Data analysis

When using the above described experimental setup, the measured time profile
of the THz electromagnetic pulse (referred to as “THz waveform” in the follow-
ing discussion) is influenced apart from the response of the sample also by the
response of the emitter, sensor and the propagation between them. This can be
expressed by the equation:

Emeas(t) = E0 ∗ Pbefore ∗ tsample ∗ Pafter ∗ Rsensor (3.2.1)

where Emeas is the measured signal, E0 the generated THz waveform, Pbefore

and Pafter accounts for the propagation before and after the sample, Rsensor is
the response function of the sensor and t is the complex transmittance of the
sample. As the main aim is to measure the response of the sample, and the
other response functions are generally not known, they must be eliminated by a
reference measurement. In a reference measurement the THz wave is transmitted
through a sample with known properties – often a vacuum slice of the same
thickness as the original sample in a transmission setup obtained by removing
the sample from the beam path. The measured reference waveform then reads:

Eref (t) = E0 ∗ Pbefore ∗ tvacuum ∗ Pafter ∗ Rsensor (3.2.2)

By applying Fourier transformation to the equations 3.2.1 and 3.2.2 and calcu-
lating their ratio, all the instrumental functions are eliminated, and the complex
transmission function can be evaluated:

T (f) =
tsample(f)

tvacuum(f)
=

Emeas(f)

Eref (f)
(3.2.3)
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The fact that THz spectroscopy provides the time profile of the electric field of
the signal, means that we are able to evaluate directly complex spectra: the com-
plex transmission function and consequently the complex permittivity. The real
and the imaginary part of the permittivity are extracted independently from the
measurements, i.e. without the use of Kramers-Krönig relations. The retrieval of
material properties (complex refractive index, conductivity or dielectric function)
depends on the sample geometry.

Slab

In the simplest case the sample is a homogeneous plane-parallel slab irradiated by
the THz wave under normal incidence (see Fig. 3.4 b). Approximating the THz
radiation as a plane wave and assuming a non-magnetic sample, the transmission
function reads:

Tslab(f) =
∞∑

j=0

Tj(f) =
4N

(N + 1)2 .
exp(2πifd (N − 1) /c)

1 −
(

1−N
1+N

. exp(2πifdN/c)
)2 (3.2.4)

where N = n + iκ is the complex refractive index, d is the sample thickness, c
is the velocity of light in vacuum. The radiation coming from internal reflections
of various orders appear as a series of pulses separated in time by 2n̄d, where n̄
is the average real part of the THz refractive index of the sample. A temporal
windowing can be applied to such a signal composed of well separated echoes (see
Fig. 3.4). Each echo corresponds to a single term Tj and the complex refractive
index can be retrieved from this part of the data. [48] For the contributions of
the separate echoes to the transmission function we obtain:

Tj(f) =
4N

(N + 1)2 exp(2πifd (N − 1) /c)

(
1 − N

1 + N
. exp(2πifdN/c)

)2j

(3.2.5)

This procedure is simpler than extracting the refractive index from the total
transmission function T and it is also less sensitive to errors in the measure-
ment. Moreover, by processing several echoes comparatively, the thickness d of
the sample can be calculated together with the refractive index. [48, 49]

If the sample is optically thin, the refractive index must be evaluated from
the equation 3.2.4. Both in case of optically thin or thick sample the equations
have to be solved numerically. [50] Due to the periodicity of the exponential
function with imaginary arguments, the equations have multiple solutions. If the
selection of the correct solution is not obvious from a single measurement, it can
be unambiguously found by doing measurements using two samples with different
thicknesses [51] or by applying the Kramers-Krönig relations. [52]

Thin film

Another common sample configuration is a thin film deposited on a thick sub-
strate (see Fig. 3.4 c). The sample then consists of two layers of different materials
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and there are internal reflections in both of them. We assume that the film is
optically thin, i.e. we cannot resolve the internal reflections in the film. On the
other hand, the substrate is optically thick, which means that the transmitted
THz wave is composed of pulses well separated in time, as in the case of optically
thick slab. The time delay between the echoes is determined by the thickness
of the substrate; note that the j-th echo (where j = 0, 1, 2 . . . ) is composed of
infinite number of components originating from internal reflections in the film.
In the experiments discussed in this thesis we examine only the direct pass in the
substrate (j = 0).

In order to obtain the (zero-order) complex transmittance of the sample, we
need to calculate the complex transmittance of the film first. This problem is
identical to the calculation of the transmittance of the Fabry-Pérot resonator,
therefore we obtain:

tf (f) =
4Nf exp(2πifNfdf/c)

(1 + Nf ) (Nf + Ns) − (Nf − Ns) (Nf − 1) exp(4πifNfdf/c)
(3.2.6)

where df is the thickness of the film and Ns, Nf is the complex refractive index
of the substrate and the film, respectively. The zero-order echo involves only a
direct pass through the substrate and transmission through the interface between
the substrate and vacuum. Consequently, the zero-order complex transmittance
of the sample (substrate+film) reads:

t
(0)
FS(f,Nf , df , Ns, ds) =

8Nf Ns

1+Ns
exp

(
2πif

Nf df+Nsds

c

)
(1 + Nf ) (Nf + Ns) − (Nf − Ns) (Nf − 1) exp(4πifNfdf/c)

(3.2.7)
where ds is the thickness of the substrate. In the case of thin films the reference
measurement typically involves the measurement of the THz waveform transmit-
ted through a planparallel slab with properties identical to the substrate. Then
the complex transmission function is obtained as the ratio of Eq. 3.2.7 and the
zero-order complex transmittance of the substrate:

T (0)(f,Nf , df , Ns, ds) =

4NfNs exp

(
2πif

(Nf−1)df

c

)
(1 + Nf ) (Nf + Ns) − (Nf − Ns) (Nf − 1) exp(4πifNfdf/c)

(3.2.8)

3.3 Optical pump–THz probe spectroscopy

Generally, in THz spectroscopy the probing pulses are generated by the inter-
action of ultrashort laser pulses with the emitter. The THz probing pulses are
therefore perfectly synchronized with the pulse train from the laser source used
for the THz generation. Consequently, it is possible to add an optical pump
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Figure 3.4: a,b) If the sample is optically thick, the internal reflections of the
THz pulse can be separated in time. c) Internal reflections in a thin film on a
substrate. Although we discuss the transmission of THz radiation through the
sample under normal incidence, in the picture the internal reflections are shown
under a different angle to make the illustration more perceivable.
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branch to the measurement setup; a part of the power of the main laser source
may be used to bring the sample out of equilibrium. The photoconductivity of
the sample and its dynamics may be studied.

3.3.1 Experimental setup

Our setup used for time-resolved THz spectroscopy (see Fig. 3.5) is very similar
to the one used for steady-state measurements, with the following differences:

• A multi-pass laser amplifier is used as the main laser source.

• ∼ 0.3 mJ laser pulses are used to generation and detection of THz pulses.
The remaining part is utilized for the photoexcitation of the sample. The
pump-probe delay is controlled by a delay line.

• A nonlinear crystal (ZnTe) is used as THz emitter instead of the photocon-
ductive antenna used in steady-state experiments.

• The modulation of signal for synchronous detection is accomplished by in-
serting an optical chopper into the beam path.

The pump beam irradiates the sample under an angle of ∼ 10 degrees. Its
wavelength can be changed using nonlinear optical elements. In our lab we use
several arrangements to control the wavelength of the pump beam:

– The pump beam may be used without any modifications for photoexcitation
on the basic wavelength 810 nm.

– By using second harmonic generation in a nonlinear crystal (beta-barium
borate BBO or lithium triborate LBO) photoexcitation on 405 nm can be
realized.

– By third harmonic generation using a pair of BBO nonlinear crystals an
excitation beam with mean wavelength 270 nm can be obtained.

– The travelling-wave optical parametric amplifier of superfluorescence (TOPAS)
used in our lab delivers wavelengths tunable in the range 300 − 1400 nm.
However, due to its complexity and worse stability of its output, we prefer
to use excitation by harmonic wavelengths wherever possible.

3.3.2 Data analysis

By the above described setup we measure the electric field profile of THz pulses
transmitted through the sample. We can measure two kind of data:
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• The profile of the THz pulse (waveform) transmitted through the sample
E(τ, τp) may be measured by modulating the THz signal (i.e. putting the
optical chopper into the path of the optical beam which is used for THz
generation).

• The difference in the transmitted signal induced by the optical excitation
∆E(τ, τp) can be directly measured, when the pump beam is modulated
(i.e. the optical chopper is put in the path of the excitation beam).

Let us examine the transmission of the THz pulse in a material brought out of
equilibrium by photoexcitation. The electric field of the optical excitation pulse
changes the THz conductivity of the system via nonlinear phenomena. This
nonlinear interaction involves mixing of the electric field of the optical pump
pulse Eopt and that of the THz pulse ETHz and the nonlinear change in the
conductivity is measured at THz frequencies. Consequently, this interaction must
be caused by at least a third order nonlinear effect. For our discussion we consider
only the third-order nonlinear polarization contributing to the transmitted THz
radiation: [53]

∆P
(3)
THz(t) = ε0

∞∫
0

∞∫
0

∞∫
0

χ̃(3)(t′, t′′, t′′′) Eopt(t − t′′′) Eopt(t − t′′) ETHz(t − t′) dt′dt′′dt′′′

(3.3.1)
where χ̃(3) is the third-order susceptibility of the material, ETHz is the incident
THz radiation and Eopt is the electric field of the photoexciting laser pulse. As
the excitation pulse is much shorter than the THz radiation, we can approximate
it as a delta-pulse with the time of incidence te:

Eopt(t) =
√

Iopt δ(t − te) (3.3.2)

After using this approximation in Eq. 3.3.1 and introducing the substitution
Ioptχ̃

(3)(t, t′, t′) = ∆χ̃(3)(t, t′) we obtain:

∆P
(3)
THz(t, t − te) = ε0

t∫
−∞

ETHz(t
′) ∆χ̃(3)(t − t′, t − te) dt′ (3.3.3)

Up to now we considered the time of arrival of the excitation pulse te fixed.
However, in our experiments this variable is not fixed. This is why we explicitly
write the dependence of ∆PTHz on the second time variable t − te. The effective
susceptibility ∆χ̃(3)(t1, t2) is the measure of influence of the THz pulse at time
t − t1 (i.e. at moment t1 before the measurement) and of the excitation pulse at
time t − t2 on the ”measured” nonlinear polarization. It is connected directly
with the photoconductivity of the sample [54]:

∆σ(ω, t2) =
∆χ̃(3)(ω, t2)

iωε0

(3.3.4)
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where ω is the counterpart of the variable t in the Fourier space and ∆σ(ω, t2) is
the photoconductivity of the sample at the moment t2 after the photoexcitation of
the material. The main aim of the measurements and the following data analysis
is the complete retrieval of this function from the measured data.

Let the time of the arrival of the THz pulse be tp. It is convenient to set
this time as the time origin of the nonlinear polarization response. The nonlinear
polarization then reads:

∆P
(3)
THz(t − tp, t − te) = ε0

t−tp∫
−∞

ETHz(t
′) ∆χ̃(3)(t − tp − t′, t − te) dt′ (3.3.5)

Let us discuss the meaning of variables t, tp, te in connection with optical pump–
THz probe experiments. The variable t is connected with the time of measure-
ment of the transient electric field, i.e. with the arrival of the sampling pulse. In
our experiments we control the delay between the optical pump and THz probe
pulses τp = tp − te (using the delay line D2 – see Fig. 3.5). By delay line D1
we vary the time delay between the probe and sampling pulses τ = t − tp. The
delay between the sampling and excitation pulse is τe = t − te. By replacing the
absolute times ti by τi (variables controlled in the experiment) we obtain:

∆P
(3)
THz(τ, τe) = ε0

τ∫
−∞

ETHz(t
′) ∆χ̃(3)(τ − t′, τe) dt′ (3.3.6)

This equation is already expressed using the variables which we control in our
measurements. However, in our setup we measure directly the change of the
transmitted THz field depending of the time delays τ and τp. The equation
3.3.6 has to be modified accordingly. This is accomplished by introducing the
transformation between the time variables accounting for the probe-sampling and
pump-sampling delays:

∆P
(3)
THz(τ, τe) −→ ∆P

(meas)
THz (τ, τp = τe − τ) (3.3.7)

and similarly for the nonlinear susceptibility:

∆χ̃(3)(τ, τe) −→ ∆χ̃(meas)(τ, τp = τe − τ) (3.3.8)

The nonlinear polarization expressed using the variables directly connected with
the measurement then reads:

∆P
(meas)
THz (τ, τp) = ε0

τ∫
−∞

ETHz(t
′) ∆χ̃(meas)(τ − t′, τp + t′) dt′ (3.3.9)

The variable of integration t′ is now present in both arguments of the effective
nonlinear susceptibility. It is connected with the fact that a THz waveform trans-
mitted through the sample measured by scanning τ and with fixed τp does not



EXPERIMENTAL METHODS AND DATA ANALYSIS 45

Probe
(THz)

State of the sample

Excitation
(optical)

Probe
(THz)

State of the 
sample

Excitation
(optical)

a) b)

Figure 3.6: a) The state of the sample does not change on a time scale comparable
with the temporal length of the probing THz pulse – steady-state analysis is
sufficient. b) The state of the sample changes faster than the length of the
probing pulse.

experience the same state of the sample (see Fig. 3.6 b). In other words, the
THz pulse leading edge experiences a different response (nonlinear susceptibility)
than its trailing edge. This complication in the experiment makes the extraction
of the nonlinear susceptibility more difficult. In the general case, it is not possi-
ble to make the retrieval by means of a one-dimensional Fourier transformation
as it was the case in steady-state experiments. [53, 55–57] The methods of data
analysis are discussed in the next two subsections.

3.3.3 Quasi-steady state approximation

The above described analysis may be greatly simplified if the sample dynamics is
slow and its state does not change on a time scale comparable with the temporal
length of the THz pulse (see Fig. 3.6 a). Then the following approximation may
be used:

∆χ̃(meas)(τ − t′, τp + t′) ≈ ∆χ̃(meas)(τ − t′, τp) (3.3.10)

And the equation 3.3.9 is reduced to a simple convolution:

∆P
(meas)
THz (τ, τp) = ε0

τ∫
−∞

ETHz(t
′) ∆χ̃(meas)(τ − t′, τp) dt′ (3.3.11)

Let us define the response function of the photoexcited sample T ′(t, t′) = T (t) +
∆T (t, t′). T (t) is the response function of the sample in equilibrium, ∆T (t, t′)
represents the change induced by the pump beam. Within the steady-state ap-
proximation the transmitted waveform ET (τ, τp) can be described (similarly as in
Eq. 3.3.11) by the equation:

ET (τ, τp) =

∫ τ

−∞
ETHz(t

′) T ′(τ − t′, τp) dt′ (3.3.12)
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where ETHz is the field incident on the sample. In our experiment the THz field
induced by the photoexcitation is measured:

∆E(τ, τp) =

∫ τ

−∞
ETHz(t

′) ∆T (τ − t′, τp) dt′ (3.3.13)

This expression is a convolution of the incident THz wave and the response func-
tion of the sample. Therefore by applying Fourier transformation, the nonequi-
librium response function in the frequency space, i.e. the transient transmission
function can be evaluated:

∆T (ω, τp)

T (ω)
=

∆E(ω, τp)

Eref (ω)
(3.3.14)

where Eref is the reference waveform, which is measured with the sample without
photoexcitation. The instrumental functions due to the propagation of the THz
pulse and the response function of the detector are cancelled out identically as
with measurements in steady-state THz spectroscopy (see on page 38).

From the transient transmission function the conductivity spectrum of the
sample can be calculated based on the geometry of the sample. In this thesis
the samples probed by time-resolved THz spectroscopy consist of a thin film
deposited on an optically thick substrate. The complex transmittance for this
sample geometry is calculated in section 3.2. We assume that only the film
interacts with the photoexcitation pulse, the refractive index of the substrate
does not change. Upon photoexcitation mobile charge carriers are generated in
the film and the film’s conductivity changes. The photoconductivity is ∆σ(ω, τp)
at pump-probe delay τp. The refractive index then changes from its equilibrium
value Nf according to the equation:

N
(exc)
f (τp) =

√
N2

f +
i∆σ(ω, τp)

ωε0

(3.3.15)

After the substitution of the formulas 3.2.7 and 3.3.15 into 3.3.14 we obtain an
equation for the transient conductivity of the sample:

∆E(ω, τp)

Eref (ω)
= 1 −

tf

(
ω,

√
N2

f + i∆σ(ω,τp)

ωε0

)
tf (ω,Nf )

(3.3.16)

where tf is the complex transmittance of the film described by Eq. 3.2.6. Using
equation 3.3.16, from a measured reference and a transient waveform at the pump-
probe delay τp we obtain the photoconductivity ∆σ(ω, τp). In the quasi-steady
state approximation, to reconstruct the complete dynamics of the photoconduc-
tivity (i.e. find the photoconductivity spectra for every τp) one should measure
the transient THz spectra at a series of values of τp,j where the time difference
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between the adjacent values of τp,j is about the temporal length of the THz pulse
(i.e. τp,j+1 − τp,j ≈ tTHz). Fortunately, often a smaller number of measurements
is sufficient.

We use the following procedure. We measure the dependence of the maximum
of the transient THz waveform on the pump-probe delay ∆E(τmax, τp), i.e. τ is
fixed in the maximum of the waveform and the signal ∆E is recorded while
the pump-probe delay is scanned through the range of interest. Subsequently, a
series of transient THz spectra ∆E(τ, τp,i) is measured in the same experimental
conditions. The values of pump-probe delays τp,i are chosen such that the shape of
the waveform ∆E(τ, τp,i) does not change significantly between τp,i and τp,i+1. By
using a linear combination of the transient signals ∆E(τ, τp,j) and ∆E(τ, τp,j+1)
with the weights defined by the measured ∆E(τmax, τp), an approximation of the
transient spectra ∆E(τ, τp) for each τp can be obtained, and hence the kinetics
∆σ(ω, τp) is calculated.

To examine the characteristics of carrier transport, one should calculate the
carrier mobility by normalizing the transient conductivity according to the equa-
tion 2.0.3. However, the carrier concentration N is not directly accessible as the
quantum yield of the excitation process is usually unknown. However, we can
measure the incident pump pulse fluence and calculate the number of excitation
events Nphot per laser pulse and per unit volume. Consequently, we normalize
the transient conductivity by the density of photoexcitation Nphot instead of the
carrier concentration. In this way we obtain the product of the carrier mobility
and the quantum yield of the excitation:

ξ(τp) µ(ω, τp) =
σ (ω, τp)

Nphote0

(3.3.17)

This quantity is experimentally accessible and gives a good picture of the carrier
transport; namely if the measured kinetics at different conditions (excitation
density etc.) are compared. One can often guess the quantum yield a posteriori
by comparing the measured yield-mobility spectra with an appropriate model of
the carrier transport.

3.3.4 Analysis of ultrafast dynamics

If the dynamics of the sample is ultrafast, i.e. its state significantly changes over
a time range of ∼ 1 ps, the approximation given by the equation 3.3.10 is not
valid; the expression 3.3.9 cannot be replaced by a simple convolution. There are
two basic existing approaches to connect the measured data with the underlying
conductivity mechanisms in the sample:

– The propagation of the THz pulse may be simulated in the photoexcited
medium using finite-difference time-domain simulations. [53] In this case
a concrete model has to be assumed for the transient conductivity. By
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comparing the simulated and measured data the parameters of the model
can be determined. The main disadvantage of this approach is that for the
analysis a specific analytic model has to be assumed.

– In the approximation of small signal, where ∆E � E, the data analysis is
carried out by applying 2D Fourier transformation to the measured transient
THz data ∆E(τ, τp). As a result, the 2D Fourier transform of the response
function σ(ω, ωp) is directly determined: [55]where ω is the counterpart of
τ in the Fourier space and ωp corresponds to τp

∆E(ω, ωp)

Eref (ω)
=

∆σ(ω, ωp) Ξ(ω, ω − ωp)

iωε0T sam(ω)

E0(ω − ωp)

E0(ω)
(3.3.18)

where ω is the counterpart of τ in the Fourier space and ωp corresponds
to τp, T sam(ω) is the transmission function of the sample in equilibrium
and Ξ is the transfer function specific to the geometry of the sample. The
transfer function Ξ for a variety of sample geometries were derived in Ref.
54. A demonstration of the retrieval procedure is provided in [56, 57]. The
retrieval procedure was tested on well-known model systems [56, 57] and
applied e. g. to the investigation of electron transport in microcrystalline
silicon [22] and polymer acceptor blends. [21]

The characterization of a sample exhibiting ultrafast dynamics imposes in-
creased demands on the experiment:

• The probing THz beam and the optical excitation beam must be collinear
and perpendicular to the surface of the sample. If, for example, the ex-
citation beam is incident on the sample under an angle φ, the excitation
events on the sample surface occur within a time interval d cos φ depending
on the place of the sample (here d is the diameter of the excitation beam).
The THz beam coming under normal incidence probes different parts of
the sample with a different time delay. The time-dependent response of
the sample is smeared and the time resolution of the experiment becomes
limited.

• A dense 2D grid of the transient waveform ∆E(τi, τp,j) has to be measured,
which imposes high demands on the stability of the main laser source.

• In addition to a reference waveform, the time profile of the THz pulse
incident on the sample E0(t) has to be determined. [57]

In the measurements performed in this thesis the dynamics of the studied samples
is sufficiently characterized using the steady-state approach. Consequently, we
do not use these advanced methods for the analysis of the measured data.
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3.4 Optical pump–optical probe spectroscopy

In addition to optical pump–THz probe measurements, we performed time-resolved
experiments at optical frequencies, i.e. optical pump–optical probe measurements.
In these measurements the dynamics of the optical absorption of an optically ex-
cited sample is explored.

3.4.1 Experimental setup

The main laser source is identical to that used in time-resolved THz spectroscopic
measurements. Both transmission and reflection setups were used. The output of
the main laser source is divided into a pump and a probe branch. The wavelength
of both the pump and probe beams can be changed using nonlinear crystals or
an optical parametric amplifier:

• The probe beam is either used at its basic wavelength of 810 nm (i.e. without
the use of any nonlinear optics) or its wavelength is changed by a parametric
amplifier (accessible wavelengths 300 − 1400 nm).

• The photoexcitation of the sample can be realized at 810 nm (basic wave-
length), 405 nm (using second-harmonic generation in a BBO crystal) or
270 nm (using the third harmonic generated in a pair of BBO crystals).

In the transmission setup, the probe beam irradiates the sample almost under
normal incidence. In the reflection geometry the angle of incidence and the angle
of reflection of the probe beam are close to zero. The pump-probe delay is con-
trolled by a delay-line. As the output of the TOPAS parametric amplifier seeded
by the multipass amplifier is noisy, we introduced several improvements into the
setup to enhance the signal to noise ratio (see image 3.7):

• A synchronous detection method is used by modulating the pump or the
probe beam by an optical chopper.

• A part of the probe beam is separated from the main beam path and mea-
sured by a photodiode. During the measurements, the measured reflec-
tion/transmission signal is normalized by the time-integrated signal from
this diode. This way, the effect of slow power fluctuations of the main laser
source on the measured data is eliminated.

• Another part of the probe beam is separated from the beam path and its
arrival on the sample is advanced by several hundreds of picoseconds com-
pared to the probe beam. This auxiliary beam interacts with the sample
similarly to the probe beam (i.e. it passes the sample or it is reflected from
the sample). Due to its negative time delay, the auxiliary optical pulse
irradiates the sample always in its equilibrium state. Before starting any
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measurement the pump beam is blocked and the intensity of the transmit-
ted/reflected probe and auxiliary beams are measured by a pair of balanced
photodiodes. The power of the auxiliary beam is tuned by a pair of gradi-
ent filters before reaching the photodiode to match that of the probe beam.
This way, the effect of shot-to-shot power fluctuations (which have identical
effect on the probe and auxiliary beams) on the signal is reduced.

3.4.2 Data analysis

To measure the dynamics of the reflectivity/transmittance of the sample, we
perform two measurements:

– A reference measurement is performed by placing the chopper in the path
of the probe beam. The intensity of the probe beam is influenced by all
the optical elements in the setup, therefore the reference intensity takes the
form:

Iref (λ) = I0(λ) Tbefore(λ) A(λ) Tafter(λ) D(λ) (3.4.1)

where I0(λ) is the intensity of the generated probe beam (after the laser
source at 810 nm or after the parametric amplifier), Tbefore(λ) the trans-
mittance of the setup between the source and the sample, A(λ) the reflec-
tivity/transmittance of the sample, Tafter(λ) the transmittance of the setup
between the sample and the detector, and D(λ) accounts for the response
of the detector.

– The optical chopper is placed in the path of the pump beam and the vari-
ation of the probe beam intensity induced by photoexcitation is measured.
The measured signal again depends on the instrumental functions of the
experimental setup and the change of the optical properties of the sample:

∆I(λ, τp) = I0(λ) Tbefore(λ) ∆A(λ, τp) Tafter(λ) D(λ) (3.4.2)

The ratio of the ∆I(λ, τp) and Iref (λ) then yields the ratio of the transient trans-
mittance/reflectivity and the transmittance/reflectivity in equilibrium ∆A(λ, τp) /A(λ).

The dynamics of sample reflectivity/transmittance are measured only at se-
lected wavelengths, therefore the Kramers-Krönig relations cannot be used to
obtain both the real and imaginary parts of the refractive index. Often it is as-
sumed that the change of only one of them occurs due to the photoexcitation or
only one of them has the dominating effect on the change of the optical proper-
ties of the sample. Here we calculate the connection between the change of the
reflectivity/transmittance and the change of the complex refractive index.

We assume that the probe beam irradiates the sample under normal incidence
and the photoinduced change in the reflection/transmission is much lower than
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Figure 3.7: The optical pump–optical probe setup used in our lab. Both the
transmission setup (box in the bottom) and the reflection arrangement (box on
the top) is depicted. The probe beam is shown by the green line, the auxiliary
by the red one and the pump beam is shown in blue.

the reflectance/transmittance of the sample in equilibrium. Therefore we obtain
for the change of reflectance/transmittance induced by photoexcitation:

∆A =
∂A

∂n
∆n +

∂A

∂κ
∆κ (3.4.3)

where n is the real part, κ is the imaginary part of the refractive index of the
sample and ∆n and ∆κ denotes the change in the refractive index induced by
photoexcitation.

In the reflection geometry we use the Fresnel equation to calculate the re-
flectance of the sample:

R =
(n − 1)2 + κ2

(n + 1)2 + κ2
(3.4.4)

By substituting the reflectance into the equation 3.4.3 we obtain:

∆R

R
=

4 (n2 − κ2 − 1) ∆n + 8nκ∆κ(
(n + 1)2 + κ2

) (
(n − 1)2 + κ2

) (3.4.5)

In the transmission setup we assume that the sample is a planparallel slab and
upon photoexcitation the change of the refractive index is homogeneous in the
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whole sample. If the internal reflections in the sample can be neglected, the
transmittance reads:

T =
16n2(

(n + 1)2 + κ2
)2 e−2dκ (3.4.6)

By substituting the transmittance into the equation 3.4.3 we obtain:

∆T

T
=

2

(n + 1)2 + κ2

[
κ2 + 1 − n2

n
∆n +

(
2κ − d

(
(n + 1)2 + κ2

))
∆κ

]
(3.4.7)



Chapter 4

Electron transport in
niobium-doped titania
nanoparticles

Transparent conductive oxides (TCOs) have found to be useful in a number of
optoelectronic devices including photovoltaics or flat panel displays. The stan-
dard material used as TCO in existing applications is tin-doped indium oxide
(ITO). However, indium is rare and expensive, therefore there is an extensive
research to find suitable replacements. [58] The possibility of preparing TCOs in
a nanocrystalline form is of great interest, as it could significantly enhance the
field of applications of these materials. [59] It has been shown that Nb-doped
anatase titania (NTO) films may become a cheap alternative of ITO as they have
high optical transmittance for the visible light and exhibit a dc conductivity as
high as 103 − 104 S.cm−1. [60] Moreover, the preparation of NTO in the form
of nanoparticles and mesoporous films was recently demonstrated. [61] The con-
ductivity of the prepared nanocrystalline NTO films was found by several orders
smaller than that of an epitaxial film: at most 0.25 S.cm−1. Characterization of
the charge transport in this material by time-domain THz spectroscopy is useful
for the optimization of the conductivity and understanding of charge transport
mechanisms.

4.1 Sample preparation and properties

Nb-doped nanoparticles were prepared by our collaborators at the Department of
Chemistry and Center for NanoScience, University of Munich. For their prepara-
tion titanium tetrachloride and niobium (V) ethoxide were dissolved in tert-butyl
alcohol. The nanoparticles were grown at temperatures 60, 100 and 150 ℃ with
Nb molar content of 0%, 10% and 20%. The nanoparticles were pressed under a
pressure of 10 MPa in a sample holder with diameter 13 mm. The thickness of

53
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the resulting pellets ranged from 0.55 to 1.28 mm. These samples were studied
both as-prepared and after annealing at 600 ℃ in nitrogen atmosphere to prevent
oxidation and water vapour absorption. [61]

It has been found that both the doping level and the growth temperature
play an important role in the features of the nanoparticles. The particles ob-
tained with the growth temperature of 60 ℃ are completely amorphous, those
prepared at 100 ℃ are completely crystalline with a structure similar to anatase.
Further increase of the growth temperature while keeping constant the growth
duration leads to an increase of the particle size. Nb-doping has been found to
suppress the crystallization of the nanoparticles and enhance their conductivity.
The dc conductivity of pellets prepared from nanoparticles grown at temperature
100 ℃ is 1 × 10−6 S.cm−1 for the undoped and 1 × 10−5 S.cm−1 for the 20%
doped particles. The annealing of the pellets increases their conductivity up to
0.25 S.cm−1. [61]

To evaluate the role of the crystallinity of the particles in the mechanisms
of charge transport we selected a set of samples grown at temperatures 60, 100
and 150 ℃ with Nb-doping level 20% (samples denoted as NTO 20%@60 ℃,
NTO 20%@100 ℃ and NTO 20%@150 ℃). [14] To study the influence of the dop-
ing level a set of samples grown at 100 ℃ with doping levels 0%, 10% and 20%
was chosen (samples NTO 0%@100 ℃, NTO 10%@100 ℃ and NTO 20%@100
℃). We studied both as-prepared and annealed samples (we denote the annealed
sample with N2, i.e. NTO 20%@100 ℃ N2 is NTO 20%@100 ℃ annealed in ni-
trogen atmosphere). The duration of growth of these samples was set such that
the size of the nanoparticles was around 4 nm.

4.2 Measurement

We measured the ac permittivity of the samples in the THz frequency range us-
ing steady-state time-domain THz spectroscopy. Additionally, the permittivity at
microwave frequencies (20 MHz−10 GHz) was measured using an Agilent 85070E
dielectric probe with an Agilent E8364B network analyzer by Martin Kempa in
the Department of Dielectrics of the Institute of Physics. The measured per-
mittivity data are displayed in Fig. 4.1. Although bulk anatase is dispersionless
at frequencies below 1 THz [62], the values of the permittivity obtained by the
two techniques do not correspond to each other – the permittivity measured at
microwave frequencies is for the majority of measurements lower than that in
the THz frequency range. Measurements at microwave frequencies were carried
out using the coaxial dielectric probe attached to the sample. The accuracy
of these measurements then depends on the quality of the electric contact be-
tween the probe and the sample. Our samples are rigid with a rough surface and
the electric contact could not be made perfectly. Consequently, the permittivity
spectra measured using the dielectric probe give a good insight into the trends
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of the permittivity spectra at microwave frequencies but the absolute value of
the permittivity can be erroneous. It follows that the microwave spectra cannot
be used for a common fitting with the spectra measured using time-domain THz
spectroscopy.

4.3 Model of the effective permittivity

The permittivity of bulk anatase is dominated by phonon modes; all of the phonon
frequencies lie above 7 THz. [62] The observed decrease of the permittivity with
increasing frequency in the microwave frequency range therefore cannot be ex-
plained solely by the response of bulk anatase. The microwave permittivity ex-
hibits a relaxation-like response. We attribute this response to the hopping of
charge carriers. [63] The model of intrinsic permittivity that we use to describe
the response of our samples therefore consists of two parts:

• Permittivity of anatase. This model is based on the measurement of
the permittivity of anatase in Ref. 62. As bulk anatase is anisotropic, we
approximate its permittivity by the average of the diagonal elements of
the permittivity tensor. The permittivity is then calculated as εanatase =
(2εa/3) + (εc/3), where εc is the component describing the response along
the tetragonal c-axis, εa the component in the plane perpendicular to c.
The average permittivity spectra of bulk anatase are displayed in Fig. 4.2.
In nanocrystalline anatase one can expect enhanced dielectric losses (i.e.
increased Im ε) in comparison with bulk anatase due to extrinsic losses,
which are caused by the presence of lattice defects. The behaviour of these
low-frequency extrinsic losses is often similar to the intrinsic ones caused
by multiphonon effects: one usually observes a linear increase with the
frequency, Im ε ∝ ω. [64] Consequently, we represent the increased imag-
inary part of the permittivity by a single loss enhancement factor Q, by
which we multiply the imaginary permittivity of bulk anatase. This factor
may be different for samples with different preparation parameters (growth
temperature, doping etc.).

• Carrier hopping conductivity. We describe the carrier hopping in the
pellets by the Dyre random free energy model presented in subsection 2.2.4
by the equation 2.2.7. The parameters of this model are the hopping times
τmin, τmax and the saturated conductivity σ∞, which depends on the density
of mobile carriers and is therefore different for each sample. We fix the
hopping times to the same value for every sample; τmin = 20 fs, which
corresponds to the phonon frequency [63]. We assume that electron hopping
occurs in the whole frequency range of our measurements, therefore fix τmax

to the value of 100 ns corresponding to a hopping frequency below the
microwave range.
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Our model of microscopic permittivity therefore reads:

εmicro = Re εanatase + Q Im εanatase +
iσhopping

2πfε0

(4.3.1)

4.4 Effective medium theory

Although all the samples are made of the same materials with similar fabrication
process and the mass densities of all the pellets are comparable to each other, the
observed permittivity values in the THz range are quite different when comparing
different samples. For example, ε ≈ 7 is measured for NTO 0%@100 ℃ and
ε ≈ 28 for the annealed NTO 20%@150 ℃ N2. These large differences must then
originate from a different degree of percolation of the conductive anatase grains
in the samples. We attempt to describe the relation between the microscopic and
the effective permittivity using a parametrized Bergman spectral function, which
is able to account for media with different percolation strengths. It is assumed
that the composite consists of a percolated component and a non-percolated one
characterized by a single value of depolarization factor LA. Then the Bergman
spectral function consists of two δ-functions:

G(L) = Cperc δ(L) + Cnonp δ(L − LA) (4.4.1)

where the δ-function around zero represents the percolated component with a
weight Cperc and the δ-function at LA stands for the non-percolated component
with a weight Cnonp. By using the normalization conditions for an isotropic
sample (equations 2.1.5 and 2.1.6) we obtain two additional relations between
the parameters of the model:

Cperc + Cnonp = 1 and LA =
1 − s

3Cnonp

(4.4.2)

After substituting these relations into 4.4.1 we obtain:

G(L) = Cperc δ(L) + (1 − Cperc) δ

(
L − 1 − s

3 (1 − Cperc)

)
(4.4.3)

The effective permittivity εeff is obtained by substituting the equation 4.4.3
into the basic formula of the Bergman theory 2.1.3. The relation between the
microscopic and effective permittivity then reads:

εeff = 1 + sCperc (εmicro − 1) + s
1 − Cperc

1
εmicro−1

+ 1−s
3(1−Cperc)

(4.4.4)

The titania nanoparticles are assumed to form closely packed spheres, therefore
their volume fraction is set to s = 0.65.
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Figure 4.1: Measured permittivity spectra of the NTO pellets both in the mi-
crowave and THz frequency range. The symbols represent the measured data (u

the real part, @ the imaginary part of the permittivity), the solid lines the fit of
the THz spectra extrapolated to microwave frequencies.
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Figure 4.2: Average permittivity spectra of bulk anatase calculated based on
Ref. 62. The solid black line shows the real part, the dashed red line displays the
imaginary part of the permittivity.

Obviously, the above described model may be valid only if the depolarization
factor of the non-percolated component is lower than unity, i.e. LA ≤ 1. If the
parameters obtained by the fitting procedure do not fulfill this condition, Cperc

is close to unity and we may assume that the sample is percolated. In this
case we use the inverted Maxwell-Garnett model described in subsection 2.1.1
as an appropriate effective medium approximation. The relation between the
intrinsic permittivity of NTO and the effective permittivity is then obtained by
substituting εm = εmicro, εp = 1, K = 2 into and replacing s by 1 − s in the
equation 2.1.11:

εeff = εmicro
3 − 2s + 2s εmicro

s + (3 − s) εmicro

(4.4.5)

When using this model the volume fraction of the particles s is not fixed; it is
among the fitting parameters of the model.

A study of the permittivity of niobium doped titania nanoparticles based on
the same measured data as in this section is published in Ref. 65. The effective
medium theory used in that publication is different from the model developed
in this work. In Ref. 65 the material is considered as consisting of percolated
and nonpercolated parts and the effective permittivity is expressed as a linear
combination of the two components:

• The permittivity of the percolated component equals the permittivity of
anatase nanoparticles εmicro.

• The permittivity of the nonpercolated part is obtained from the Maxwell-
Garnett model assuming tightly packed anatase nanoparticles.
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Figure 4.3: Measured THz permittivity spectra of the NTO pellets. The symbols
represent the measured data (u the real part, @ the imaginary part of the
permittivity), the solid lines the fit of the spectra
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It follows that the volume fraction of the nonpercolated part in the material tunes
both its NTO content and its degree of percolation. In contrast, our current
model has one parameter corresponding to the degree of percolation Cperc and
an independent parameter s corresponding to the NTO content. That is why
we consider the model of effective medium presented in this section more correct
than that shown in Ref. 65.

4.5 Results

The carrier hopping model together with the simplified Bergman model fits well
the THz spectra of the as-prepared and undoped samples. For the annealed
samples, with the exception of the undoped one, the value of Cperc (i.e. the weight
of the percolated part in the Bergman model) is close to unity; in this case one
finds LA > 1 and, consequently, the parametrized Bergman model cannot be
applied to describe the permittivity spectra. For these samples we use the inverted
Maxwell-Garnett theory described by the equation 4.4.5. The high degree of
percolation of nanoparticles is described by setting Cperc = 1 in Fig. 4.4. From
the fitting procedure we have found that the volume fraction of the nanoparticles
in the percolated pellets is very close to 0.65, i.e. the same as the volume fraction
assumed for the as-prepared samples. This justifies our choice of treating the
pellets as closely packed spheres in the parametrized Bergman model. For the as-
prepared or undoped samples a significant part of the material is non-percolated.
The weight of the percolated part Cperc in the pellets increases upon annealing of
the sample. This indicates sintering of the nanocrystals or further crystallization
and growth of the grains. The parameter Cperc increases also with doping for both
annealed and as-prepared samples. Nb doping therefore has a positive effect on
nanoparticle sintering.

The dielectric losses have to be enhanced in all samples in order to successfully
model the permittivity spectra. (see Fig. 4.4). The coefficient of enhancement
Q is the highest (∼ 11) for the undoped as-prepared sample and it drops to 2.7
upon annealing. It may be due to the improved crystallinity of the annealed
anatase grains. The loss enhancement factor for the doped sample is in the range
5−9 and it increases with annealing. This suggests that introducing of Nb atoms
leads to lattice deformation in the grains, therefore to higher extrinsic losses. The
character of defects then probably changes upon annealing leading to a higher
phonon decay at low frequencies.

In Fig. 4.1 the fitting model extrapolated to microwave frequencies is com-
pared with the permittivity spectra measured at the microwave and THz fre-
quency range. Although in most cases the absolute values of the measured and
calculated permittivities do not correspond to each other, the trends in the dielec-
tric spectra are similar. The reason of the discrepancy lies in the above explained
systematic error in the measurements with the dielectric probe and also in the
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Figure 4.4: Results of fits of the THz permittivity for the pellets pressed from
nanoparticles with varying doping levels synthesized at 100 ℃ (left column), and
nanoparticles with 20% doping level synthesized at several temperatures (right

column). (@) As-prepared samples, (u) annealed samples.



62 CHAPTER 4.

fact that the carrier hopping was obtained entirely from the measured relatively
narrow-band THz spectra. Dyre’s model assumes carrier hopping over energy
barriers in a system where the energy barriers are in the range (∆Emin, ∆Emax),
and their distribution is uniform. [23] However, electromagnetic radiation at mi-
crowave and THz frequencies induce carrier hopping over a different set of barriers
due to the large difference between the two frequency ranges. Consequently, it
is possible that the parameters of the hopping model extracted from the THz
spectra can not be applied without a small modification to model simultaneously
the microwave spectra.

The saturated hopping conductivity σ∞ decreases significantly with annealing
and it vanishes for the annealed undoped sample. For doped as-prepared sam-
ples the saturated conductivity is smaller than that of the undoped one and it
further decreases with annealing, but does not vanish. This trend is the opposite
to the one observed for the dc conductivity of the nanoparticles, where the dc
conductivity increases with both annealing and doping. [61] This indicates that
the carrier conductivity is dominated by hopping between defect states in the
pellets. With annealing the intrinsic localized states not related to the doping
disappear and the hopping conductivity is reduced. The only remaining hopping
conductivity is connected with the localized states introduced by Nb doping. The
dc conductivity is much lower than the Nb-induced hopping conductivity and it
is strongly dependent on the doping density. This dependence can be explained
through the variation of τmax in the Dyre conductivity 2.2.7. With increasing
doping density the hopping distance decreases, the longest hopping time thus
shortens and the dc conductivity is enhanced.

In comparison with the conclusions of Ref. 65 we find that the volume frac-
tion of NTO in the pellets is identical for almost all the samples. The hopping
conductivity was found to be twice smaller in our study and the enhancement of
losses very similar. The change of these two quantities with the doping, growth
temperature and annealing are very similar to the findings in Ref. 65.

4.6 Conclusion

We studied the dielectric and conduction properties of TiO2 mesoporous pellets
undoped and doped by Nb using time-domain THz spectroscopy and microwave
impedance spectroscopy. A model was developed explaining the relation between
the microscopic and the macroscopic permittivity of the pellets appropriate for
different degrees of percolation. The microscopic permittivity spectra are ex-
plained by enhancing the dielectric losses of bulk anatase due to extrinsic losses
and by an additional hopping conductivity of charge carriers. From the analysis
of the parameters of the model a picture of the conduction mechanism consistent
with previous studies was developed:

• The dominating conduction mechanism in all the samples is carrier hopping
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between localized states. The localized states not related to Nb doping
are removed upon annealing, while hopping conductivity between localized
states introduced by doping remains. Increased level of doping leads to
smaller distance between localized states and thus higher dc conductivity.

• The crystallinity of the pellets improves with annealing for the undoped
samples. However, Nb doping increases the extrinsic dielectric losses.

• The percolation of the grains in the pellets is significantly increased upon
annealing.





Chapter 5

Electron dynamics in water

In nature, chemical reactions often occur in aqueous solutions. These reactions
involve transport of charge between the reagents in the form of ions or electrons.
The motion and the state of the solvated charged particles (ions or electrons)
may affect crucially the products of the reaction. [66,67]

In this chapter, we study the dynamics of electrons in water generated by
photoexcitation. On the one hand, investigation of the dynamics of an excess
electron serves as a simple prototype for studying charge transport in liquids
because electron lacks internal degrees of freedom (such as the electronic states
of ions). On the other hand, the photogenerated electron itself plays an important
role in a number of processes; for example, ionization of water with high-energy
photons leads to corrosion in nuclear reactors [66], and high energy electrons
in water damage important biomolecules like DNA. [67] Despite its importance,
the generation mechanism of excess electrons and their subsequent localization
process is not fully characterized yet and it is studied widely both theoretically
by quantum mechanical simulations [68,69] and experimentally by optical pump–
optical probe methods and pulse radiolysis. [70] During these experiments water
or solvated ions are ionized and subsequently the optical spectra of the products
are probed. Probing the optical spectra is ideal for the identification of solvated
electrons. The ionization pathway may be completely different with different
parameters of ionizing radiation (excitation energy, intensity) and under strong
excitation the electron can become delocalized for a short time (tens or hundreds
of femtoseconds). [71] To reveal the existence of the transient delocalized state we
apply optical pump–THz probe spectroscopy to measure the photoconductivity
spectra of neat water and of aqueous solutions of several salts.

5.1 Theoretical background

The electronic spectrum of water differs crucially from that of a bulk semicon-
ductor:

65
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• The structure of water is amorphous and therefore there are no bands cor-
responding to the individual states of excess electrons. Nevertheless, it is
often possible to define a conduction band as a range of energies, for which
charge carriers may be delocalized. A scheme of the energy spectrum of
water is displayed in Fig. 5.1 a).

• Unlike in solid materials, the molecules in liquids are mobile. Consequently,
these molecules may reorient themselves around a “foreign“ particle. This
makes electronic transitions more complex than similar processes in solids.
For example, photoionization of liquid water first involves the generation
of an excess electron in a non-equilibrium state. This intermediate state
can be a short-lived delocalized electron. Immediately after the ionization
process the water molecules around the parent ion are oriented identically
as they were before the photoexcitation. It means that this state (excess
electron+parent ion+surrounding molecules) has a higher energy than the
conduction band edge (see Fig. 5.1 b). Consequently, the bottom of the
conduction band cannot be reached by a vertical ionization process. Subse-
quent fast relaxation involves reorientation of water molecules and a related
decrease of free electron excess energy.

The product of the ionization of water and aqueous solutions is the hydrated
electron. The hydrated (or solvated) electron is the ground state of the excess
electron completely solvated in water. Its wavefunction is substantially influ-
enced by the surrounding water molecules, which rapidly fluctuate in time. Con-
sequently, its geometrical configuration is not constant in time and is difficult to
describe. On average, it is surrounded by ∼ 6 water molecules; the molecules
point with one of their hydrogen atom in the direction of the solvated electron
(see Fig. 5.2 a). The optical absorption spectra of the solvated electron consist
of a broad peak centered at 720 nm (see Fig. 5.2 b) [73], which corresponds to
the electronic transition from the ground (s-)state to a triplet p-state.

Due to the strong broadband absorption of the hydrated electron in the visible
and near-infrared range, optical pump–optical probe spectroscopy is a tool fre-
quently used to study its dynamics. The solvated electron is formed very quickly
after photoexcitation, typically within less than 1 ps [71]. Once the solvation pro-
cess completed, the absorption spectra of the solvated electron do not change any
more during its lifetime (∼ µs − ms), and therefore probing at a single wavelength
close to the absorption peak is sufficient to monitor the evolution of the solvated
electron density. If there are no electron scavengers in the solution, the concen-
tration of solvated electrons decays via geminate recombination (attachment to
its parent ion or radical). From the decay of solvated electron concentration it is
possible to calculate the average ejection length of the electron, i.e. the distance
between the parent ion and the solvated electron immediately after its formation.
It provides an indication about the ionization process itself; one can expect that
different ionization pathways lead to different spatial and energetic electron dis-
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Figure 5.1: a) The energy spectrum of water, after [72]. The energy of the
conduction band edge is only schematically shown. b) Simple illustration of
the possible generation of a conduction band electron from a localized state (for
example, a negative anion). The arrows indicate the dipole moment of H2O
molecules. The vertical ionization may bring the electron into a delocalized state
with the orientation of the surrounding molecules identical to that of the ground
state. This state has a higher energy than states at the conduction band edge
because of a high electrostatic energy associated with this particular dipolar order.
Reorientation of dipoles leads to an energy relaxation. [72]

a)
b)

Figure 5.2: a) The approximate alignment of the solvated electron and the sur-
rounding water molecules (from Ref. [74]). b) Spectrum of molar absorption
coefficient of the solvated electron [75]
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tributions and an electron ejected to the conduction band of water may escape
far away – into a distance of several nanometers – from the parent ion. [76]

It has been shown that the ejection distance of an electron depends both on the
conditions of photoexcitation and on the parent ion/molecule. [71] Based on the
previous optical pump–optical probe studies and our experimental capabilities we
generate excess electrons by photoexcitation at wavelengths 270 nm and 405 nm.
We photoexcite both neat water and aqueous solutions of salts:

• The ionization energy of water is between 8 and 12.4 eV, therefore one can
expect generation of delocalized electrons only by multiphoton excitation.
However, the generation pathway of the solvated electron may involve also
only excited states of the water molecule or excited state of the solvated
electron (for example p-states) without any electron delocalization. [71]

• By the photoexcitation of aqueous solutions of salts, solvated electron can
be generated also from the solvated anions of these salts. In this case the
energy required for ionization is smaller than that for neat water (see Fig.
5.1 a). For low excitation intensities the electron-ion system is brought into
a high energy state called charge transfer to solvent state (CTTS). The
solvated electron is formed by the dissociation of this state. This process
does not lead to the formation of conduction band electrons and the ejection
distance of electrons is small (for example, for iodide anions less than 1 nm).
However, for high excitation energies, which may be reached by multiphoton
excitation, the electrons may be ejected into the conduction band. This was
observed through the increase of the electron ejection length (∼ 4 nm for
iodide anions) [70].

5.2 Specific experimental details

In our experiments we used high pump intensities to induce multiphoton ioniza-
tion processes. If the sample is poured in a cuvette, the strong excitation beam
may induce nonlinear effects in the walls of the cuvette leading to parasite signals.
Moreover at high salt concentrations the salt may be deposited on the walls, thus
degrading the experiment. Consequently, in our experiments the use of cuvettes
was omitted and the liquids were studied in the form of a thin free flowing gravity-
driven liquid film. [47] The liquid flowed through a stainless steel nozzle and at
its output it was guided by a piece of thin wire bent to a U-shape and attached
to the nozzle at its ends. The liquid after flowing through the film (between the
two branches of the U-shape) was collected in a reservoir and pumped back to
the upper reservoir feeding the film. The schematic of the construction is shown
in Fig. 5.2. [47] The thickness of the jet was ∼ 100 µm; it was measured by THz
time-domain spectroscopy based on the knowledge of the THz refractive index of
water (n = 2.1+ i0.5 [77]). The sample was probed in the transmission geometry
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using the setups described in sections 3.3 and 3.4. Neat water and solutions of
KI, NaCl, KBr were studied.

Optical pump–optical probe setup Optical pump–optical probe spectroscopy
was applied for the study of solvated electron generation and in order to estimate
the density of the generated solvated electrons. The wavelength of the pump
beam was 270 nm and 405 nm. A probe beam with a wavelength of 810 nm was
used to directly monitor the concentration of solvated electrons. The pump beam
intensity was set to the highest value that could photoexcite the sample without
disturbing the flow of the liquid in the jet (∼ 2 × 1021 photon.cm−2 for 270 nm
and ∼ 1 × 1022 photon.cm−2 for 405 nm excitation).

The change in the transmission of the optical probing pulse occurs due to
the absorption of the solvated electrons. We assume that the excess electron
generation occurs homogeneously in the sample. Consequently, the change of
transient transmission can be expressed by the Beer-Lambert law:

∆T

T
= 10−Lceεe (5.2.1)

where ce is the molar concentration of the solvated electrons, εe the molar ab-
sorbivity of the electrons (see Fig. 5.2 b), L the thickness of the jet. From this
equation the concentration of the generated solvated electrons was calculated.

Optical pump–THz probe setup Optical pump–THz probe spectroscopy
was applied to reveal the presence of delocalized electron states within ∼ 2 ps
after the photoexcitation. The parameters of the pump branch were identical to
that used in the optical pump–optical probe setup. The properties of the THz
probe beam brought the following complications to the experiment:

• The width of the focused THz beam was 4 mm [49]. The width of the
transmitted THz beam was defined by a metallic aperture behind the sample
(3 mm). However, the pump beam needed to be focused on to the liquid
jet to a spot with a waist of tens of microns in order to achieve a significant
multiphoton absorption. Therefore the condition of homogeneous excitation
over the cross section of the probe beam could not be fulfilled. Nevertheless
it had been shown previously that it is possible to carry out a quantitative
study of photogenerated free carriers in a photoionized gas under these
conditions. [13]

• The THz box had to be hermetically closed and filled with helium during the
experiments, because a strong transient THz absorption of photogenerated
electrons in air, oxygen or nitrogen would make it impossible to detect
delocalized electrons in the liquid jet. [13, 78] During the evacuation and
refilling of the box the input tubes must have been clamped and the lower
reservoir had to be empty in order to prevent evaporation of the sample
into vacuum.
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Figure 5.3: Illustration of the thin film flow system. The pump and probe pulses
arrive to the sample from the front. The optical elements are not displayed in
the figure for the simplicity.
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Ion concentration Pump: 270 nm Pump: 405 nm
c [mol.dm−3] ∆T/T N [cm−3] ∆T/T N [cm−3]

water – 0.12 2.2 × 1017 0.10 1.8 × 1017

NaCl 1 — — 0.14 2.6 × 1017

KBr 1 — — 0.32 6.7 × 1017

K3Fe (CN)6 1 0.16 3.0 × 1017 — —
KI 0.2 — — 0.40 8.9 × 1017

KI 1 0.16 3.0 × 1017 — —

Table 5.1: Summary of the measured OPOP signal amplitude and concentration
of solvated electrons after photoionization.

5.3 Experimental results and discussion

In all cases the dynamics of the measured transient optical absorption signal (see
Fig. 5.4) shows a behaviour similar to the ones observed in previous published
studies [71] – the solvated electrons are formed very quickly, and their lifetime is
much longer than 100 ps. The concentrations of solvated electrons for different
ionization conditions are shown in Tab. 5.1. The highest excess electron density
is observed in the solution of KI with a concentration of 0.2 mol/dm3 (0.2 M)
photoexcited by 400 nm pump pulses. Moreover, in the behaviour of the solvated
electron dynamics no decay is observed during the first 10 picoseconds. It implies
that the electrons are ejected far from their parent ions, through the conduction
band. Therefore we can assume that the highest concentration of delocalized
electrons is generated by photoexcitation with 400 nm pulses in 0.2 M KI.

We have not observed any change in the THz transmission spectra of any of
the liquids due to their photoionization. Based on the knowledge of the density of
the generated electrons and on the assumption that all the electrons are formed
through the same ionization mechanism we attempt to make a semi-quantitative
conclusion about the possible delocalization of the intermediate electron states
formed during the photoionization of water.

The lack of THz signal means that the change in the THz transmission was
lower than the sensitivity of our THz setup. By a measurement of the noise
level with the water jet and without pump we determined the lowest measurable
transient THz signal. We set up a model of the electron conductivity in the
conduction band of water which depends essentially on the extent of the elec-
tron delocalization. Based on this model we calculated transient THz waveforms
which represent the signal we should have experimentally obtained for the given
delocalization extent. By comparing the simulation results with the noise level we
obtain a rough estimation of the upper limit of the degree of electron localization.

We use a model for the motion of conduction band electrons based on Monte-
Carlo simulations discussed in subsection 2.2.7. A conduction band electron is
assumed to move in a cavity with perfectly reflecting walls, i.e. the electron is
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Figure 5.4: Transient optical absorption of solvated electrons in various solutions
photoexcited by: a) 270 nm, b) 405 nm laser pulses.
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Figure 5.5: Mobility spectra of conduction band electrons calculated for two
delocalization length scales. The solid lines show the real part, the dashed lines
display the imaginary part of the mobility.

always reflected back upon interaction with the boundary of the cavity (pr = 1 if
we use the notation introduced in subsection 2.2.7). As the electron is expected
to thermalize in the conduction band, its temperature is set to 300 K. We as-
sume that the electron moves without scattering with water molecules and the
scattering time is set to a large number (τ = 1000 ps). The size of the cavity
characterizes the extent of delocalization of the electron. From the simulation
the electron mobility is obtained (several examples are shown in Fig. 5.5). The
shape of the mobility spectra is very similar of that discussed in subsection 2.2.7.
From the mobility we can easily calculate the transient conductivity of the pho-
toexcited part of the sample (by using the electron densities summarized in Table
5.1) and subsequently the transient transmission function.

Here we have to address the problem of inhomogeneous photoexcitation of
the water film, i.e. that the width of the excitation beam is smaller than that of
the THz probe beam. It has been shown that such a configuration may result
in a change of the shape of the transient transmission spectra due to separation
of negatively and positively charged particles leading to transverse oscillations of
the free carrier plasma. [13] In the current study we wished to estimate merely
the amplitude of the transient transmitted THz waveform. For this estimation
we did not need to consider a particular measured shape of the THz waveforms.
In our evaluations of the transient transmission function we simply scaled the
amplitude of the reference THz pulse by the ratio of the pump and probe beam
spot sizes. The spot size of the pump beam was measured by a CCD camera at
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the place of the sample. The size of the probe beam was defined by the aperture
placed behind the jet.

From the transient transmission function and from the measured reference
THz waveform the expected transient THz waveform can be evaluated. The
results of the simulations are displayed for neat water and KI (the aqueous salt
solution where the conduction band electron generation is the most apparent) in
Fig. 5.6. One can see that for conduction band electrons with lifetime much longer
than 1 ps the length scale of delocalization of the electrons must be at least 2-3
nm in order to be detected in our experiments. However, it has been shown that
such states should have a lifetime . 0.4 ps. [71] We use the following procedure
to account for the finite lifetime of delocalized electrons in our estimations. The
simulated electron mobility spectra can be formally approximated by the Drude-
Smith model (see Sec. 2.2.7 for detailed discussion). As the electron lifetime is
shorter than the THz pulse length, the evolution of the transmitted transient
THz spectra within 1 ps after photoexcitation is non-trivial – its spectral shape
changes. Consequently, a careful analysis must involve the calculation of 2D
transient data as described e.g. in [55,56]; the two dimensions are represented here
by the detection (sampling) time and by the pump-probe delay. For a system
exhibiting a response corresponding to the Drude-Smith model, the transient
transmitted THz waveform reads:

∆E(τ, τp) ∝ exp

(
−τ + τp

τc

)
Y (τ + τp)

τ+τp∫
0

dt′E0(τ − t′) exp

(
− t′

τDS

)(
1 + c1

t′

τDS

)
(5.3.1)

where c1 and τDS are the parameters of the Drude-Smith model, Y (t) is the
Heaviside step function and τ , τp have the same meaning as in the Section 3.3.
The equation was derived based on Eq. 38 in Ref. 56. An example of a 2D
map for delocalization length 12 nm and lifetime τc = 0.3 ps is displayed in
Fig. 5.7. After the calculation of such a 2D map we consider a THz waveform
∆E(τ, τp) for τp fixed at a value shortly after photoexcitation (0.1-0.3 ps) along
our experimental conditions. This waveform is convoluted with the response
function of the detector [57] and finally compared with the noise level of our
system.

We have compared the detection capabilities of our setup with simulations of
the transmitted transient THz signal for lifetimes τc = 0.1 and 0.3 ps. The data
are displayed in Fig. 5.8 for neat water and in Fig. 5.9 for the solution of KI. From
the comparison it is clear that for neat water the largest possible delocalization
length of electron states generated in our experiments is 12− 20 nm, whereas for
the solution of KI it is 5 nm.
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Figure 5.6: Transient THz signal evaluated by means of the simulations of the
motion of conduction band electrons. The signal magnitude is compared with
the noise level of our experiments. a) Simulation with electron concentration
measured in neat water. b) Simulation with electron concentration measured in
solution of KI. Electron lifetime � 1 ps.
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Figure 5.7: Two dimensional map of the transmitted transient waveform calcu-
lated for mobile electrons with a lifetime 0.3 ps in a cavity with diameter 12
nm.

5.4 Conclusion

We have applied optical pump–THz probe spectroscopy for probing delocalized
electron states generated by multiphoton ionization in neat water and aqueous
solutions of KI, KBr, NaCl and K3Fe (CN)6. It was found that in our frequency
range the delocalized electrons cannot be detected. By performing complemen-
tary optical pump–optical probe experiments we estimated the initial density of
photogenerated electrons. We also have set up a classical model of the mobility
of partially localized electrons by using Monte-Carlo simulations. A combination
of the two approaches revealed that the intermediate electron states generated
due to photoionization do not stay mobile on a length scale of ∼ 5 nm longer
than 100 fs.
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Figure 5.8: Transient THz signal evaluated by means of the simulations of the
motion of conduction band electrons in photoexcited neat water. It is assumed
that the electrons have a short lifetime. The signal magnitude is compared with
the noise level of our experiments. a) The electron lifetime is τc = 0.3 ps. b) The
electron lifetime is τc = 0.1 ps.
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Figure 5.9: Transient THz signal evaluated by means of the simulations of the
motion of conduction band electrons in aqueous solution of KI. It is assumed that
the electrons have a short lifetime. The signal magnitude is compared with the
noise level of our experiments. a) The electron lifetime is τc = 0.3 ps. b) The
electron lifetime is τc = 0.1 ps.



Chapter 6

Electron transport in
nanocrystalline and bulk ZnO

ZnO is a II-VI semiconductor with direct bandgap. Its fundamental properties
are summarized in Tab. 6.1. One of the peculiar features is the relatively high
exciton binding energy (∼ 60 meV), which enables population of exciton levels
at room temperature. As a result, ZnO is a promising material to be used as
an active medium in a polariton laser, where the (stimulated) emission occurs
through the radiative recombination of excitons. [79, 80] Furthermore, thin ZnO
films find applications as transparent conductive electrodes [58], in transparent
thin-film transistors [81] and in dye-sensitized nanostructured solar cells [82–84].
It has been shown that ZnO has a strong tendency for self-organized growth
and it is a suitable material for growing nanostructures of various geometries,
for example nanocrystals, nanorods, tetrapods, tubes etc. [85] We investigate
the carrier transport in ZnO nanocrystals prepared by the sol-gel technique. [86]
For this study we use optical pump–THz probe spectroscopy. The results are
complemented by the study of carrier transport in bulk ZnO under the same
experimental conditions.

Crystal structure hexagonal-wurzite
Bandgap (300 K) 3.44 eV

Exciton binding energy ∼ 60 meV
Bohr radius of exciton ∼ 2 nm
electron effective mass 0.28 me

light hole eff. mass 0.31 me

heavy hole eff. mass 0.55 − 0.59 me

Mott density 3 × 1017 − 2 × 1018 cm−3

THz refraction index 2.8
refraction index at 266 nm 2.1+i0.6

Table 6.1: Some important properties of bulk ZnO [80,85]

79
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Figure 6.1: Band structure of ZnO. The arrows indicate the allowed electron-hole
pair generation pathways for one-photon and two-photon absorption in the case
of E ⊥ c. The valence band consists of three bands: a pair of heavy-hole bands
split by the spin-orbital interaction (A,B) and the band of light holes (C)

6.1 Recent THz studies of bulk and nanocrys-

talline ZnO

6.1.1 Bulk ZnO

For the investigation of the photoconductivity of ZnO, we should consider the
following properties:

• As ZnO crystallizes in the hexagonal wurtzite structure, the orientation of
the polar hexagonal (c) axis of the crystal cell with respect to the optical
excitation field may have a crucial effect on the properties of the generated
charges. For example, due to symmetry reasons, different selection rules
apply for exciton absorption with an optical field parallel or perpendicular to
the c-axis. Excitons with A- and B-holes absorb radiation with electric field
perpendicular to c, C-excitons absorb photons with polarization parallel to
c (see Fig. 6.1). [85]

• The excitation density essentially determines the nature of photoconduc-
tivity in bulk ZnO. For low excitation densities a considerable fraction of
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charge carriers form excitons. On the other hand, at high excitation densi-
ties, above the Mott density the electron-hole interaction becomes screened
and the excitons disappear. For ZnO the Mott transition is expected to
occur in the carrier density range of 3 × 1017 − 2 × 1018 cm−3 [85, 87].

• Several methods exist for the growth of ZnO crystals. The parameters and
method of growth may determine the density of defects in the crystal and
affect both its photoconductivity and carrier dynamics.

Baxter et al. studied a ZnO crystal in the (0001) orientation (i.e. the c-axis
perpendicular to the crystal surface) grown by the sublimation technique. The
sample was photoexcited at the wavelength of 387 and 400 nm, which generated
electrons through two-photon absorption. This way the whole volume of the
sample was photoexcited, and the conductivity of carriers at relatively low con-
centration (down to 1014 cm−3) could be measured. The study was carried out at
temperatures of 10, 40 and 80 K. It was found that for all temperatures and for all
excitation densities used the photoconductivity was dominated by a Drude-like
behaviour, with scattering times 250-500 fs. The dynamics of the THz signal was
governed by the decay of the carrier concentration and by the decrease of the car-
rier scattering time (or equivalently of the mobility) with increasing pump-probe
delay. The Drude-like behaviour was attributed to the response of photogen-
erated electrons and holes; in this experimental configuration (i.e. two-photon
absorption with the polarization of the optical electric field perpendicular to the
c-axis) only light holes and electrons are initially generated due to the selection
rules. The decrease of the scattering time was then attributed to the relaxation
of the light holes into heavy hole states. No oscillatory response originating from
excitons was detected. [88]

Hendry et al. studied ZnO crystals grown by the hydrothermal method which
is supposed to produce crystals with low density of defects. Crystals with ori-
entations (0001) and (101̄0) were studied. The photoconductivity of ZnO was
found to be independent of the orientation of the crystal, and it was studied for
both low (carrier density under the Mott transition limit) and high (above the
Mott density) excitation densities [18,89]:

• Using pump pulses with wavelength 400 nm a low uniform photocarrier
density of up to 2 × 1016 cm−3 was generated in the entire volume of the
sample. It has been found that immediately after photoexcitation the pho-
toconductivity followed the Drude-like behaviour with the scattering time
∼ 80 fs. In the following 100 picoseconds a part of the initial free elec-
trons and holes recombined into excitons and eventually formed a stable
system of excitons and free carriers in thermal equilibrium with each other;
measurements at temperatures between 20 K and 140 K showed that the
free-carrier fraction in this quasi-equilibrium state follows an Arrhenius like
behaviour with temperature. The activation energy of this temperature de-
pendence was found to be close to the binding energy of excitons 60 meV.
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The excitons were distinguished from the free carriers owing to the different
shape of their complex conductivity spectra: the response of the free carri-
ers is Drude-like (Eq. 2.2.2) while the contribution of the excitons follows
the harmonic oscillator model (Eq. 2.2.4). The oscillator circular frequency
of the exciton was found to be ω0 = 50 rad.ps−1 and the damping frequency
was γ = 6 ps−1.

• Using pump pulses with a wavelength of 270 nm high excitation densities
(initial carrier density up to 1020 cm−3) were achieved. The photoconduc-
tivity was found to be constant in the whole THz frequency range with a
positive real part and negligible imaginary part. It corresponds to a Drude-
like response of a dense electron-hole plasma with very short scattering time.
The density of carriers was found to decay rapidly but after approximately
100 ps the decay slows down considerably: they observe an electron-hole
plasma with a constant density ∼ 2 × 1018 cm−3. This plasma does not
decay for at least one nanosecond and its density is independent of tem-
perature and initial excitation density. The decay of the carrier density is
independent of temperature and its time constant decreases with increasing
excitation density. The carrier decay was attributed to the Auger recombi-
nation process, although no quantitative analysis was carried out.

From this summary one can see that a wide variety of electron and hole
states can be generated by photoexcitation in bulk ZnO. In an attempt to further
increase the level of understanding of the mechanisms of photoconductivity in
ZnO for high density of photocarriers, we carried out time-resolved THz studies
of bulk ZnO at photocarrier densities near and above the Mott transition.

6.1.2 Nanocrystalline ZnO

The most complete study of the mobility of nanostructures of ZnO was presented
by Baxter et al. They studied both the intrinsic conductivity and the photo-
conductivity of thin films of ZnO, ZnO nanowires and mesoporous nanoparticle
films of ZnO. The measured photoconductivity spectra were described by the
Drude-Smith model. [31] However, the parameters in the Drude-Smith model are
phenomenological and provide only an intuitive picture of the carrier localization
in nanostructures (see Subsection 2.2.6).

We study the photoconductivity of nanocrystalline ZnO using the combination
of time-resolved THz spectroscopy and Monte-Carlo simulations. The parameters
of these simulations have a direct microscopic physical meaning. Such a study
also provides a good opportunity to test our model for different temperatures and
carrier densities.

Němec et al. investigated the dynamics of photoconductivity in dye sensitized
ZnO nanocrystals. By using two different pump wavelengths Němec could distin-
guish the electrons injected from the photoexcited dye and those photogenerated
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directly by an interband transition in the semiconductor. The mobility of the
injected electrons was found to be substantially lower due to their electrostatic
interaction with the dye cations. [34]

For our studies we used the same samples as the ones investigated in that pa-
per. However, here we focused on the transport of the directly generated charges:
the pump wavelength was chosen such that no photoinjection from the dye oc-
curred. The electron mobility of photocarriers generated in ZnO is then more
thoroughly investigated than in Ref. 34; it is measured for several selected tem-
peratures between 293 and 20 K and for a wide range of electron concentrations
(1 × 1017 − 3 × 1019 cm−3).

6.2 Electron mobility and dynamics in bulk ZnO

We measured the photoconductivity of a (0001)-oriented ZnO crystal prepared
by the company MTI using the hydrothermal method. Excitation wavelength of
270 nm was used at pump fluences of 1 × 1012 − 2 × 1014 photon.cm−2. This
excitation wavelength corresponds to the photon energy of 4.5 eV, which exceeds
that of the ZnO bandgap; therefore the electron-hole pairs are generated by one-
photon absorption. The skin depth of the pump beam in ZnO is ∼ 35 nm; the
density of excitations per pulse in the thin photoexcited layer of ZnO is thus
in the range 3 × 1017 − 7 × 1019 cm−3. The measurements were carried out at
temperatures 20, 80, 120, 293 K. It has been found that the dynamics of the
photoconductivity of the ZnO crystal changes slowly compared to the temporal
length of the probing THz pulse, therefore the measured data can be analyzed
using the quasi-steady state approximation described in Subsection 3.3.3. Here
we present the evolution of the absolute value of the carrier yield-mobility product
at a selected frequency (1 THz) and the measured mobility spectra at selected
pump-probe delay times.

The measured dynamics of the yield-mobility product at 20 K are displayed
in Fig. 6.2. It can be seen that the evolution of the curves with increasing pump
fluence is non-trivial; namely, for some excitation densities a non-monotonic de-
cay is observed. For high excitation densities the yield-mobility product builds
up slowly with a flat maximum lasting for several picoseconds, while at excitation
densities lower than 3× 1019 photon.cm−3 the signal reaches its maximum in less
than 1 ps after photoexcitation. In the high-excitation regime the time constant
of the decay does not vary much with the excitation density. For lower excitation
densities (lower than 3× 1019 photon.cm−3) the decay becomes faster. At excita-
tion densities 1.7×1018 −1.7×1019 photon.cm−3 the dynamics is non-monotonic
and starts to increase about 40 ps after photoexcitation. This second increase of
the signal lasts approximately for 50 picoseconds.

To reveal the mechanism behind this complicated and strongly nonlinear dy-
namics we examined the THz yield-mobility spectra at several time delays se-
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ZnO: 20 K
Nexc = 6.4 × 1019 photon.cm−3

delay [ps] A [cm2V−1s−1] ξA τA [fs] B [cm2V−1s−1]
10 93 0.53 28 –
40 30 0.01 470 40
120 51 0.02 470 10
200 32 0.01 470 6

Nexc = 3.8 × 1019 photon.cm−3

delay [ps] A [cm2V−1s−1] ξA τA [fs] B [cm2V−1s−1]
10 100 0.79 21 –
40 34 0.01 460 44
120 69 0.02 460 13
200 41 0.01 460 9

Nexc = 1.7 × 1019 photon.cm−3

delay [ps] A [cm2V−1s−1] ξA τA [fs] B [cm2V−1s−1]
10 95 1.26 12 –
40 45 0.01 500 32
90 110 0.04 500 19
120 100 0.03 500 17
200 65 0.02 500 15

Nexc = 1.7 × 1018 photon.cm−3

delay [ps] A [cm2V−1s−1] ξA τA [fs] B [cm2V−1s−1]
6 120 0.08 250 47
10 68 0.03 400 44
23 67 0.03 400 31
86 90 0.04 400 29
200 60 0.02 400 29

Table 6.2: Fit parameters for the yield-mobility spectra of the ZnO crystal mea-
sured at 20 K.
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Figure 6.2: Dynamics of the carrier yield-mobility product at 1 THz, temperature
20 K. For clarity the time origin of the curves is shifted.

lected in a way to cover all the important phases of the dynamical behaviour of
the sample.

We detected three different components in the yield-mobility spectra:

• A Drude-like contribution with scattering time of 10 − 500 fs. We refer to
this component as component A. Its mobility is described with the expres-
sion:

ξAµA =
A

1 − iωτA

(6.2.1)

The yield of this Drude term can be calculated by comparing the Eq. 6.2.1
with Eq. 2.2.2. One obtains:

ξA =
Am

qτA

(6.2.2)

where m is the effective mass of the particles, q is their charge and τA their
momentum scattering time.

• A Drude-like contribution with scattering time less than 10 fs. We refer to
this component as component B. Its mobility is approximately constant in
our frequency range and the imaginary part of the mobility is close to zero.
As a result, the precise value of the scattering time cannot be determined
from the measured spectra, we can only set its upper limit τB ≤ 10 fs. We
describe the contribution of this component to the mobility as B, a real
constant. For this component the yield cannot be determined due to the
unknown scattering time.
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Figure 6.3: Spectra of the yield-mobility product measured at 20 K with exci-
tation density 6.4 × 1019 photon.cm−3, pump-probe delays 10 and 40 ps. The
symbols indicate the experimental data. Closed symbols show the real part of
the yield-mobility product (left axis), open symbols display the imaginary part
(right axis). The lines show the fits of the data. A two-component Drude model
is used for τp = 40 ps (here the dash-dotted line indicates the contribution of the
Drude term with very short scattering time to the real part of ξµ).

• At temperatures ≥ 80 K we detect also components with a small real mo-
bility and a negative imaginary mobility which is decreasing with frequency.
This type of response is well described by the oscillator model (Eq. 2.2.4)
and is attributed to excitons. The value of the damping and oscillation
frequency is taken from Ref. 18:

ω0 = 50 rad.ps−1 and γ = 6 ps−1

These values were found to characterize well the oscillatory spectra of the
excitons detected in our measurements. We refer to this component as to
the component C. The yield of excitons can be calculated by comparing the
amplitude of the component with Eq. 2.2.4:

ξC =
Cmred

q
(6.2.3)

where mred is the reduced mass of the exciton:

mred =
melecmhole

melec + mhole

(6.2.4)

Its value is approximately 0.2me for excitons composed from electrons (melec)
and heavy holes (mhole).
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Figure 6.4: Spectra of the yield-mobility product measured at 20 K with ex-
citation density 1.7 × 1018 photon.cm−3, pump-probe delays 6 and 86 ps. The
symbols indicate the experimental data. Closed symbols show the real part of the
yield-mobility product (left axis), the open symbols display the imaginary part
(right axis). The lines show the fits of the data (two-component Drude model).

To map completely the behaviour of the photoexcited carriers we use a model of
mobility described by a sum of a Drude-term, a constant and an oscillatory term
corresponding to the excitons:

ξµ =
A

1 − iωτA

+ B − Ciω

ω2
0 − ω2 − iωγ

(6.2.5)

At 20 K it has been found that the mobility spectra are dominated by the
Drude response for all time delays; excitons were not detected. The values ex-
tracted from a fit of the spectra using the equation 6.2.5 are displayed in Tab.
6.2. For the excitation densities (1 − 6)×1019 photon.cm−3 (black, red and dark-
blue curves in Fig. 6.2 and the corresponding parts of Tab. 6.2) a system of free
carriers is immediately formed with Drude-like mobility. This system may be
composed of charge carriers with a distribution of scattering times; the average
scattering time of the whole system is in the range of 10-30 fs. The yield ξA of this
component is close to unity. For the excitation density of 1.7× 1019 photon.cm−3

the value ξA exceeds unity (see Tab. 6.2); this is due to the large error in the
determination of the scattering time τA. In fact, the value τA = 12 fs obtained
from the fit is very close to the limit value of ∼ 10 fs which can be experimentally
resolved. It is then likely that the true value of τA is somewhat larger and ξA is
close to unity.

During the initial 30 picoseconds the shape of the mobility spectra undergoes a
significant modification related to dramatic changes in the transport mechanisms.
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For τp &∼ 30 ps the spectra can be described by a sum of two Drude contributions:
one with the scattering time in the range of 400-500 fs (denoted as A) and the
other (denoted as B) with a very short scattering time (see Fig. 6.3). For lower
excitation densities (< 2 × 1018 photon.cm−3) the mixture of two systems of
charge carriers with long and short scattering times is formed immediately after
photoexcitation (see Fig. 6.4).

The two Drude-like contributions (A and B) are spatially separated, i.e. they
originate from different areas of the sample:

• The contribution A with long scattering time may be attributed to carri-
ers generated deep in the ZnO crystal (deeper than the skin depth). In
these regions the carrier concentration is low, therefore their response may
resemble the one observed by Baxter et al. in Ref. 88.

• The contribution B characterized by the flat spectra can be associated with
the formation of electron-hole plasma as it was observed by Hendry et al.
in Ref. 18.

Although the number of carriers generated deep inside the crystal is smaller than
that in the upper layer (the yield of the component A equals to only 0.01− 0.05,
see Tab. 6.2), their mobility is much higher due to the long scattering time. Con-
sequently, they contribute significantly to the total THz signal. The measured
carrier dynamics support this theory; after photoexcitation the total density of
the electron-hole plasma decays from its initial value, while the contribution to
the photoconductivity by high-mobility carriers raises until ∼ 120 ps after pho-
toexcitation and then starts to decay (see the increase of ξA in Tab. 6.2 observed
between 40 and 90 or 120 ps after photoexcitation). This mechanism causes the
non-monotonic behaviour of the THz signal at 1 THz for the excitation density
1.7 × 1019 photon.cm−3 (Fig. 6.2, pink curve). This late growth of the concen-
tration of high-mobility carriers may be due to the diffusion of carriers from the
dense plasma deeper into the sample.

At 80 K the dynamics of the yield-mobility product (see Fig. 6.5) is similar to
that measured at 20 K, except for the fact that monotonic decrease is observed
for each excitation density at 80 K. The lack of the late increase of the signal
suggests that there are no such high-mobility states as at 20 K. From the ex-
amination of the measured spectra of the yield-mobility product it follows that
the photoexcited carriers behave differently at different excitation densities. The
yield-mobility spectra are fitted by the equation 6.2.5 and the parameters of the
fit are listed in Tab. 6.3. For high excitation densities (1 − 7)×1019 photon.cm−3

an electron-hole plasma is formed and the mobility of carriers in this plasma fol-
lows the Drude model with scattering times . 10 fs. Again values ξA exceeding
unity are related to the uncertainty of the scattering time τA when its value is
close to 10 fs. During the subsequent 200 picoseconds the density of carriers de-
creases and excitons are formed (see Tab. 6.3: the parameter C becomes greater
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Figure 6.5: Dynamics of the carrier yield-mobility product at 1 THz, temperature
80 K. For clarity the time origin of the curves is shifted.

than zero for pump-probe delay 200 ps). The presence of excitons is directly
inferred from the negative imaginary part of the mobility (see the spectra in Fig.
6.6). For lower excitation densities (5.3× 1018 photon.cm−3) excitons are formed
more rapidly, they can be observed already 10 ps after photoexcitation (C is
nonzero for these excitation intensities, cf. Tab. 6.3). The sum of the yields of
free carriers and excitons (ξA + ξc) is close to unity 10 ps after photoexcitation.
For even lower excitation densities (lower than 2 × 1018 photon.cm−3), the exci-
tons are not observed; instead, similarly as at 20 K, the carrier mobility can be
described by the sum of a Drude-like term (A) with scattering time ∼ 200 fs and
a term (B) with constant real mobility (see Fig. 6.7). This behaviour is analogous
to the one observed at 20 K, although the scattering time of the high-mobility
carriers is twice smaller. The excitons may be generated in the deeper photoex-
cited regions of the sample, where the carrier concentration is low. It is not clear
however, why their contribution vanish when the excitation density is lowered to
values of 1.6 × 1018 photon.cm−3. Interestingly, it seems from our measurements
that the presence of high-mobility states and excitons exclude each other. These
two species were not observed simultaneously in any of the previous THz studies
of bulk ZnO either. The reason may be that the high transient absorption of
the high-mobility states hides the excitons, which have weaker absorption in our
frequency range.

The threshold excitation intensity, where the behaviour of carriers changes, is
similar at 20 and 80 K: it is around 1.6×1018 photon.cm−3 and close to the Mott
density.

At 120 K the yield-mobility spectra were fit by the equation 6.2.5. The results
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ZnO: 80 K
Nexc = 7.7 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
20 84 1.21 11 – – –
200 – – – 27 630 0.07

Nexc = 2.1 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
10 93 1.49 10 – – –
200 32 0.17 30 – 3000 0.34

Nexc = 1.1 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
5 – – – 81 – –
20 – – – 57 1800 0.2
200 29 0.09 52 – 4100 0.46

Nexc = 5.3 × 1018 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
10 61 0.39 25 – 5000 0.57
200 35 0.1 54 – 4600 0.52

Nexc = 1.6 × 1018 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
2 106 0.09 190 69 – –

200 24 0.02 240 34 – –

Nexc = 4.3 × 1017 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
4 310 0.26 188 85 – –

Table 6.3: Fit parameters for the yield-mobility spectra of the ZnO crystal mea-
sured at 80 K.
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ZnO: 120 K
Nexc = 7.7 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
10 – – – 67 – –
200 – – – 34 – –

Nexc = 2.2 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
10 – – – 74 – –
200 – – 46 – –

Nexc = 1.2 × 1019 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
3.6 89 0.49 29 – 6100 0.69
20 76 0.42 29 – 6500 0.74
200 55 0.30 29 – 3900 0.44

Nexc = 4.4 × 1018 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
4.4 110 0.40 45 – 7000 0.8
200 83 0.29 45 – 4400 0.5

Nexc = 1.3 × 1018 photon.cm−3

delay A ξA τA B C ξC

[ps] [cm2V−1s−1] [fs] [cm2V−1s−1] [1012 cm2V−1]
5 140 0.31 73 – 8200 0.93
20 140 0.31 73 – 7600 0.86
200 150 0.33 73 – 5800 0.66

Table 6.4: Fit parameters for the yield-mobility spectra of the ZnO crystal mea-
sured at 120 K.
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Figure 6.6: Spectra of the yield-mobility product measured with excitation den-
sity 2.1×1019 photon.cm−3, temperature 80 K. Spectra measured at pump-probe
delays 10 ps and 200 ps are compared. Closed symbols show the real part of the
yield-mobility product (left axis), the open symbols display the imaginary part
(right axis). The dotted lines show the fits of the data by the equation 6.2.5.

are displayed in Tab. 6.4. The fit of the experimental data is slightly worse
than at temperatures 20 and 80K but still acceptable. The evolution of the
yield-mobility product is presented in Fig. 6.8. For excitation densities (2 − 7)×
1019 photon.cm−3 only a system of free carriers with short carrier scattering time is
created. At lower excitation intensities a mixture of free carriers and excitons with
the oscillatory response is created several picoseconds after photoexcitation. The
scattering time does not change during the next 200 picoseconds and it becomes
longer with decreasing excitation density. The sum of the yield of free carriers
and excitons is close to unity and in some cases it exceeds unity. The reason may
be that the parameters of the mobility of the exciton may be somewhat different
from those taken from Ref. 18. However, in our frequency range the response of
excitons is so weak, that it is not possible to determine the resonance frequency
and the damping parameter directly from the measured data. At the lowest
excitation density 1.3 × 1018 photon.cm−3 the dynamics of the yield-mobility
product is non-monotonic: after a short decrease, 10 ps after photoexcitation it
increases slowly during the next 200 ps (see the pink curve in Fig. 6.8). In Tab.
6.4 it can be seen that the yield of free carriers ξA very slightly increases between
pump-probe delays 20 ps to 200 ps, while the yield of excitons ξC decreases.
Consequently, it may be possible that the dissociation of excitons causes the late
increase of the conductivity.

At room temperature for high excitation densities it was found that the THz
signal raises immediately after photoexcitation and remains constant for the next
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Figure 6.7: Spectra of the yield-mobility product measured with excitation den-
sity 1.6×1018 photon.cm−3, temperature 80 K. Spectra measured at pump-probe
delays 2 ps and 200 ps are compared. Closed symbols show the real part of the
yield-mobility product (left axis), the open symbols display the imaginary part
(right axis). The dotted lines show the fits of the data by the equation 6.2.5.

200 picoseconds. The yield-mobility spectra were measured 10 ps after photoex-
citation. It has been found for all excitation densities used that the spectra can
be fitted by the Drude model. Assuming carrier effective mass equal to the elec-
tron effective mass in ZnO the quantum yield of the excitation process is equal
to unity (see Fig. 6.9). Therefore the photoconductivity of ZnO is dominated
by electrons and every absorbed photon creates an electron. The scattering time
decreases with increasing excitation density (see Fig. 6.10).

6.2.1 Conclusion

We have examined the mobility of photogenerated carriers in bulk ZnO using
time-resolved THz spectroscopy. It has been found that several types of response
contribute to the carrier mobility:

• Free carriers with scattering time of several hundreds of fs. These carriers
are formed only at temperatures lower than about 80 K and probably under
condition of a low excitation density, i.e. in a deep part of the sample (deeper
than the skin depth). This finding is consistent with the results published
in Ref. 88.

• Dense electron-hole gas with Drude-like conductivity and short scattering
time (. 10 fs). The formation and the dynamics of this system is similar
to that reported in Ref. 18.
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Figure 6.8: Dynamics of the carrier yield-mobility product at 1 THz, temperature
120 K. For clarity the time origin of the curves is shifted.

• Excitons with an oscillator response. The spectral shape of the mobility of
these quasiparticles is similar to that reported in Ref. 18. However, unlike
in Ref. 18, in our sample they are not observed at temperatures lower than
80 K. Their response may be hidden in the strong response of high-mobility
free carriers, which dominate the mobility spectra at temperatures lower
than 80 K.

• Free carriers with Drude-like response and scattering times in the range
10-100 fs dominate the photoconductivity of ZnO at temperatures higher
than 80 K and carrier densities lower than 1 × 1019 cm−3.

From our results it has been found that the carrier dynamics, i.e. the formation of
the above mentioned states, their recombination and their transformation from
one species into another is crucially different at different excitation densities and
in different regions of the sample. Due to the inhomogeneity of photoexcitation
only a qualitative study could be carried out.

Our results agree to some degree with the findings of previous studies and in
some points they disagree. From our comparison it is clear that the photocarrier
response and dynamics differs substantially for different crystals. For a compre-
hensive study, one should systematically study samples elaborated by different
methods and using simultaneously several experimental methods – for example to
find out, how the density of defects and localized states influence the photocarrier
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Figure 6.9: The spectra of electron mobility measured 10 ps after photoexcitation
in bulk ZnO at room temperature. Closed symbols show the real part of the
mobility, the open symbols display the imaginary part. The dashed lines show
the fit of the data by the Drude model. For clarity the dataset is displayed in
two separate graphs.
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Figure 6.10: The scattering times extracted from the mobility spectra of ZnO at
room temperature.

dynamics and response. Such a study is beyond the scope of this thesis. However,
our results give an indication what kind of electron transport can be expected
in nanocrystalline ZnO and may be valuable in combination with Monte-Carlo
simulations of electron motion in ZnO nanocrystals.

6.3 Electron mobility and dynamics in nanocrys-

talline ZnO

We measured the photoconductivity of a nanocrystalline ZnO film deposited on
sapphire at temperatures 20 and 293 K and at excitation densities 1 × 1017 −
3 × 1019 photon.cm−3. The nominal size of the nanocrystals was reported to be
around 15 nm. The dynamics of the transient THz absorption was found to be
similar to the one measured in Ref. 34: the yield-mobility product increases to
its maximum value on a subpicosecond timescale and then it starts to decrease
with a time constant larger than 200 picoseconds. The shape of the spectra
of the yield-mobility product does not change with time. Here we present the
spectra measured at 10 ps after photoexcitation. The spectra measured at room
temperature are presented in Fig. 6.13, those measured at 20 K are displayed in
Fig. 6.16.

The shape of the spectra changes with the excitation density. These changes
are different for the two temperatures suggesting (in agreement with the discus-
sion in Sec. 2.1) that they do not originate from the depolarization fields and that
they cannot be accounted for by the effective medium theory. At room tempera-
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ture the real part of the yield-mobility product changes only slightly. We deduce
that the nanocrystals are percolated and the microscopic and macroscopic mo-
bility are proportional to each other with a proportionality constant denoted as
kEMA.

To reveal the basic characteristics of the electron transport we compare the
measured spectra with Monte-Carlo simulations of the electron motion, which
were introduced in Subsec. 2.2.7. In our experiments the yield-mobility spectra
are measured for two temperatures and several excitation densities. Both these
parameters affect our simulations through the change of the kinetic energy of
electrons:

• For very low excitation densities the conduction band electrons form a non-
degenerated system of carriers and their velocity is thermal, i.e. determined
by the lattice temperature.

• An increase of the photoexcitation density leads to a higher concentration of
electrons in the conduction band. These electrons occupy conduction band
states with higher energy due to the finite density of states at low energies.
Consequently, their kinetic energy increases. For the highest used excitation
densities (higher than 1×1019 photon.cm−3) the electron Fermi levels at 20
K and at room temperature do not differ much (see Fig. 6.11). In this case
the electron gas is degenerated and only electrons with energy close to the
Fermi level take part in the carrier transport. As a result, at high excitation
densities the velocity of electrons contributing to the photoconductivity is
the same at 20 K and at room temperature.

Experimentally, the yield-mobility spectra at the highest measured excitation
densities (∼ 3 × 1019 photon.cm−3) are found to be temperature independent
(see in Fig. 6.12). From this finding and from the considerations above it follows
that simulation parameters – the quantum yield, the electron scattering time
and the interaction parameters pr, ps – are similar for both 20 K and for room
temperature.

The electron mobility is expected to vary upon variation of the excitation
density as this is closely connected to the value of the average electron velocity. If
this average velocity is low, the ballistic motion of electrons is slow and they do not
interact often with the boundaries of the nanocrystals. Upon an increase of their
kinetic energy electrons move faster and interact with the nanocrystal boundaries
more often, therefore they feel a stronger localization and their response function
reflects these changes.

At room temperature the average electron velocity decreases from 3.5×105 m/s
(at the highest electron density of ∼ 3 × 1019 cm−3 shown in 6.11) only to
2.2×105 m/s (for the lowest electron density of ∼ 3×1017 cm−3). In contrast, at
20 K, the velocity decreases much more: from 3.5× 105 m/s (for electron density
3 × 1019 cm−3) down to 0.57 × 105 m/s (for electron density ∼ 1.4 × 1017 cm−3).
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At both temperatures the upper bound of the velocity is given by the Fermi
velocity at high electron densities; the minimal value of electron velocity at low
electron densities is determined from the electron thermal velocity. Consequently,
the variation of the excitation density has a much higher impact on the electron
mobility spectra at 20 K than on those at 293 K (see Figures 6.13 and 6.16).

At room temperature the real part of the yield-mobility spectra is almost
identical for all excitation densities (Fig. 6.13; a small change occurs probably
only for the lowest excitation density of ∼ 3 × 1017 photon.cm−3; however, those
data display a rather higher noise). The imaginary part can be characterized by
a linear dependence with a negative slope. This negative slope was found to be
incompatible with our simulations and we attribute it to the presence of excitons.
Due to their large binding energy in ZnO, excitons can be present in ZnO even
at room temperature. We assume that their response in nanocrystals is similar
to the exciton response observed in bulk ZnO: oscillatory behaviour with circular
frequency of ω0 = 50 rad.ps−1 and damping frequency γ = 6 ps−1. [18] In this
case, their mobility in the THz frequency range is almost completely imaginary
and the imaginary part can be characterized by a linear function with negative
slope. The imaginary part clearly decreases with decreasing excitation density
(see Fig. 6.13). We can then deduce that the relative population of the exciton
states is the highest at low excitation densities; with the increase of the excitation
density their contribution vanishes and mobile electrons dominate the mobility.

In our model we assume that each photon generates an electron-hole pair and
the carriers then either become mobile or form excitons. The equation used to
describe the observed yield-mobility spectra then reads:

(ξµ)meas(ω) = kEMA

(
ξmobileµmicro(ω) + (1 − ξmobile)

−iωC0

ω2
0 − ω2 − iγω

)
(6.3.1)

where kEMA is the ratio of the microscopic and macroscopic mobility in the sam-
ple (effective medium approximation – see Eq. 2.1.18), ξmobile is the quantum
yield of mobile electrons, C0 represents the oscillator strength of an exciton and
µmicro(ω) is the mobility spectrum of a mobile electron obtained by Monte-Carlo
simulations. The model fits the data well (see Fig. 6.13). Our simulations are
compatible with the measured data for pr = 0.75, ps = 0.25 and nanocrystal
diameter 12 nm. From the fit of the measured data the value of the oscillator
strength C0 = 2.8 × 1016 cm2V−1 is obtained. It is four times larger than the
value expected from the equation 2.2.4 (q/meff = 6.3× 1015 cm2V−1). However,
it has been shown that exciton polarizability may increase due to the confinement
in nanocrystals. [90] The ratio of the macroscopic and microscopic mobility kEMA

was found to be 0.47, which is close to the value 0.54 calculated from the equation
2.1.17 under the assumption that the nanocrystals are aligned as random closely
packed spheres (the volume fraction of the void matrix is in this case s = 0.36;
for spheres K = 2). The extracted yield ξmobile clearly increases with increasing
excitation density (see Fig. 6.14) This behaviour is common also in bulk semicon-
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ductors around the Mott density. The scattering time used for the simulations
is 7 fs for all excitation densities. This value is lower than the one measured in
bulk ZnO, probably due to the enhanced electron-hole interaction observed also
through the enhancement of the exciton oscillator strength. The scattering time
is then expected to increase with decreasing excitation density. Apparently the
effect of this increase on the measured spectra is too low to be observed; it may
be due to the decreasing quantum yield ξmobile with decreasing excitation density.

���� ���� ���� ���� ����

���	
�������
���	����

���

���

���

�

����

����

�
�
��
��
��
�
�
��
��
�
�

�������

������

Figure 6.11: Fermi level of an electron gas system in ZnO. The dotted lines
display the energy thresholds for Boltzmann distribution (≈ −4kBT ). The sym-
bols correspond to the electron density generated in our experiments under the
assumption that the quantum yield of the photoexcitation is unity.

At 20 K the imaginary part of the yield-mobility product does not change
substantially; the large change of the imaginary part between the spectra cor-
responding to the two lowest pump intensities should be attributed to the noise
due to the low measured signal (photoconductivity) (see Fig. 6.16). The photoin-
duced mobility is then attributed only to mobile electrons and the corresponding
model is expressed by the equation:

(ξµ)meas(ω) = kEMA ξmobile µmicro(ω) (6.3.2)

The model fits the data well, except for minor disagreements in the imaginary
part of the yield-mobility product for excitation densities higher than ∼ 3 ×
1018 photon.cm−3 (see Fig. 6.16, upper panel). The interaction parameters were
found to be the same as at room temperature, i.e. pr = 0.75 and ps = 0.25. The
ratio of the macroscopic and microscopic mobility kEMA is 0.47, i.e. the same as
at room temperature. The yield is set to unity for each spectrum. For excitation
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Figure 6.12: Comparison of spectra of the yield-mobility product measured at
high excitation densities (≈ 2.5×1019 photon.cm−3) at room temperature and at
20K.

densities lower than ∼ 3×1018 photon.cm−3 the real part of the mobility was found
to increase considerably with decreasing excitation density. This observation can
be explained by an increase of the scattering time. The scattering times used in
our simulations are displayed in Fig. 6.15. At excitation densities higher than
∼ 3×1018 photon.cm−3 it was found to be about 7 fs, which is in agreement with
the scattering time observed at room temperature. For the lowest excitation
density the electron scattering time reaches 100 fs. Due to an increased noise
in the spectra the uncertainity of this value is about 20%. The considerable
change of the scattering time may again be explained by the strong electron-hole
interaction in nanocrystalline ZnO at high carrier densities which was observed
already at room temperature.

6.3.1 Conclusion

We have examined the mobility of photogenerated carriers in nanocrystalline ZnO
using time-resolved THz spectroscopy. Measurements were carried out at room
temperature and 20K. It has been shown that classical Monte-Carlo simulations
may be used to model the electron transport for substantially different tempera-
tures and for a wide range of carrier densities.

Several findings suggest an increased electron-hole interaction in nanocrys-
talline ZnO:

• At room temperature oscillatory carrier response was observed. This re-
sponse was attributed to excitons. The oscillator strength was determined
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Figure 6.13: Measured spectra of yield-mobility product of nanocrystalline ZnO
at room temperature. Closed symbols show the real part of the mobility, the
open symbols display the imaginary part. The solid and dashed lines show the
fit of the data by the equation 6.3.1. For clarity the dataset is displayed in two
separate graphs.
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Figure 6.14: The yield of mobile electrons at room temperature.
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Figure 6.15: The electron scattering time at 20 K.
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Figure 6.16: Measured spectra of yield-mobility product of nanocrystalline ZnO
at 20 K. Closed symbols show the real part of the mobility, the open symbols
display the imaginary part. The solid and dashed lines show the fit of the data
by Monte-Carlo simulations. For clarity the dataset is displayed in two separate
graphs.
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to be higher than in bulk ZnO. Moreover, in bulk ZnO no exciton response
was observed at room temperature.

• It has been found that the scattering time changes substantially with carrier
density at 20 K. It is interesting that no excitons were observed at 20 K
and it is in agreement with our findings in bulk ZnO.

6.4 Challenges and outlook for the study of car-

rier transport in ZnO

Very rich dynamical properties were measured both in bulk and in nanocrys-
talline ZnO. Our models describe quantitatively or semi-quantitatively many of
the observed features. However, not all questions have been completely clarified:
the origin of some surprising phenomena remains to be elucidated.

One of them is the reason of the coexistence of high density plasma with a
very short scattering time and a less dense plasma with a quite long scattering
time. We interpreted this penomenon as to be due to the depth profile of the
carrier density: the response of carriers in deeper areas of the sample, where their
density is low, is strongly enhanced by their very long scattering time.

Another surprising feature observed both in bulk and in nanocrystalline sam-
ples is the absence of excitons in the spectra namely at 20 K. In nanocrystalline
ZnO excitons were detected at room temperature. In contrast, in the bulk ZnO,
excitons were observed at 80 and 120 K (and not at room temperature).

To probe the carrier transport exclusively in the high-density regime, the
carrier density must be homogeneous in the sample. This may be accomplished by
probing bulk ZnO in the form of a ∼ 40 nm thin film. To assess the contribution
of the holes to the total photoconductivity, samples oriented both parallel and
perpendicular to the crystalline c-axis have to be studied.

For nanocrystalline ZnO, the mobility of electrons at low excitation densities
should be more thoroughly studied with an experimental setup enabling a higher
signal-to-noise ratio. The investigation should be also focused on nanocrystals
without dye sensitization to exclude the possibility of interaction of charge carriers
with the dye.



Chapter 7

Electron transport in
nanocrystalline CdS

CdS is a II-VI semiconductor with direct bandgap. Its fundamental properties
are summarized in Tab. 7.1. It has been shown that it is possible to fabricate CdS
nanocrystals easily and cheaply by Chemical Bath Deposition (CBD). [91,92] This
material was found to be useful in new generation Cu(In, Ga)Se2 solar cells as a
buffer layer between the active material and the transparent conductive oxide. [91]
That is why it is important to study the carrier transport in nanocrystalline CdS
prepared by CBD.

The CdS nanocrystals were deposited at 90 ℃ on a fused silica substrate by
ammonia-free CBD. [92] The samples were provided by P. Němec from the Fac-
ulty of Mathematics and Physics, Charles University in Prague. The thickness
of the film was around 1.3 µm. The diameter of the as-prepared nanocrystals
was around 6.2 nm. The prepared film was then annealed for 45 min, which re-
sulted in a growth of nanocrystals. By using different temperatures of annealing,
nanocrystalline films with different nanocrystal size were obtained. The diameter
of nanocrystals ranged from 6.2 nm (as-prepared nanocrystals) to 14.2 nm (see

Crystal structure [93] hexagonal
Bandgap (300 K) [93] 2.5 eV
Bohr radius of exciton ∼ 3 nm

electron effective mass [94] 0.2 me

light hole eff. mass [95] 0.7 me

heavy hole eff. mass [95] 5 me

refraction index at 1 THz (our measurements) 2.9
refraction index at 400 nm [93] 2.6 + i0.45
electron scattering time [96] 35 fs

DC mobility µbulk ∼ 300 cm2V−1s−1

Table 7.1: Some important properties of bulk CdS

105
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annealing temperature [℃] – 400 500 550 600
nanocrystal diameter d [nm] 6.2 10.4 12.2 13.8 14.2

Table 7.2: Samples investigated in our study

Figure 7.1: Transmission electron microscopy image of the cross section of a
nanocrystalline CdS film prepared similarly as those investigated in our study.

Tab. 7.2). The porosity of the film can be seen from the transmission electron
microscopy image (TEM) of the cross section of a film prepared similarly as those
in our experiments (see Fig. 7.1). The image was made by Petr Formánek from
the Institut für Strukturphysik, Technische Universität Dresden. From Fig. 7.1
it can be seen that the nanocrystals form clusters.

The carrier transport in nanocrystalline CdS films was probed at room tem-
perature by time-resolved THz spectroscopy. In the majority of experiments
the wavelength of the excitation beam was set to 400 nm, which generates mo-
bile carriers in the nanocrystalline film through one-photon absorption. In the
experiments we tuned the excitation density in the range of 6 × 1017 − 2 ×
1020 photon.cm−3. It has been found that the shape of the spectra of the yield-
mobility product does not change significantly with the pump-probe delay. In
this case we can simplify our analysis; we present two kinds of experimental data:

• Spectra of the yield-mobility product 10 ps after photoexcitation.

• Time evolution of the yield-mobility product at 1 THz.
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Figure 7.2: Measured spectra of the yield-mobility product for nanocrystalline
CdS with nanocrystal size 10.4 nm.

7.1 Spectral response of carriers

The yield-mobility spectra for nanocrystals with diameter 10.4 nm are displayed
in Fig. 7.2. The shape of the spectra is similar for all the other samples. From
the measured data is clear that the shape of the yield mobility product does
not change significantly with the excitation density over a wide range of carrier
densities. Moreover, the observed yield-mobility product in some cases reaches
80 cm2V−1s−1, i.e. it exceeds 25% of the DC mobility in the bulk. Analyzing
the experimental data in the light of the discussion in Subsection 2.1.1, we con-
clude that the change of the mobility with the excitation density originates from
a change of the microscopic mobility in CdS nanocrystals, not from the depo-
larization fields. This picture is corroborated also by the transmission electron
microscopy image in Fig. 7.1, where it is shown that the nanocrystals touch
each other. To sum up, the nanocrystals are percolated and the depolarization
fields do not modify the shape of the mobility spectra. The microscopic and
macroscopic mobility are then proportional to each other with a proportionality
constant denoted as kEMA (see Eq. 2.1.18).

The effective mass of electrons in CdS is much lower than the effective mass
of holes (see Tab. 7.1), therefore we assume that electrons dominate the mobility
spectra and the mobility of holes can be neglected. Although the electron mobility
is high, the real part of the mobility is clearly increasing and its imaginary part
is negative, therefore the nanocrystal boundaries do confine the charge carriers.
At first we show that our simulations with a single localization length scale (i.e.
with similar structures as those discussed in Subsection 2.2.7) cannot explain our
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data. In such simulations the real part of the mobility reaches its maximum at
fmax ≈ 1.1×vtherm/ (2d), i.e. close to the round-trip frequency in the nanocrystals.
Above this frequency the diffusion length of carriers during one period of the
driving electromagnetic radiation is smaller than the size of the nanocrystal and
the electrons do not feel localization. On the other hand, below this frequency the
electrons interact with nanocrystal boundaries and the real part of the mobility
increases with the frequency. [5] For our samples the calculated value of fmax lies
in the range of 6 − 13 THz. This is in disagreement with our measured spectra,
where one expects a wide maximum of the mobility around 2 THz.

Let us estimate the second length scale which may account for the measured
yield-mobility spectra. It has been shown that the ac mobility spectra of an
electron inside a potential well with perfectly reflecting walls can be reasonably
approximated by a Debye relaxation (see subsection 2.2.3) [20,21]:

µac(ω) = µbulk
1

1 − iπ2 µbulkkBT
L2ωe0

(7.1.1)

where L is the size of the box, T is the temperature, kB is the Boltzmann constant
and µbulk is the mobility of the electron inside the box (mobility in bulk CdS).
The real part of this function is concave only for

ω >
π2kBTµbulk√

3L2e0

(7.1.2)

and, comparing to our spectra which are concave above ωlow ≈ 2π × 0.4 THz, we
deduce that

L ≥

√
kBTµbulkπ2

√
3ωlowe0

≈ 40 nm (7.1.3)

We attribute this second length scale to clusters of nanocrystals, i.e. we assume
that nanocrystals are aggregated into mutually separated clusters. This picture
of the CdS film morphology, deduced from the measured spectra of the yield-
mobility product, is in perfect agreement with the film morphology shown in Fig.
7.1.

Fortunately, our simulations are flexible enough, so that we take into account
the second localization scale (i.e. clusters of nanocrystals). In our model we
use the simplest possible geometrical distribution of nanocrystals in the clusters.
Clusters are represented by cubes divided into smaller cubes representing the
nanocrystals (see Fig. 7.3). The volume of the small cubes is the same as that of
nanocrystals V = πd3/6. The number of nanocrystals in a cluster is N3, where
N is an integer. The interactions of carriers with nanocrystals and clusters are
described by different parameter sets:

• pER, pES, pET (probability of reflection, scattering, tunnelling, respectively)
characterizing interaction with nanocrystal boundaries; pER+pES+pET = 1.
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Alternatively, we introduce the probability of blocking of carriers (i.e. the
electron stays in the same nanocrystal after collision) pEB = pER + 1/2pES

and the probability of transition into another nanocrystal pEF = pET +
1/2pES.

• pR, pS, pT (probability of reflection, scattering, tunnelling, respectively) for
interaction characterizing cluster boundaries; pR + pS + pT = 1. Alterna-
tively, we introduce the probability of blocking of carriers (i.e. the electron
stays in the same cluster after collision) pB = pR+1/2pS and the probability
of transition into another cluster pF = pT + 1/2pS.

A detailed discussion on the two alternative representation of interaction proba-
bilities can be found on page 26.

A
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C D
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F

Cluster

nano-
crystal
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d
3

r
¼
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Figure 7.3: Representation of a CdS cluster in our simulations of electron motion.
The nanocrystals are modeled as smaller cubes filling the cluster. An electron can
be scattered in the bulk (O), reflected (A, with probability pER) or scattered (B,
with probability pES) on nanocrystal boundaries or it can pass through nanocrys-
tal boundaries without change of velocity (C, with probability pET ). In addition
it can be reflected (D,E, with probability pR) or scattered (F, with probability
pS) on a cluster.

Some examples of the mobility spectra calculated by simulation of electron
motion in clusters of nanocrystals are displayed in Fig. 7.4. It can be seen that
by considering clusters with a large size in our simulations, the maximum of
the mobility is shifted to lower frequencies. Weak interaction of electrons with
nanocrystal boundaries and their strong interaction with cluster boundaries then
result in a mobility spectra similar to those obtained in our measurements.
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Figure 7.4: Comparison of simulated mobility spectra for bulk semiconductor
(pB = 0, pEB = 0), isolated clusters (pB = 1, pEB = 0), isolated nanocrystals
(pEB = 1), semipermeable nanocrystals (pB = 0, pEB = 0.66) and clusters in
combination with nanocrystals (2 localization length scales: pB = 0.9, pEB =
0.66). The size of nanocrystals is d = 10.4 nm, the size of clusters acl = 33.5 nm.
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Although the basic shape of the yield-mobility spectra for various samples
look similar to each other, it is interesting to follow the dependence of the yield-
mobility product with the excitation density. For each sample the yield-mobility
spectra measured below 1 × 1018 photon.cm−3 do not depend on the excitation
density. For example, for samples with nanocrystal sizes 5.8, 13.8 and 14.2 nm it
can be seen that the spectra measured at excitation densities 5×1017 photon.cm−3

and 1018 photon.cm−3 are identical (see Figures 7.5, 7.8 and 7.9). The level of the
real part of the yield-mobility product increases as the excitation density increases
from 1018 to 1019 photon.cm−3. We first focus on this part of the data, which
can be modeled by Boltzmann statistics with a sufficient precision. The regime
of decreasing mobility at higher excitation densities requires the implementation
of Fermi-Dirac statistics and will be presented later in Sec. 7.3.

The yield-mobility spectra can be calculated under the assumption that the
quantum yield of the excitation process does not depend on the excitation density.
We apply Eq. 2.1.18 to relate the observed (macroscopic) response of the sample
(ξµ)meas(ω) and the calculated mobility µmicro:

(ξµ)meas(ω) = kEMA ξmobile µmicro(ω) (7.1.4)

where kEMA is the ratio of the microscopic and macroscopic mobility in the sample
(given by the effective medium approximation), ξmobile is the quantum yield of
mobile electrons and µmicro(ω) is the mobility spectrum of a mobile electron
obtained by Monte-Carlo simulations.

From the equation 7.1.4 it follows that one cannot determine the quantum
yield ξmobile and kEMA independently, only their product is evaluated. Its value
has been found in the interval 0.4-0.7 for all the samples. As kEMA is ∼ 0.54 for
a sample composed of randomly touching spheres (which resembles the structure
of our samples) the quantum yield should be close to unity.

The measured spectra and the models are compared in Figures 7.5, 7.6, 7.7,
7.8 and 7.9. We calculated a series of spectra with different parameters of electron
motion and selected those sets which matched the experimental data. By this
method the appropriate set of parameters was found for each measured spectrum.
The obtained size of the clusters is displayed in Fig. 7.10. We did not observe
any significant dependence of the cluster size on the size of nanocrystals (i.e.
on the temperature of annealing). This may be due to the recrystallization of
the material with annealing; as the nanocrystals grow, their number in a single
cluster is reduced. The probabilities of blocking of electron transport among
nanocrystals pEB and among clusters pB are displayed in Fig. 7.11.

From the obtained probabilities of electron interaction with cluster and nanocrys-
tal boundaries it is clear that the increase of the electron mobility with the ex-
citation density is due to the reduction of the electron confinement (see Fig.
7.11). The extent of this reduction is much lower for clusters than for nanocrys-
tals. For example, for the sample with nanocrystal size 10.4 nm the value of
pB characterizing the confinement in clusters changes from 0.94 (for Nexc =
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Figure 7.5: Measured yield-mobility spectra for nanocrystalline CdS with
nanocrystal size 5.8 nm. The symbols represent the measured data (closed- real
part, open symbols imaginary part) and the lines show the mobility spectra from
Monte-Carlo simulations assuming Boltzmann statistics. The left axis shows the
microscopic mobility, the right axis displays the measured yield-mobility product.

1.1 × 1018 photon.cm−3) to 0.8 (for Nexc = 8.3 × 1018 photon.cm−3), while pEB

(characterizing the confinement in nanocrystals) decreases from 0.66 to 0.33 (see
Fig. 7.11). It is probably due to the fact that the electron confinement in clusters
may be caused mainly by the geometry of clusters (i.e. separation of clusters in
space by air voids), which is not changed by the pump fluence. On the other
hand, the electron confinement due to nanocrystal boundaries clearly depends on
the density of carriers. We have found that the investigation of the dynamics of
electron mobility is crucial for the explanation of the origin of this phenomenon.

7.2 Ultrafast electron dynamics

The measured dynamics of the yield-mobility product for the sample with the
nanocrystal size 10.4 nm is displayed in Fig. 7.12. All the other samples exhibit
a very similar behaviour:

• At low excitation densities (≤ 1019 photon.cm−3) the THz dynamics con-
tains an ultrafast (hundreds of femtoseconds) decay component (see Fig.
7.13). This ultrafast decay component vanishes at excitation densities ex-
ceeding 1019 photon.cm−3. To reveal its origin, we probed the carrier dy-
namics also using longer excitation wavelength (510 nm) which generates
carriers with very low excess energy. It has been found that at low photon
densities (≤ 1018 photon.cm−3) the dynamics of the yield-mobility product
at excitation wavelength 510 nm does not contain any ultrafast feature (see
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Figure 7.6: Measured yield-mobility spectra for nanocrystalline CdS with
nanocrystal size 10.4 nm. The symbols represent the measured data (closed- real
part, open symbols imaginary part) and the lines show the mobility spectra from
Monte-Carlo simulations assuming Boltzmann statistics. The left axis shows the
microscopic mobility, the right axis displays the measured yield-mobility product.
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Figure 7.7: Measured yield-mobility spectra for nanocrystalline CdS with
nanocrystal size 12.2 nm. The symbols represent the measured data (closed- real
part, open symbols imaginary part) and the lines show the mobility spectra from
Monte-Carlo simulations assuming Boltzmann statistics. The left axis shows the
microscopic mobility, the right axis displays the measured yield-mobility product.
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Figure 7.8: Measured yield-mobility spectra for nanocrystalline CdS with
nanocrystal size 13.8 nm. The symbols represent the measured data (closed- real
part, open symbols imaginary part) and the lines show the mobility spectra from
Monte-Carlo simulations assuming Boltzmann statistics. The left axis shows the
microscopic mobility, the right axis displays the measured yield-mobility product.
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Figure 7.9: Measured yield-mobility spectra for nanocrystalline CdS with
nanocrystal size 14.2 nm. The symbols represent the measured data (closed- real
part, open symbols imaginary part) and the lines show the mobility spectra from
Monte-Carlo simulations assuming Boltzmann statistics. The left axis shows the
microscopic mobility, the right axis displays the measured yield-mobility product.
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Figure 7.10: Size of the clusters of nanocrystals as a function of the nanocrystal
size.

� � ��

�����	

�


��


��


��


��





�
�

���������	
��

���������
���	
��������

���������
���	
��������

� � ��

�����	

�


��


��


��


��





�

�����	�������	
��

���������
���	
��������

���������
���	
��������

Figure 7.11: Probability of the blocking of electrons on the boundaries of
nanocrystals (upper panel) and clusters (lower panel).
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Figure 7.12: Measured dynamics of the yield-mobility product for nanocrystalline
CdS with nanocrystal size 10.4 nm.

Fig. 7.14, curve c). Consequently, the carrier dynamics strongly depend on
the initial excess energy of the carriers; we attribute the observed ultrafast
decay of mobility to the relaxation of the excess energy.

• For high excitation densities the yield-mobility product decreases with a
time constant ∼ 200 ps. It becomes slower with decreasing excitation den-
sity and ultimately vanishes at ∼ 3 × 1018 photon.cm−3. We attribute this
slow decrease to the decrease of the quantum yield ξmobile(t), i.e. the electron
density decays due to recombination or Auger process. [97]

To gain a detailed insight into the carrier dynamics, we developed a simple
two-level model (Fig. 7.14 and Fig. 7.15). Carriers with low/high excess energy
are characterized by a mobility µL and µH , respectively. The density of available
electron states (number of states per unit volume) at the lower level is finite: N0.
The kinetic equations for the electron population per unite volume then read:

∂NH

∂t
= GH(t) − NH

τHL

(
1 − NL

N0

)
− DH(NH , NL)

∂NL

∂t
= GL(t) +

NH

τHL

(
1 − NL

N0

)
− DL(NH , NL) (7.2.1)

where NH and NL are the concentrations of electrons at the high and low-mobility
level, respectively. The terms DH(NH , NL) and DL(NH , NL) in Eq. 7.2.1 describe
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Figure 7.13: Early ultrafast THz dynamics of the studied nanocrystalline CdS
samples. The symbols represent the measured data, the lines display a fit by our
model of energy relaxation. For clarity the time origin of the curves is shifted.
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Figure 7.14: Model of the dynamics of the carrier energy relaxation in nanocrys-
talline CdS. a) For low excitation densities and high photon energies carriers
with high mobility µH are generated. During thermalization their excess en-
ergy is lost, and their mobility decreases to µL. b) For high excitation densities
and high photon energies carriers with high mobility µH are generated. During
thermalization the low-mobility states become filled with a small fraction of the
generated carriers and the decrease in electron mobility is not observed. c) For
low excitation densities and low photon energies electrons with low mobility are
generated. Their mobility during thermalization does not change.

the slow decay of the electron concentration. The generation rates depend on the
excitation wavelength λexc:

• for λexc = 400 nm GH = Nexc δ(t) and GL = 0

• for λexc = 510 nm GH = 0 and GL = Nexc δ(t)

The electron concentrations are connected with the photoconductivity of the
sample by the following equation:

(ξµ)meas(t) =
NH(t) µH + NL(t) µL

Nexc

(7.2.2)

Our explanation for the early dynamics of the electron transport in nano-
crystalline CdS is the following. Electrons photogenerated by a 400 nm laser
pulse have a high excess energy, therefore they are generated exclusively on the
upper level (GL(t) ≡ 0). During their thermalization they fall down to the lower
level with a time constant τHL; this process is accompanied by a decrease of the
electron mobility (Fig. 7.14 a). If the excitation density is high, the lower level
fills up during the thermalization and the majority of electrons remains on the
upper level. Consequently, one cannot observe a decrease of mobility (Fig. 7.14
b). If the wavelength of the excitation pulse is longer (510 nm), electrons are
generated directly at the lower level (GH(t) ≡ 0) and the thermalization does not
have any effect on the carrier mobility (Fig. 7.14 c).
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Figure 7.15: Two-level model in a semiconductor: electrons with kinetic energy
above EB have high mobility µH , whereas those with excess energy below EB

have low mobility µL. Scheme of carrier dynamics: recombination and trapping.

The two-level model may be connected with an energy barrier EB in the
conduction band; electrons with excess (kinetic) energy above EB are more de-
localized than those with kinetic energy below EB (see Fig. 7.15). Assuming
parabolic conduction bands in CdS nanocrystals, the barrier height is connected
to the concentration of available states N0 at the lower level by the following
equation:

EB =
h2

2me

(
3N0

8π

) 2
3

(7.2.3)

where h is the Planck-constant. By comparing this simple model with the mea-
sured THz dynamics the mobility of electrons on the upper and lower level and
the height of the energy barriers EB can be determined. The obtained value of EB

is displayed for each sample in Fig. 7.17. It decreases with increasing nanocrystal
size. This behaviour is very similar to the increase of transparency of nanocrystal
and cluster boundaries calculated in the previous section – here the difference be-
tween the probability of electron blocking on nanocrystal boundaries at low and
high excitation densities [pEB(low) − pEB(high)] clearly decreases with increasing
nanocrystal size (see Fig. 7.11).
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The energy barriers controlling the carrier transport may originate from the
electrostatic interaction of electrons with holes. It has been shown that holes
become rapidly trapped mostly within the nanocrystal where they were created.
[98] The trapped hole creates an electrostatic field which affects the electron
motion. The energy which is needed to bring an electron from the nanocrystal
infinitely far away ranges from Uin = 3e2

0/ (4πε0εrd) (electron in the center of the
nanocrystal) to Usurf = e2

0/ (2πε0εrd) (electron at the surface of the nanocrystal).
Indeed, we see that EB is comparable with Usurf (Fig. 7.17).

An estimation on the height of the energy barriers can be gained also from
the measured yield-mobility spectra. The simulation was generalized by adding
a piecewise harmonic potential which modulates the electron motion inside the
nanocrystals. The height of the energy barriers EB then corresponds to the
difference of the electric potential between the centre of a nanocrystal and its
surface (see Fig. 7.16).

For simplicity, we assumed that electrons with high excess energy do not feel
the additional potential – the blocking probabilities then correspond to those
shown in Fig. 7.11 for Nexc > 8 × 108 photon.cm−3. These blocking probabili-
ties are then kept also for electrons with low excess energy. The increase of the
blocking probabilities is then accomplished by switching on the additional poten-
tial. The potential depth EB is set to such a value that the simulation fits the
electron mobility measured in the low density regime (see the agreement between
the simulated and measured spectra in Fig. 7.16). The heights of the energy
barriers extracted from the measured spectra correspond well to the values cal-
culated from the carrier dynamics (see Fig. 7.17). Note that this approach is an
independent confirmation of the existence and height of the barriers.

Let us briefly discuss the terms DH(NH , NL) and DL(NH , NL) in Eq. 7.2.1
which describe the slow decay of the electron concentration due to recombination
or due to the Auger process. Auger recombination is a process which is expected
to be enhanced in nanocrystals due to the spatial confinement of charge carriers.
[97] In this process one electron-hole pair recombines nonradiatively giving its
energy to another carrier, e.g. to an electron (eeh process) which is promoted
to a state with a high excess energy. In turn, this can lead to an enhancement
of the conductivity in spite of the fact that the total number of excited carriers
decreases. The localized carriers can also take part in the Auger process due to
its Coulomb-interaction origin. However, taking into account the fact that the
fast energy relaxation is likely to be much faster than the Auger recombination
process, a possible increase in the average mobility dynamics should be negligible.

In our fits we found that a dominant Auger recombination is not compatible
with the shape of our kinetics in CdS, while a significant bimolecular recombina-
tion may take place. For example, for recombination coefficients in the sample
with nanocrystal size d = 10.4nm we have found BH ≈ 4.5 × 10−22 cm3ps−1 and
BL ≈ 5.1 × 10−21 cm3ps−1 (see the meaning of the coefficients in Fig. 7.15). For
the other samples these values are roughly comparable. These values are sim-
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Figure 7.16: Left panel: model of energy barriers in our simulations – harmonic
potential inside nanocrystals. Right panel: simulations compared with experi-
mental data for the sample with nanocrystal size 10.4 nm.

ilar to those found in 5-nm CdS NCs by Juodkazis et al. [99]. These authors
also reported the value of Auger recombination coefficient ∼ 3 × 10−42 cm6ps−1,
which leads to the Auger recombination time of ∼ 130 ps for the highest exci-
tation density we used in our experiments. However, our measurements were
done in a limited time window and using a narrow range of excitation fluences;
consequently, the Auger recombination could not be clearly distinguished from
the bimolecular one in our data. On the one hand, this limits the accuracy of
our determination of BL and BH, and, on the other hand, we can conclude that
∼ 3 × 10−42 cm6ps−1 is the upper limit for the Auger coefficient in the CdS NCs
grown by CBD.

7.3 Electron mobility spectra for high excita-

tion densities. Fermi-Dirac statistics.

If the electron concentration exceeds 1019 cm−3, the Fermi level of the system
of electrons becomes considerably higher than the electron thermal energy and
the Monte Carlo simulations should be performed using Fermi-Dirac statistics.
The electron velocity is in this regime determined by the Fermi velocity: with in-
creasing electron concentration the Fermi-level increases and so does the electron
velocity. Electrons with higher velocity interact more often with nanocrystal and
cluster boundaries, therefore with the increase of the electron density the mobil-
ity becomes smaller (see Subsec. 2.2.7). Such a decrease is observed also in our
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Figure 7.17: The height of the energy barriers deduced from the measured electron
dynamics (Eq. 7.2.1) (triangles) and spectra (squares) compared to the energy
needed to bring an electron from the centre (solid line)/surface (dashed line) of
a nanocrystal charged by a single hole.

experiments, therefore our model qualitatively explains the electron mobility in
the nanocrystalline samples even for high excitation densities.

For the sample with the largest nanocrystal size (d = 14.2 nm) we obtain a
quantitative agreement between the experiment and the simulations. We found
that, provided we use a shorter value of the scattering time: τ = 10 fs, the
experimental spectra can be sufficiently well reproduced by the simulated ones for
the whole range of excitation densities and with the same blocking probabilities on
nanocrystal and cluster boundaries as with Boltzmann statistics (see Fig. 7.23).
As to the shorter scattering time: although the value of 10 fs is smaller than the
scattering time in bulk CdS, such a choice can be justified by a possible higher
density of defects in nanocrystalline samples than in bulk CdS.

For the rest of the samples (d < 14.2 nm) the agreement between the simula-
tions and measurements is only qualitative. We attempted to improve the quality
of our model by adjusting parameters of electron blocking. It has been found that
the best agreement is reached if we assume that for electron densities & 1019 cm−3

the electrons do not feel the nanocrystal boundaries at all, i.e. pET = 1.
To illustrate our models we compare the measured mobility at 1 THz with

that obtained from simulations using Boltzmann and Fermi-Dirac statistics. This
approach is justified by the fact that the shape of the spectra does not change
significantly with the electron density. In Figures 7.19, 7.20, 7.21 and 7.22 we
present the measured electron mobility for various samples. The data are com-
pared to the results of simulations which involve:

1. Boltzmann statistics with simulation parameters identical to those used in
Sec. 7.1.
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2. Fermi-Dirac statistics with parameters identical to those used in Sec. 7.1.
For excitation densities & 1019 photon.cm−3 all the simulation parameters
are identical, except for the Fermi-level.

3. Fermi-Dirac statistics with permeable nanocrystals (pET = 1).

It can be seen that using Fermi-Dirac statistics and assuming permeable nanocrys-
tal boundaries our model is significantly improved for excitation densities around
∼ 1019 photon.cm−3. On the other hand, for higher excitation densities the elec-
tron mobility is still somewhat underestimated by the simulations with Fermi-
Dirac statistics.

We attempted to explain this discrepancy by saturation of optical absorption
in nanocrystalline CdS. In this case the electron concentration increases sublin-
early with increasing pump fluence. If the sample is much thicker than the skin
depth, the absorption depth increases. As a result, the total number of photo-
generated electrons does not change. The combination of the sublinear growth
of electron concentration and enlarged photoexcited sample volume would result
in a slower decrease of mobility than in the case of a linear regime, where the
pump fluence and electron density are directly proportional to each other. We
performed additional optical experiments in order to confirm or reject this hy-
pothesis. We measured the optical transmission coefficient for nanocrystalline
CdS films thinner than those studied by THz spectroscopy, but similar in other
properties. We have found that the absorption depth did not change in the whole
range of excitation densities used in our study. Saturation of optical absorption
therefore cannot explain the electron mobility at high densities.

The difficulty to explain this problem may originate from the fact that the
dependence of the electron mobility on the electron density is determined by two
phenomena:

• Reduction of electron blocking due to the increase of electron excess en-
ergy (with increasing electron density) results in an increase of the electron
mobility, which is visible for electron densities lower than ∼ 1019 cm−3.

• In the regime of degenerated electron system the increase of the Fermi-level
results in a decrease of the electron mobility. It is observed for electron
densities higher than 1019 cm−3.

The crossover between the two regimes leads to a plateau in the electron mobility
which is visible for example in Fig. 7.22 between excitation densities 3×1018 cm−3

and 4 × 1019 cm−3. From the current number of measured data points it is not
possible to distinguish between the two phenomena and characterize both of them
separately. The ultimate solution of this problem remains an open challenge.
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Figure 7.18: Fermi level of an electron gas system in CdS. The range of electron
densities in our experiments is highlighted.
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Figure 7.19: Comparison of measured (dots) and simulated (lines) electron mo-
bility for CdS nanocrystals with size d=6.2 nm. The solid line represents simula-
tions using Fermi-Dirac statistics with parameters identical to those used in Sec.
7.1, the dashed line shows simulations using Boltzmann statistics (Sec. 7.1) and
the dotted line displays simulations using Fermi-Dirac statistics and permeable
nanocrystals (pET = 1).
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Figure 7.20: Comparison of measured (dots) and simulated (lines) electron mo-
bility for CdS nanocrystals with size d=10.4 nm. The solid line represents simula-
tions using Fermi-Dirac statistics with parameters identical to those used in Sec.
7.1, the dashed line shows simulations using Boltzmann statistics (Sec. 7.1) and
the dotted line displays simulations using Fermi-Dirac statistics and permeable
nanocrystals (pET = 1).
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Figure 7.21: Comparison of measured (dots) and simulated (lines) electron mo-
bility for CdS nanocrystals with size d=12.2 nm. The solid line represents simula-
tions using Fermi-Dirac statistics with parameters identical to those used in Sec.
7.1, the dashed line shows simulations using Boltzmann statistics (Sec. 7.1) and
the dotted line displays simulations using Fermi-Dirac statistics and permeable
nanocrystals (pET = 1).
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Figure 7.22: Comparison of measured (dots) and simulated (lines) electron mo-
bility for CdS nanocrystals with size d=13.8 nm. The solid line represents simula-
tions using Fermi-Dirac statistics with parameters identical to those used in Sec.
7.1, the dashed line shows simulations using Boltzmann statistics (Sec. 7.1) and
the dotted line displays simulations using Fermi-Dirac statistics and permeable
nanocrystals (pET = 1).
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Figure 7.23: Electron mobility spectra of nanocrystalline CdS with nanocrystal
size 14.2 nm. The symbols represent the measured data, the lines display the
simulated mobility.
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7.4 Electron transport at low temperatures

Time-resolved THz measurements were carried out to explore the electron trans-
port in nanocrystalline CdS also at temperatures 20 K and 80 K. The behaviour
of the mobility spectra in the excitation density range of 1018−1020 photon.cm−3

is similar to that measured at room temperature. It has been found that at
low electron densities the mobility increases with decreasing temperature (see
Fig. 7.24) and at high electron densities the mobility spectra are temperature-
independent (see Fig. 7.25). Our simulations give a similar result which can be
explained as follows. At low excitation densities the electron system obeys the
Boltzmann statistics and the electron velocity is governed by the temperature.
Consequently, the average electron velocity is lower at 20 K than at room tem-
perature. Slower electrons interact with nanocrystal boundaries less frequently,
therefore they are less localized and their mobility is higher. On the other hand,
at high electron densities the carrier transport is determined by the Fermi veloc-
ity, which is temperature independent under these conditions (see Fig. 7.18). As
a result, the mobility is also independent of temperature. At low temperatures
the electron dynamics exhibits a similar ultrafast decrease of electron mobility as
that described in section 7.2, although the time constant is slightly larger (see
Fig. 7.26). We find τHL ≈ 0.5 ps at room temperature and τHL ≈ 4 ps at 20 K.

For low excitation densities the electron mobility at 20 K is larger than at
room temperature. This gave us the possibility to measure low-temperature mo-
bility spectra at even lower excitation densities. We discovered that the mobility
significantly increases upon a decrease of the pump fluence. This fact allowed us
to decrease further the excitation density by nearly 2 orders of magnitude. For
excitation densities 2 − 4 × 1016 photon.cm−3 it has been found that the mobil-
ity spectra do not exhibit a localized character anymore, they remind mobility
spectra of delocalized charges: we observe a decreasing real part and a positive
imaginary part (see Fig. 7.27). In other words, with a decreasing electron density
a crossover has been observed between delocalized and localized regime. Such a
behaviour is possible only if the electrons are delocalized over several nanocrys-
tals, as suggested by our simulations; i.e. from the point of view of the carrier
transport the electrons do not feel any confinement. This is in a contrast with
the optical spectra which clearly reflect the electron confinement at 20 K. Here
we touch a long-lasting controversy [100] between an optically observed quantum
confinement of charges and bulk-like dc transport in the electrical measurement.
In other words, we observe a contrast between a coherent regime at optical fre-
quencies determined by wavefunctions of confined electrons and a presumably in-
coherent regime of carrier transport where collisions of other coherence-breaking
phenomena may occur during the period of the probing THz field.

The quantitative characterization of the electron transport at low tempera-
tures in nanocrystalline CdS requires both the characterization of bulk CdS at
low temperatures and the solution of the problem of transition between delocal-
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Figure 7.24: Electron yield-mobility product measured for low excitation densities
and different temperatures.

ized and localized states at low electron densities. These tasks are beyond the
scope of a single thesis and provide a strong motivation for the continuation of
this research.

7.5 Conclusion

We have examined the mobility of photogenerated carriers in nanocrystalline
CdS using time-resolved THz spectroscopy. Measurements were carried out for
samples with different nanocrystal size and in a wide range of electron densities.

We have found a quantitative connection between the shape of the electron
mobility spectra and the structure of the material. Using our simulations we have
been able to identify electron localization on two different length scales.

It has been found that the mobility of electrons changes substantially with
their kinetic energy. The magnitude of this change was found to decrease with
increasing nanocrystal size. A hypothesis was formulated based on this fact ex-
plaining the observe change of mobility by an electrostatic interaction between
electrons and trapped holes. Our simulations were able to describe the measured
electron mobility also at high electron densities and at low temperatures.

Furthermore it has been found that at 20 K and electron densities 2×1016 cm−3

electrons experience a transition from a localized to a delocalized regime; this may
be a starting point for further experiments in this field under conditions of very
low excitation densities.



ELECTRON TRANSPORT IN NANOCRYSTALLINE CDS 129

� ��� ��� ��� ��� �

��	
�	��������

��

��

��

�

���

�
�
�
��

�
�
�
�
�
�
�
�
� ���������

	
�����
�������������

�������

������

������

�
��

���������

Figure 7.25: Electron yield-mobility product measured for high excitation densi-
ties and different temperatures.
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Figure 7.26: Electron kinetics measured for low excitation densities and different
temperatures.
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Figure 7.27: Electron mobility spectra for nanocrystalline CdS at 20 K and very
low electron densities.
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Figure 7.28: Optical absorption spectra of nanocrystalline CdS at 20 K for dif-
ferent nanocrystal sizes.



Chapter 8

Conclusion

This thesis investigates systems of charge carriers experiencing different degrees
of delocalization. It has been shown that a combination of two methods, THz
spectroscopy and simulation of carrier thermal motion is able to give a detailed
quantitative picture of carrier transport in nanocrystalline systems for a wide
range of parameters such as temperature and carrier density. We investigated
several systems:

• The mechanism of carrier transport in pellets of niobium-doped titania
nanoparticles was clearly identified using THz time-domain spectroscopy.
It has been shown that the carrier transport is dominated by hopping. The
influence of the depolarization fields on the carrier transport was modeled
by the Bergman theorem; a simple parametrization of the Bergman spec-
tral function was used. It consists of two delta functions: one describes a
percolated component and the other represents the contribution of isolated
inclusions. Using this model the effect of annealing and of the Nb doping
on the pellets could be evaluated. It has been found that annealing im-
proves the crystallinity of the samples, namely, it leads to an increase of the
percolation of their crystalline part. Nb-doping introduces lattice deforma-
tions in the titania nanoparticles which lead to high extrinsic losses. These
results are summarized in Fig. 4.4.

• We investigated electron states populated by photoionization in water and
aqueous solutions of various salts by time-resolved spectroscopy. The den-
sity of solvated electrons was measured by optical pump–optical probe spec-
troscopy. The mobility of intermediate electron states generated within 1 ps
after photoexcitation was probed by optical pump–THz probe spectroscopy.
We have not observed any spectral feature from these states in the THz fre-
quency range. Based on this fact we determined that the intermediate
states cannot be delocalized over a length scale longer than ∼ 5 nm within
100 − 300 fs.

• We studied the photoconductivity of bulk ZnO using time-resolved THz
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spectroscopy. We have identified several types of carriers: free carriers with
high mobility at temperature lower than 80 K and at low carrier densities,
high density electron-hole plasma and excitons which were interestingly ob-
served only for temperatures higher than 80 K. Our investigation allowed to
establish a relation between two previous studies on the photoconductivity
of bulk ZnO, which were seemingly incompatible. [18, 88]

• Using the combination of THz time-resolved measurements and simulations
a complete study was performed on the photoconductivity of nanocrys-
talline ZnO. At 20 K only mobile carriers, while at room temperature
mobile carriers and excitons were observed. The response of mobile car-
riers originates from their thermal motion which involves backscattering on
nanocrystal boundaries. Upon such interactions the probability that the
electron moves to another nanocrystal is only 25% in our samples. The
strong oscillator strength of the excitons and the significant change of elec-
tron scattering time at 20 K shows an enhanced electron-hole interaction
due to the confinement in nanocrystals.

• The mobility of photogenerated electrons was studied in nanocrystalline
CdS. It has been shown that carriers experience localization on two length
scales corresponding to the size of nanocrystals and clusters of nanocrystals.
The fact, that the carrier mobility could be simulated in such a complicated
structure, demonstrates the flexibility of our model. It has been found that
the extent of carrier localization is lowered with increasing electron excess
energy. This phenomenon is related to the existence of energy barriers at
nanocrystal boundaries. The energy barriers may be connected with the
interaction between mobile electrons and trapped holes.

• At 20 K and at low electron densities (2×1016 cm−3), the carrier mobility in
nanocrystalline CdS exhibits a Drude-like character showing that electrons
are not localized anymore. Simultaneously, the optical absorption spectra
of the material show electron states corresponding to confined electrons.
This remains a challenge for further research.
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Instrum. 74, 4711 (2003).
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Phys. 122, 104504 (2005).

[58] T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

[59] D. Fattakhova-Rohlfing, T. Brezesinski, J. Rathousky, A. Feldhoff, T. Oek-
ermann, M. Wark, and B. Smarsly, Adv. Mater. 18, 2980 (2006).

[60] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose,
T. Shimada, and T. A. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).

[61] Y. Liu, J. M. Szeifert, J. M. Feckl, B. Mandlmeier, J. Rathousky, O. Hayden,
D. Fattakhova-Rohlfing, and T. Bein, ACS Nano 4, 5373 (2010).

[62] R. J. Gonzalez, R. Zallen, and H. Berger, Phys. Rev. B 55, 7014 (1997).

[63] S. R. Elliott, Adv. Phys. 36, 135 (1987).

[64] A. Pashkin, Ph.D. thesis, Charles university in Prague, Czech republic,
2004.

[65] H. Němec, Z. Mics, M. Kempa, P. Kužel, O. Hayden, Y. Liu, T. Bein, and
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