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1. Introduction 1 

1. Introduction 

Many devices that have been traditionally made from bulk inorganic 

semiconductors are increasingly replaced by those produced by thin film 

technologies and nanotechnologies, which are less economically, energetically and 

environmentally demanding. The tendency is most prominent in the photovoltaic 

industry but occurs also in processing and transmitting of digital signals. Crystalline 

and polycrystalline silicon solar cells, which prevail in installed applications, have 

reached laboratory efficiency of 25% and 20% [1], respectively, but their production 

is rather expensive because it demands melting, purifying and slicing of large 

amounts of the source material. On the other hand, dye-sensitized and organic thin 

film cells reach efficiencies of “only” 11.9% and 11.0% [1], respectively, but thin 

film and inkjet printing production technologies enable fabrication of these devices 

with notably reduced energetic and economic costs and with other technological 

advantages e.g. their low thickness or flexibility.  

In the areas of computational and communication technologies, a significant 

effort is also put into the research of nanoelements that have exceptional conduction 

properties (graphene, carbon nanotubes) or non-standard light–electricity conversion 

capabilities (tunable energy levels in nanodots due to quantum confinement, silicon 

nanocrystals with direct band gap etc.). [2]  

This thesis deals with THz photoconductivity spectra of macroscopic (μm- to 

cm-sized) samples made of more or less ordered ensembles of nanometer-sized 

semiconducting particles and we use the term nanomaterial in this sense. Below we 

introduce the basic aspects of nanomaterial (photo)conductivity and show that our 

method is particularly useful for characterizing this application-decisive property of a 

various nanomaterials. The work is both theoretical and experimental covering also 

some methodological aspects. We present original results concerning the theory of 

macroscopic response of nanostructured materials in general and the implications of 

this theory for time-resolved THz spectroscopy in particular. We show and discuss 

our experimental results on nanomaterials made of two technologically important 

semiconductors: silicon and titanium dioxide, and a refinement of the Monte Carlo 

numerical method for calculating properties of short-range charge transport. 

1.1. Conductivity of nanomaterials 

Conduction properties of nanomaterials are closely related to their structure. 

The efficiency of the charge transport on the long range, which is essential for all 

electric and electro-optic applications, is limited by the slowest process that the 

charge carriers undergo on the short range. These microscopic processes include 

charge carrier generation, separation [3], intra- [4] and inter-nanoparticle motion  [5]. 

However, they can be hardly unambiguously distinguished by contact measurements 

such as time-of-flight methods, which are usually employed, or in a field-effect 

transistor configuration. A local probe that senses the behavior of charge carriers on 

the nanometer length scale is crucial for characterization of the microscopic charge 
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transport and, subsequently, for the improvement of the macroscopic electric 

properties of nanomaterials. 

Scanning tunneling microscopes with multiple tips allow measurements of 

the conductivity of individual nanowires [6] but they represent rather expensive 

devices demanding ultra-high vacuum conditions and are mostly used in combination 

with high-end sample preparation techniques such as molecular beam epitaxy or 

electron lithography. Devices whose production is up scalable usually contain more 

or less complex ensembles of nanoobjects with varying microscopic properties. A 

method able to sense the local motion of charge carriers and providing its average 

over the whole ensemble is required. The THz spectroscopy offers this possibility. 

1.2. Relevance of terahertz to nanometer 

Terahertz spectroscopy probes the interaction of charge carriers with 

electromagnetic radiation in the THz frequency range without any contacts attached 

to the sample and in an undemanding environment of dried air or primary vacuum. 

The measurable spectra of complex optical conductivity in this range bear 

information on the (nano)transport of charge carriers for the three following reasons:  

1. the plasma frequency of electrons in semiconductors usually lies near the 

THz range (e.g. the plasma frequency is 11 THz for electrons at a density 

of 1016 cm−3 in silicon); 

2. scattering of charge carriers on defects in bulk semiconductors occurs 

usually on the femto- to picosecond time scale, producing a substantial 

dispersion directly in the THz range;  

3. a charge carrier diffuses a few tens or hundreds of nanometers within the 

period of a THz pulse (the electron diffusion length ldiff νD /  is 

≤ 60 nm in silicon with the diffusion coefficient De ≤ 36 cm2s−1 [6] at a 

frequency ν = 1 THz). If there are any conduction barriers with a 

comparable spacing, such as boundaries of nanoparticles, the interaction of 

the carriers with them provides spectral features in the THz part of the 

optical conductivity spectrum of the sample. 

The THz spectroscopy is often combined with a synchronized photoexcitation 

of the sample – in this case, we speak about Time-resolved THz spectroscopy or 

Optical pump–THz probe (OPTP) spectroscopy. The technique is able to characterize 

the dynamics of the charge transport from the moment of carrier photoexcitation to 

its trapping or recombination with sub-picosecond time resolution. The OPTP 

spectroscopy has at least four experimental degrees of freedom: varying energy and 

density of excitation photons, time after photoexcitation and sample temperature. 

Taking advantage of experiments where these quantities are varied, it is possible to 

characterize the ultrafast microscopic charge transport in nanostructured and 

disordered semiconductors with a large detail and a deep understanding. 
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1.3. Effective response challenge 

The wavelengths of THz radiation are up to 5 orders larger than the size of 

the photoconductive nanoelements (nano-crystals, -clusters, -islands, -wires, etc.) 

that constitute discussed materials. The probing THz beam thus cannot be focused on 

a single nanoparticle (NP) but it probes an average response of all carriers in a 

macroscopic piece of the inhomogeneous sample*. A semiconducting nanoparticle 

containing photoexcited electrons and holes behaves like a polarizable object in the 

electric field of the probing THz radiation and the spaces between adjacent 

conducting NPs have finite capacitances. The so called depolarization fields, related 

to these effects, locally alter the field of the probing radiation and cause that the 

measured macroscopic absorption and dispersion of the THz radiation is related to 

the actual microscopic conductivity of the charge carriers in a non-linear manner.  

 This relation between the macroscopic response of the inhomogeneously 

conductive sample to external electric fields and the microscopic conductivities of its 

constituents has been described by various effective medium theories (EMT). The 

most often used approximate EMTs of Maxwell Garnett or Bruggeman sometimes 

fail when the sample morphology is near to percolation. The most general Bergman 

EMT is, on the other hand, quite complicated and mostly lacks sufficiently precise 

input information on the morphology of the system. In this thesis we present an 

effective medium model (called VBD model), developed recently in our group and, 

largely, within the framework of the thesis. It is able to describe the measurable 

photoconductivity in materials that contain semiconducting NPs in the form of both 

non-percolated inclusions and complex percolation pathways at the same time and 

which uses only on 3 independent parameters describing the sample morphology. 

1.4. Structure of the thesis 

The research in the THz spectral range is relatively young and has brought 

about its own terminology, methodology, inventions and problems. For this reason, 

Chapter 2 introduces the THz spectral range with its peculiarities in a wider context 

and our technique and experimental setup in particular. In Chapter 3, we give an 

overview of theoretical models of THz photoconductivity that have been used in the 

literature and of experimental works published in the area of THz spectroscopy of 

photoconductive nanomaterials.  

The subsequent chapters present the original theoretical and experimental 

results of this thesis, starting with the presentation of the VBD effective medium 

approach and its comparison to other EMTs in Chapter 4. We also illustrate this 

model on an equivalent electric circuit analogy. In Chapter 5, we derive the general 

 
* The size of the THz beam focus in a far field experiment is comparable to its wavelength, i.e. 

several millimeters. Near-field THz microscopy, which is not discussed here, reaches resolution 

of 3 μm using sub-wavelength apertures [7], or tens of nm using THz scattering on vibrating 

AFM tips [8]. 
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solution of the wave equation describing the differential (transient) THz field 

build-up and propagation in an inhomogeneous photoexcited sample; we discuss 

solutions related to the proposed EMT model in particular. We apply this theory to 

the experimental spectra of THz photoconductivity of two systems of silicon 

nanocrystals (Si-NCs): derived from bulk crystalline Si by electrochemical etching in 

Chapter 6 and grown by crystallization in epitaxial SiOx/SiO2 (x ≤ 1) multilayers in 

Chapter 7.  

In Chapter 8, we study the charge carrier transport in bulk rutile TiO2 at high 

photocarrier densities with the aim to obtain reference bulk data for TiO2-based 

nanosystems. Despite the relatively wide usage of this material, the understanding of 

charge transport in TiO2 is still limited due to the strong electron-phonon interaction 

in it and we present qualitatively new findings thanks to utilizing the ps time 

resolution of OPTP spectroscopy.  

Besides analytical models of (microscopic) carrier conductivity, our group 

carries out semi-classical Monte Carlo calculations of carrier motion in nanosystems. 

In Chapter 9, we analyze the relation of probabilistic parameters of a model system 

(probability of inter-NP transport) to its morphologic properties (spatial layout and 

touching areas of adjacent nanoparticles). 

Finally, we sum up the conclusion of the thesis in Chapter 10. Chapters 11 

and 12 contain the bibliographic references and the list of tables, respectively. 

Chapter 13 provides a List of symbols and abbreviations used throughout the thesis 

for the convenience of the reader. 



 

 
 

2. THz spectroscopy 5 

2. THz spectroscopy 

The research in the THz spectral range is quite peculiar and we find it suitable 

to provide first a short overview of the field, its current technologies and areas of 

interest. Then we describe techniques relevant for this thesis in detail. For further 

information we refer to the review of Peter Uhd Jepsen, David G. Cooke and Martin 

Koch [9]. 

2.1. Terahertz spectral range 

The terahertz region appeared as a new spectral range overlapping partly with 

optics and electronics in the last two decades – it includes the longest far infrared 

(FIR) and the shortest microwave waves (see Table 2.1). THz radiation is also known 

as the “millimeter waves”, according to its wavelength, or the “T-rays”, in an 

analogy to the X-rays. In the 20th century, the research in this area somewhat lagged 

behind the adjacent parts of the electromagnetic spectrum because of a lack of 

efficient sources and detectors. THz frequencies are too high for electronic circuits 

and transistors [10] and coherent THz emission in the active medium of a FIR laser is 

highly inefficient [11]. Incoherent low-intensity THz radiation is found in the nature 

as a part of the thermal radiation of every black-body at temperatures above a few 

Kelvins*. This fact finds its use in astronomy in chemical analysis of the emission 

spectra of cold interstellar dust and distant starburst galaxies. [12] Yet, it is absorbed 

by water vapor in the atmosphere and submillimeter telescopes must be located at 

very dry and high altitude places, such as the Atacama Desert, or in the free space. 

As the ranges of laboratory sources of optical and electronic radiation did not overlap 

for a certain time, the THz part of the electromagnetic spectrum was called the 

“Terahertz gap”. [13]  

 Frequency Wavelength Wavenumber Energy  

 15 THz 15 μm 667 cm-1 83 meV 
FIR 

range [14] 

THz 

range 

3 THz 100 μm 100 cm-1 12 meV 

0.3 THz 1 mm 10 cm-1 1.2 meV 

0.3 THz 1 mm 10 cm-1 1.2 meV 
microwave 

range [15,16] 
0.1 THz 3 mm 3.3 cm-1 0.41 meV 

 0.3 GHz 1 m 0.01 cm-1 1.2 μeV 

Table 2.1 Borders of THz frequency range overlapping with common optical 

and electronic ranges of electromagnetic radiation. 

Bridging of the “gap” was started in 1985 when Auston and Cheung [17] 

generated broadband THz pulses via optical rectification (OR) of ultrashort laser 

pulses in a non-linear electro-optic crystal and detected them by time-domain 

 
* The maximum of spectral radiance lies at 1 THz for a black body at a temperature of 18 K. 
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spectroscopy (TDS). Principles of OR and TDS are described in the following 

sections in detail because they are used throughout the experimental part of this 

thesis. Since 1985, detection in the time-domain has remained the most frequent 

method used for spectroscopic measurements in THz laboratories worldwide, while 

various phenomena other than OR have been employed to generate pulsed broadband 

and also continuous-wave (cw) THz radiation. Photoconductive switches, for 

example, utilize ultrashort optical laser pulses, similar to OR, and provide THz 

pulses with similar bandwidths and somewhat lower intensities – these two 

generation techniques are most widely used in tabletop THz spectroscopic setups 

nowadays. 

Other THz sources and detectors 

In 2002, Hebling et al. [18] proposed the tilted-wave-front scheme of optical 

rectification in order to achieve phase matching between a THz and an optical pulse 

in highly nonlinear materials, such as LiNbO3. This allows one to generate THz 

pulses with the peak field of ~1 MV/cm*. [19] “THz wave air photonics” techniques 

are used to both generate and detect THz pulses with bandwidths exceeding 30 THz 

in laser-induced air plasma [20,21].  

Quantum cascade lasers (QCL) present the youngest and quite promising 

technology for emitting narrowband THz radiation. They achieve stimulated 

emission of FIR radiation on intersubband transitions in quantum wells of a 

semiconductor superlattice. A QCL is in principle single-component chip that needs 

only a power supply and can be either used as external emitter or as an integrated 

element in optoelectronic circuits. Its main drawback is that it requires cryogenic 

cooling in the few-THz range. QCLs are somewhat tunable and one can already buy 

a commercial frequency-domain spectroscopic setup with a set of QCL chips 

covering several adjacent intervals in the THz spectral range.  

Photomixing of two coherent laser beams with similar frequencies in a 

non-linear crystal also yields coherent narrowband pulsed or cw THz radiation and a 

similar technique can also be used to detect monochromatic THz beams 

coherently. [9]  

Sources based on a beam of free electrons include backward-wave 

oscillators, synchrotrons, free electron lasers and gyrotrons. The first ones use 

radiation from non-relativistic electrons and can fit into table-top experiments. The 

others are large-scale facilities that provide tunable pulsed or continuous-wave THz 

radiation of extraordinary intensities from beams of relativistic electrons. 

Novel broadband sources radiating from about one THz to tens of THz are 

referred to as “multi-terahertz” because their principle and functionality are derived 

from the standard time domain THz spectroscopic techniques. However, by their 

spectral content, they technically belong to FIR (or even mid-IR) broadband sources. 

 
* classic collinear setups reach peak field of several kV/cm. 
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Incoherent THz spectroscopy in the frequency domain (e.g. in an 

Fourier-transform infrared spectrometer) is feasible with thermal sensors such as 

pyrometers, bolometers or Golay cell detectors. [22] Thermal detectors naturally 

suffer from relatively long response times and the presence of background thermal 

radiation. Their sensitivities are generally lower (with the exception of hot-electron 

bolometers) than that of electro-optic detectors used in TDS. For these reasons, they 

are used rather in high-intensity or narrow-band experiments or in THz imaging 

applications.  

THz science, technology and applications 

The scientific areas of interest, besides charge carrier transport, cover: 

vibrational modes of molecular crystals, crystals of organic molecules in particular; 

relaxation processes of permanent or collision-induced dipoles in liquids, particularly 

in water;  [9] strongly correlated electronic systems [23] and phase transitions in 

multiferroics [24].  

THz technologies naturally require means for spectral manipulation of THz 

beams. This can be done e.g. by using tunable photonic crystals or tunable 

metamaterials. It is also possible to achieve on-demand THz properties in THz 

metamaterials such as negative refractive index in a narrow band.  [25–27]  

Recently, the THz imaging and spectroscopic systems have matured enough 

to reach first commercial applications. In the field of quality control and safety, THz 

imaging is a complement to usual rays such as visible light or X-rays. THz waves 

can penetrate common non-metallic packaging materials that are opaque in the 

visible range – such as paper, wood, certain plastics or dry fabric – and provide 

contrast and spectral information on dielectric contents that are mostly without 

contrast for the X-rays (ceramics, plastics, liquids, narcotics or explosives [9]). THz 

photons do not ionize the matter and thus are also viable for inspection of living 

persons (the THz rays can “see” contraband or weapons concealed under the 

clothing) or susceptible materials. In the field of quality control, THz imaging can 

locate voids or moisture and other inhomogeneities in dried food [28], molded 

plastics  [29], or composite materials or determine the thicknesses of multi-layered 

paints and coatings. THz cameras usually contain an 2D array of microbolometers or 

photoconductive antennas in the focal plane of a silicon lens. These cameras are 

rapidly approaching real-time applications as they currently reach resolution of 

hundreds × hundreds of pixels and rates of several frames per second. [30] 

As THz waves are strongly absorbed by water, they do not penetrate deep 

into the skin of living beings and attempts have been made to utilize THz in 

diagnostics of skin cancer. [31] 

THz rays are also utilized in cultural heritage preservation – for non-

destructive characterization of the layers of frescoes, plasters, paintings and other 

opaque artworks. The detailed knowledge on the layers then enables performing of 

the most appropriate restoring and preserving actions. [32] 
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For further details and references on THz technology and materials let us 

refer the reader to the review papers of Tonouchi [33] or Ferguson and Zhang [34]. 

2.2. Time-domain spectroscopy 

The electric field of THz radiation evolves relatively slowly in time (~ps) 

compared to the pulse length of available femtosecond laser sources. An E-field 

detector, e.g. an electro-optic sensor, gated with fs laser pulses can thus measure the 

instantaneous electric field of a THz wave. [35,36] Changing the time delay t 

between the THz pulse and the time synchronized laser gating pulse allows one to 

sample the whole waveform of the electric field Et(t) of the THz pulse transmitted 

through a sample. Through Fourier transform one obtains the complex spectrum 

Et(ω)* of the THz pulse (Fig. 2.1).  

 

Fig. 2.1 Left: Waveforms Et
ref and Et of a THz pulse transmitted through the 

setup without sample and through a 0.26 mm thick TiO2 sample at 

70 K, respectively. (Inset: sampling points in a section of Et) 

Right: their complex spectra Et = |Et|e
iφ (same scale as the left plot). 

To obtain the THz response function of a sample, one usually places it in the 

focus or in a collimated section of the pulsed THz beam and measures separately the 

waveforms of:  

1. the “signal” THz pulse Et(t) transmitted through the sample;  

2. the “reference” THz pulse Et
ref(t) transmitted either through a reference 

sample or measured without the sample in the beam path.  

 
* We do not introduce any special notation for complex-valued variables; all frequency-resolved 

quantities in the thesis are complex. Real and imaginary components are denoted as: 

X = X′ + iX″. The sign convention E(t) = Eωe−iωt is used for a monochromatic wave. Angular 

frequency ω = 2πν is used in equations; all spectra are plotted against linear frequency ν. 
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Both measured waveforms are temporal convolutions of the waveform radiated from 

the emitter with the transmission coefficient of the sample/reference and an 

instrumental function which describes propagation of the pulse through the setup and 

its detection in the sensor. Upon Fourier transform into the frequency domain, the 

convolutions of temporal functions become products of the respective spectral 

functions. In the ratio Et(ω)/Et
ref(ω), the instrumental functions cancel out exactly 

and one obtains the ratio of the complex transmission coefficient of the sample 

tsample(ω) and of the reference tref (ω). [37] This ratio defines the complex THz 

transmittance of the sample: 

  
 

 
 
 ωE

ωE

ωt

ωt
ωT

ref

t

t

ref

sample
  . (2.1) 

In the case when the sample is removed from the setup for the reference 

measurement, we get  cLωit /expref  , where L is the sample thickness and c is 

the speed of light in vacuum. The measured complex transmittance T(ω) of the 

sample is related to its complex refractive index n. For a homogeneous sample, the 

relation reads [38] 

  
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2
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1
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/1exp4
. (2.2) 

The sum in (2.2) accounts for the first m Fabry-Perot reflections of the THz pulse in 

the sample. For thick samples, these reflections form separate echoes of the main 

pulse in the time domain and can be time-windowed. [39] Then, m is trivially the 

number of echoes taken into account.   

 

Fig. 2.2 Left: THz transmittance of a 0.26 mm thick TiO2 slab at 70 K and 

right: its refractive index. 

For thin samples, the series should be summed up to the infinity, as the echoes 

overlap in the time domain. [38] The numerical solution of (2.2) is simpler and less 

sensitive to errors in measurements when separate echoes can be windowed. [40] 

With THz-opaque samples it is also possible to carry out experiments in reflection 
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geometry. [41] Fig. 2.2 shows the complex transmittance and refractive index 

calculated from the data presented in Fig. 2.1. 

In this work, THz time-domain spectroscopy without photoexcitation of the 

sample is used as an auxiliary method for determining the refractive index of a thick 

sample of bulk rutile in the THz frequency range in Chapter 8. The next section 

introduces the Optical pump–THz probe technique which is the principal method 

used in this thesis. 

2.3. Optical pump–THz probe spectroscopy 

Optical pump–THz probe spectroscopy measures the transient change ΔEt(t) 

of the THz waveform transmitted through the sample upon collinear photoexcitation. 

Plane-parallel samples are placed perpendicular to the direction of propagation z of 

the THz pulse; the wavefronts of the THz radiation are planar throughout the 

thickness of the sample. The formation and propagation of the transient part ΔE of 

the THz field inside the sample is then described by a one-dimensional wave 

equation [42] 

 
 

     zωUzωEkωn
dz

zωEd
,,Δ

,Δ 2

0

2

2

2

 , (2.3) 

where n is the refractive index of the sample in the ground state* and k0 = ω/c is the 

angular wavenumber of the THz wave in vacuum. The right-hand-side function 

U(ω, z) describes the source of the transient part of the THz field. In terms of the 

transient conductivity Δσ(ω, z) that arises in the sample after photoexcitation, it 

reads [42]: 

      zωEzωσZikzωU ,,Δ, 00 , (2.4) 

where E is the total THz field (probe + transient) at a given depth and Z0 is the 

vacuum wave impedance. The transient conductivity is generally a function of the 

depth due to the Lambert-Beer exponential absorption law for the optical excitation 

beam. Solution of the wave equation with the suitable source function and proper 

boundary conditions yields the transient part ΔEt of the electric field transmitted 

through the sample. Solutions concerning nanomaterials and cases important for this 

thesis are derived in Chapter 5. In this Section, we demonstrate the solution of (2.3) 

on a simple pedagogic case.  

Equations (2.3) and (2.4) are valid in the quasi steady-state approximation, 

i.e. when the transient conductivity Δσ does not change substantially during the 

few-ps duration of the probe pulse. Many transport processes are slow enough not to 

spoil the approximation, e.g. the carrier recombination causes a decay of Δσ on a 

time scale of hundreds of ps to ns. On the other hand, the carrier generation, 

 
*  Usage of equilibrium refractive index without its excitation-induced transient contribution is 

justified in a more technical discussion in the beginning of Chapter 5. 
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thermalization and other ultrafast processes may take place within a picosecond after 

photoexcitation. The measurement of a single probe waveform is meaningless in 

such time intervals: each point in the few-ps-lasting THz waveform would have 

interacted with the sample in a different conductivity state. In order to assess the 

transient conductivity during such fast processes, one must follow a more elaborate 

measuring procedure which is not the subject of this thesis. Briefly speaking, the 

transient THz field must be experimentally sampled in a 2D grid of the probe–

sampling and pump–probe delays t and tp, respectively. A two-dimensional Fourier 

transform ΔEt(t, tp) → ΔEt(ω, ωp) must then be performed and equations must take 

into account a mixing of both frequencies ω and ωp
*. [43] All experimental THz 

photoconductivity spectra in this thesis comply with the requirement of the quasi 

steady-state approximation.  

Having measured the transient part ΔEt(t) of the transmitted waveform, one 

uses the waveform of the THz pulse transmitted through the unexcited sample Et(t) 

as the reference. In the frequency space, the transient complex transmittance 

spectrum ΔT(ω) of the photogenerated excitations is obtained (see Fig. 2.3): 

  
 

 
 
 ωE

ωE

ωt

ωt
ωT

t

t

sample

sample ΔΔ
Δ   . (2.5)  

  

Fig. 2.3 Left: Waveforms Et and ΔEt of the probe pulse transmitted through a 

0.26 mm thick rutile slab at 70 K in equilibrium and 11 ps after 

excitation with 1.6×1014 photons/cm2 at 266 nm, respectively. Right: 

Transient transmittance of the excitations (the scale is in relation 

with the left plot).  

In a homogeneous sample with a thin photoexcited layer, the experimental 

transient transmittance spectrum is directly defined by the transient change of the 

conductivity spectrum of the sample [42]: 

 
* ωp is used for the Fourier counterpart of pump–probe delay tp solely in this place. It is not to be 

confused here with the plasma frequency that is defined in Section 3.3 and used thereafter. 
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  
 

21

0Δ
Δ

nn

Z

α

ωσ
ωT


 , (2.6) 

where α is the sample absorption coefficient for the pump light and n1, n2 stand for 

the THz refractive indices of the media in front and behind the photoexcited layer, 

respectively (vacuum, substrate, cuvette faces, unexcited part of the sample etc.).  

The transient transmittance includes response from all polar excitations that 

are active in the THz range such as band carriers, polarons, excitons, optical phonons 

etc. This thesis deals with the ultrafast transport of mobile carriers; for this purpose, 

pumping with over-the-band-gap photons is used to generate charge carriers in the 

conduction and valence band of the sample.  

In the simplest theoretical case of a thin homogeneous sample with a single 

(or one dominant) type of photocarriers, the overall transient conductivity is 

proportional to the mobility μ(ω) of the single charge carrier: 

    ωμeNωσ 0Δ  , (2.7) 

where e is the elementary charge.  The density N0 of photocarriers at the sample 

surface is given by 

 ξαN 0 , (2.8) 

where ξ is the quantum yield of photogeneration and ϕ is the pump photon fluence in 

a single excitation pulse (in photons/cm2, also referred to as the excitation fluence 

here). While α is usually taken from the literature or measured independently and ϕ is 

determined experimentally, the quantum yield is mostly a priory unknown and in 

some cases it may substantially differ from 100%. [44] For this reason, the quantum 

yield and the magnitude of the carrier mobility mostly cannot be distinguished from 

each other in the transient conductivity (2.7) and only the yield-mobility product can 

be calculated from the measured transient transmittance. Equations (2.5)–(2.8) 

together show that in the case of a thin homogeneous sample with one dominant type 

of photocarriers, an OPTP measurement yields straightforwardly the complex 

mobility spectrum of the charge carriers (multiplied by the quantum yield which is 

the only unknown parameter to be discussed): 

  
 
 ωE

ωE

Z

nn

e
ωμξ

t

t

0

21 Δ1 



. (2.9) 

Because of the clear physical meaning of the equation above for 

homogeneous semiconductors, we use its right-hand side to define the normalized 

transient transmittance spectrum 

  
 
 ωE

ωE

Z

nn

e
ωT

t

t

0

21
norm

Δ1
Δ





 (2.10) 

and consider it as a suitable normalized experimental output quantity of Optical 

pump–THz probe experiments. [45] Also in samples with a more complicated 

response (with several types of photoconductive excitations and with a complicated 
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morphology) ΔTnorm holds the meaning of the average photoconductive response of 

the sample per single absorbed pump photon and per elementary charge and it is 

expressed in units of the mobility. This quantity becomes especially useful for 

experiments in inhomogeneous samples. 

The equations above were derived for a general pump–probe delay tp within 

the steady-state approximation. By changing tp, OPTP spectroscopy can measure the 

carrier THz photoconductivity spectrum at different stages of the generation–

transport–trapping/recombination process. With picosecond THz probe pulses, it 

provides resolution which cannot be achieved with other conductivity measuring 

techniques.  

By changing the pump photon fluence ϕ, one can generate carriers in a 

sample at a broad range of densities without the need of preparing sets of samples 

with different dopant concentrations. This enables characterization of the studied 

material in different conductivity states. Notably, our research (Chapter 4) shows that 

the response originating from conductively percolated semiconducting parts of a 

(nano)material sample scales linearly with the carrier density while the response of 

non-percolated parts of the sample depends non-linearly on the carrier density. This 

allows one to distinguish between samples containing percolated and non-percolated 

semiconductor particles and even discriminate and characterize separately the 

percolated and non-percolated semiconducting subsystems in a single structure, 

provided that the data are obtained over a broad range of excitation densities. [4,45]  

2.3.1. Spectrally averaged transient THz kinetics 

Besides measuring the complete waveforms ΔEt(t) (and Fourier-transforming 

them to transient conductivity spectra) at selected times tp after photoexcitation, one 

can carry out the following useful experiment. The probe–sampling delay t is set to 

correspond to the maximum of the transient signal ΔEt waveform and a scan of the 

pump–probe delay tp is performed (Fig. 2.4). In this way, a 1-dimensional scan of the 

transient THz dynamics is obtained. These scans provide spectrally averaged THz 

response to the photoexcitation, i. e. the time evolution of the transient absorption 

(photoconductivity) of the sample in the whole frequency range of the given 

experimental setup. The highest resolution is here given by the timewidth of the main 

peak of the THz electric field which is usually a few hundreds of femtoseconds 

(cf. inset in Fig. 2.1). 

One cannot directly determine whether the evolution of the measured 

dynamics is caused by changes of carrier concentration or of their mobility. Different 

processes are usually attributed to the observed kinetics according to their 

characteristic time constants and according to the observed changes of transient THz 

conductivity spectra measured at selected pump–probe delays. The kinetics may 

display for example ultrafast cooling of hot electrons [47], photocarrier injection and 

electron–hole separation [48] or expansion of a dense electron plasma (Section 8.1) 

in the first units or tens of ps, and usually the decay of mobile carriers through their 
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recombination or trapping on longer time scales (see Fig. 2.4, discussed in 

Section 7.4). 

 
(Selection from FIG. 5. in [46]) 

Fig. 2.4 Example of transient THz kinetics measured by pump–probe scan on 

superlattices of Si nanocrystals in SiO2 matrix. Legend refers to 

different nanocrystal sizes; lines serve as guides to the eye.  

2.4. Experimental setup 

In this chapter the experimental methods used throughout this thesis are 

introduced from the practical point of view. We stress experimental characteristics 

and limitations. All OPTP experiments in this thesis were performed by using the 

output train of pulses of a regenerative Ti:sapphire amplifier (Spitfire ACE, 

Spectra-Physics/Newport) with 1 mJ pulse energy, 35–50 fs pulse length, repetition 

rate 5 kHz and central wavelength λ = 800 nm. The linearly polarized laser beam was 

split into three beams by 800 nm beam splitters as indicated in Fig. 2.5: the probe, 

the sampling and the pump beam.  

Each optical probe beam pulse generates a THz pulse via optical rectification 

(described later) in a 1 mm thick (110)-ZnTe crystal (the emitter). The emitted 

divergent THz beam is collected and focused with an ellipsoidal aluminum mirror 

that has its foci at the output face of the emitter and at the aperture of the sample 

holder. After transmission through the sample plane, the probe THz pulse is focused 

with a second ellipsoidal mirror through a THz-transparent pellicle beam splitter onto 

the front face of another 1 mm thick (110)-ZnTe crystal (the sensor).  

The optical sampling beam pulses undergo adjustment of intensity and 

polarization and are introduced perpendicular to the pellicle beam splitter which 

reflects them collinearly with the THz beam onto the sensor. The instantaneous 

electric field of the THz pulse induces birefringence in the sensor crystal through the 

linear electro-optic effect (the Pockels effect) and the polarization state of the 

simultaneously passing sampling pulse is thus changed.  
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Fig. 2.5 Diagram of experimental setup. Thickness of red (fundamental) laser 

beam lines indicates qualitatively the power of individual beams.  

The polarization of the sampling pulse is then converted into nearly circular with a 

quarter-wave plate (a Babinet-Soleil compensator is used and fine tuned before each 

experimental session to act as the λ/4 plate in actual laboratory conditions). The 

general elliptical polarization of the sampling pulse is subsequently resolved into its 

two orthogonal linearly polarized components by using a Wollaston prism (the 

analyzer in the diagram). The intensities of these two components are measured with 

two antiparallel silicon photodiodes A and B. The difference signal (A − B) from the 

photodiodes is linearly proportional to the instantaneous THz field in the sensor. 

Phase-sensitive detection synchronized with the chopping frequency of the pump 

beam detects the transient change ΔEt(t) as the difference between the signal with the 

pump-beam on and off. 

To avoid absorption of THz radiation on water vapor, the THz part of the 

experiment is enclosed in a custom-made aluminum box with optical windows that is 

evacuated with a primary vacuum pump to a pressure of less than 1 mbar during the 

measurement. The sample is placed onto the front face of a planar metal holder with 

a circular aperture either directly inside the box or within a continuous-flow optical 

cryostat (Oxford Optistat) that has a pair of sapphire input windows and a pair of 

Mylar output windows. The delay between pulses in individual beams is controlled 

with delay lines with a resolution of 3 fs. 

The pump beam photons are either used to excite charge carriers in the 

sample directly at their fundamental frequency or they are converted to a higher 

energy that exceeds the band gap of the sample. Most often a (110)-oriented BBO 

crystal is used for second harmonic generation, occasionally followed with another 

(110)-oriented BBO crystal to generate the third harmonic frequency (via sum 

frequency generation from the second harmonic beam and the collinearly passing 
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idle remainder of the fundamental beam). An optical parametric amplifier system 

TOPAS is alternatively used to convert the pump beam to other photon energies if 

needed.  

At any excitation wavelength, the pump beam is defocused with a CaF2 

plano-concave lens so that a relatively homogeneous excitation density is achieved 

across the measured area of the sample. (The lens is placed in such distance from the 

sample holder that less than 1/3 of the power of the incident pump beam passes 

through the holder aperture. The excitation density at the edge of the aperture is at 

least 67% of that in its center with such setting.) The angle of incidence of the pump 

beam on the sample is about 10° which means that it takes 1.8 ps to excite the 3 mm 

width of the measured area of the sample.  

The power of the pump beam is controlled by using neutral density filters or a 

variable polarizing attenuator and measured with a power meter. The power meter 

(PM in Fig. 2.5) is placed in an accessible section of the pump beam between the 

attenuator and the vacuum box as it cannot be placed in the position of the sample 

inside the evacuated vacuum box (or inside a chilled cryostat) after each change of 

attenuation. The fraction Kbox of the pump power measured before the box (Pmeas) 

that transmits through the aperture of an empty sample holder is measured before 

each experimental session with unevacuated box. The power incident on the probed 

area of the sample is then calculated as Pinc = Kbox∙Pmeas during the experiment 

whenever the attenuation is changed. Two thin sapphire plates are placed in front of 

the sample holder to mimic reflection of the pump beam on cryostat input windows 

when determining Kbox for measurements at low temperatures as the used power 

meters cannot fit into the cryostat chamber. Pmeas is either measured with 

a thermopile detector (PowerMax PM3 from Coherent) that is placed manually 

directly into the pump beam path (for powers Pmeas ≥ 20 mW); or the pump beam is 

deflected by a flipper mirror into a silicon photodiode power meter (Coherent 

LM-2 VIS for 1060 nm ≥ λ ≥ 400 nm and LM-2 UV for 400 nm ≥ λ ≥ 250 nm; for 

powers Pmeas ≤ 25 mW). The photon fluence incident on the sample front surface is 

calculated as 

 
2

rep

inc
inc

π rf
λ

hc

P
  (2.11) 

where h is the Planck constant, frep is the repetition rate of the source laser and r is 

the radius of the sample holder aperture (r = 1.5 mm throughout this thesis). The 

reflectivity R of the sample front face (and possibly of a cuvette front face) for the 

pump light is found in the literature or measured and the excitation fluence is 

ϕ = (1 − R)ϕinc . When measuring the reference field waveform E transmitted through 

the sample in the ground state, the pump beam is blocked and the chopper is placed 

in the path of the probe beam. Table 2.2 sums up the characteristics of our setup. 
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 Feature Value/Range Note 

D
et

ec
ti

o
n

 

dynamic range  

(typical) 

8×10−5 amplitude  

~ 82 dB power 
200 accumulations 

dynamic range 

(best achieved) 

7.5×10−6 amplitude 

~ 100 dB power 

6000 accumulations 

(16 hours) 

spectral range (82 dB) 0.2 – 2.3 THz  

spectral range (100 dB) 0.4 – 1.4 THz  

spectral resolution 0.1 THz 
typically (with ≲10 ps 

waveform scan) 

E
x
ci

ta
ti

o
n

 

pump–probe scan range 660 ps  

pump–probe scan resolution 0.2 ps  

max. ϕinc(λ = 800 nm) 1×1016 ph/cm2 

*diameter mm 3

over  shomogeneou








 

max. ϕinc(λ = 400 nm) 2×1015 ph/cm2 

max. ϕinc(λ = 266 ním) 4×1014 ph/cm2 

C
o
n
d
it

io
n
s 

temperature range 6 – 900 K cryostat/furnace 

peak THz field ~5 kV/cm without cryostat 

*The excitation density at the edge of the aperture is at least 67% of that in its center. 

Table 2.2 Characteristics of the OPTP experimental setup. * 

Optical rectification 

One of the most common processes for table-top generation of broadband 

THz pulses is optical rectification of ultrashort optical pules inside a second-order 

non-linear crystal. It is a process somewhat similar to difference frequency 

generation but it takes place among the photons of a single laser pulse. The electric 

field of the laser pulse drives oscillations of bound charges (ions) in the crystal lattice 

around certain average positions. These oscillations are natural also in linear optics 

— their interaction with light is expressed by the complex values of first-order 

susceptibility or refractive index of the material (blue in Fig. 2.6). However, in 

non-linear crystals, the average positions of the oscillating ions differ from their 

equilibrium positions due to the asymmetry of lattice forces; the higher is the 

intensity of the driving field, the further are the new average positions of the ions 

from their equilibrium locations.  
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Fig. 2.6 Schematics of ion oscillations in an asymmetric potential (black line) 

in an optical electric field. Gray: parabolic approximation at the 

bottom of the potential, blue: linear oscillation, green: non-linear 

oscillation, red: rectified low-frequency component of non-linear 

polarization. 

 This shift of average positions of bound charges (red in Fig. 2.6) constitutes 

a net polarization in the crystal which is proportional to the intensity of the field that 

is necessarily rectified (unipolar, non-alternating). This is because the asymmetrical 

lattice forces allow shifts of the average positions of the oscillating ions only in 

specific lattice directions and back to the equilibrium. Considering illumination by an 

ultrashort optical pulse, the unipolar (rectified) polarization current pulse becomes a 

source of a low-frequency field proportional to its time derivative. Quantitatively, the 

non-linear polarization P of the medium with second-order susceptibility tensor χ(2) 

at a general frequency ω is equal to: 

        





2/

2/

)2(

0

0

0

d,,
ΩΩ

ΩΩ
kjijki ΩΩEΩEΩΩP  , (2.12) 

where ε0 is the permittivity of vacuum, asterisk denotes complex conjugation, Ω0 is 

the central frequency and ΔΩ is the bandwidth of the laser pulse E(Ω). The spectrum 

of the emitted pulse and its temporal shape is determined by the bandwidth of the 

optical pulse. The phase matching condition is given by the equality of the refractive 

index of the emitted waves and the group refractive index ngroup of the incident 

optical light: 

    
 

 .
d

d
group Ωn

Ω

Ωn
ΩΩnn   (2.13) 

ZnTe crystals display good phase-matching and frequency-mixing properties 

for rectification of femtosecond optical pulses at 800 nm to THz frequencies and low 

absorption up to 3 THz. Fig. 2.7 shows the absorption coefficient and refractive 

index of ZnTe. Absorption (Fig. 2.7(a)) at high THz frequencies is dominated by the 

transverse optical phonon mode at 5.32 THz; at lower frequencies there occur two 

bands that were assigned by Gallot et al. [49] to transverse acoustic phonon at 

1.6 THz and longitudinal acoustic phonon at 3.7 THz. The refractive index of ZnTe 

(Fig. 2.7(b)) is governed by the optical phonon in the THz range. 
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(FIG. 1(b,c) in [49]) 

Fig. 2.7 THz properties of (001)-ZnTe at room temperature (a) absorption 

coefficient and (b) refractive index. Symbols: experimental data, line: 

theoretical response of TO-phonon at 5.32 THz.  
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3. THz spectroscopy of nanomaterials in the 

literature 

In the Introduction we pointed out that the THz spectral range is particularly 

sensitive to the properties of charge transport on the nanoscale. In this chapter we 

mention the approaches most frequently used to model and/or fit THz 

photoconductivity of nanostructured, disordered and bulk semiconductors. We 

emphasize the difference between the effects of charge carrier localization* and 

effective medium response in semiconductor nanostructures. These two effects have 

similar impact on measured THz photoconductivity spectra and occur inseparably in 

semiconductor nanostructures containing non-percolated semiconducting 

nanoparticles (NPs) but have physically different origins. In the following sections, 

we remind the Drude model and Dyre’s hopping models of the mobility, the 

Localized plasmon model of the conductivity, various Effective medium theories, 

Monte Carlo simulations of microscopic transport in the classical limit and the 

phenomenological Drude-Smith model. The Drude-Smith model deserves certain 

attention as it is relatively widely used in the area of THz photoconductivity but 

extensive discussions about its meaning have pointed out possible misconceptions in 

the physical interpretation of its parameters. In the end of this Chapter, previous 

important experimental works are reviewed. 

 

Bulk vs. Nano  

Published papers of THz laboratories worldwide confirm a distinct difference 

between the THz photoconductivity spectra of materials based on semiconducting 

nanoparticles (polycrystals, nanodots, nanotubes/wires, etc.) and those of bulk 

semiconductors. [50] Generally speaking, photocarriers in the bulk exhibit a real part 

of conductivity decreasing with frequency and a positive imaginary conductivity 

(Fig. 3.1(a)). In contrast, photocarriers in many nanomaterials show a THz response 

with the real part increasing with frequency and a negative imaginary part 

(Fig. 3.1(b)). In an analogy to electrical circuits, the bulk response represents 

a current that lags behind the applied electric field, i.e. the response of a 

non-polarizable material described by certain resistivity and a self-inductance. The 

negative imaginary conductivity in the response of nanomaterials is, in this sense, 

characteristic to a polarizable medium described by a certain capacitance.  [50,51] 

 

 

 
* also referred to as charge carrier confinement (in the classical, morphological meaning of 

confinement). Charge carriers in the regime of substantial quantum confinement were not 

detected by OPTP in this thesis, although it is possible. 
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Fig. 3.1 Symbols: THz photoconductivity spectra of rutile excited at 266 nm: 

(a) bulk at 70 K, ϕ = 1.8×1013 photons/cm2, (b) ~20 nm TiO2 

nanocrystals ϕ = 3.3×1014 photons/cm2 at 300 K. Lines: Drude fit 

with m* = 6.9 me, τS = 320 fs; 

3.1. Drude model  

The inductive THz response of mobile charge carriers to weak probing fields 

(below a few tens of kVcm−1) in bulk materials is usually well described by the 

Drude model of electron mobility: 

  
S

S
Drude

1

1

* ωτim

τe
ωμ


 , (3.1) 

where τS is the momentum relaxation time (the mean free time between collisions of 

a carrier after which its velocity is randomized) and m* is the effective mass of the 

carrier (electron or hole) in the given (conduction of valence) band. At a photocarrier 

density N, the transient conductivity of Drude carriers is 
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where ωp is the plasma frequency of the photocarrier plasma. 

Fig. 3.1(a) shows in lines the Drude fit of the THz response of photoelectrons 

in bulk rutile. The Drude model is based on a classical approach to the electron 

transport and was employed many times for the description of charge transport in 

bulk metals and semiconductors (we utilize it for bulk rutile in Chapter 8). It also 

describes charge transport in larger percolated parts of nanomaterials (Si 

microcrystals in [52], large Si nanocrystals in Chapter 6) or along nanowires [53]. 

The Drude model considers neither finite density of electron states nor a 

possible dependence of τS on the energy of carriers. These two effects can be taken 

into account by using the Boltzmann transport equation to calculate the conductivity 

spectrum of electrons in a given material but that approach is computationally 

demanding. [54] For conductivity spectra that slightly depart from the Drude model, 
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several phenomenological parametrizations are used, e.g. the Cole-Davidson (CD) 

model with exponent β < 1 and the Cole-Cole (CC) model with exponent (1 – δ) < 1, 

where the exponents are introduced in the denominator of the Drude model as 

follows: 

  
  

 1;0,,

1*
Δ

1
S

S
2








δβ

ωτi

τ

m

Ne
ωσ

βδ
. (3.3) 

The Cole–Davidson models was used for fitting equilibrium THz spectra of complex 

conductivity of silicon with extremely low carrier density < 1013 cm−3 by Jeon and 

Grischkowsky. [55,56] Beard et al. [57] studied THz photoconductivity of bulk 

GaAs and Si and extensively discussed the CC and CD models as well as their 

combination, as written in (3.3).  

3.2. Hopping 

Hopping represents a conduction process qualitatively different from band 

conduction. In materials with high densities of localized states such as defect states 

in the band gap of doped glasses and semiconductors or in specific molecular sites in 

organic crystals, electrons dwell in states below the conduction band edge.  

 

Fig. 3.2 Left: Dyre random free energy model of hopping mobility 

(τmin = 10 fs, τmax = 10 ps). Right: Localized plasmon conductivity 

model (ω0 = 1 THz, γ = 2 THz). 

The Random free energy model introduced by Dyre [58] assumes that 

photocarriers jump randomly over energy barriers between the localized states with 

mobility 
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where the frequency of the hops lies between 1/τmax and 1/τmin. The formula describes 

a monotonous increase of the real part of the conductivity between the limit 

frequencies (Fig. 3.2). The low frequency and DC transport is determined by the 

hopping mobility amplitude μH and 1/τmax. The model ceases to be valid at 

frequencies high above 1/τmin because it omits a necessary high-frequency 

conductivity drop due to finite carrier inertia. It was used e.g. to model transport of 

trapped carriers in hydrogenated microcrystalline silicon [43]. 

3.3. Localized plasmon 

In contrast to the previous two models that describe mobility of individual 

charge carriers, the localized plasmon (LP) model characterizes the collective 

response of a carrier plasma in an isolated inclusion (such as in semiconducting 

nanoparticles). (It is also referred to as the localized surface plasmon as it describes 

the behavior of a surface plasmon in a sub-wavelength particle.) It is based on the 

consideration that positive and negative charges in the inclusion get spatially 

separated by an applied electric (THz) field — the opposite charges accumulate at 

opposite sides of the inclusion which subsequently exhibits an apparent polarization. 

The LP model describes the interaction between these two plasmas of opposite 

charges by a restoring electrostatic force that pulls the charge carriers back to their 

initial positions. The motion of charge carriers is then described as the response of a 

driven damped harmonic oscillator  [52] 
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where F is the oscillator strength, γ is the damping rate and ω0 is the undamped 

resonance frequency. The resonance frequency is linearly proportional to the plasma 

frequency of the (photo)carrier ensemble enclosed within the inclusion   
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The proportionality constant η can be determined for inclusions of a given shape and 

orientation relative to the probing field direction. [53,59]  

The overdamped limit of LP (ω0 ≪ γ) is the Debye model with relaxation 

time θ = γ/ω0
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that can be used to describe the conductivity of carriers in a potential well or the 

diffusive type of conductivity at low-frequencies in 1D systems with energy 

barriers. [44] 

The LP model is useful for modelling the macroscopic response of charge 

carriers in diluted ensembles of non-percolated NPs where the intra-nanoparticle 
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carrier interactions are much more important than inter-nanoparticle interactions 

(capacitive couplings across the gaps between adjacent NPs). The same case is 

equivalently described below in terms of the Maxwell Garnett effective medium 

approximation. For more complex geometries, another effective medium theory must 

be considered. 

3.4. Effective medium response 

Nanomaterials examined by THz spectroscopy are generally made of pieces 

of a semiconducting material dispersed in vacuum or in an insulating material that 

serves as the matrix. In the ground state, the matrix material is characterized by its 

permittivity εm and the semiconducting particles have a ground state permittivity εp. 

From the point of view of THz (= millimeter) waves, the material is inhomogeneous 

on the subwavelength scale and is seen as a homogeneous composite with a single 

effective (or macroscopic) permittivity ε. The measurable permittivity ε is related to 

the microscopic permittivities εm and εp
* 

 ),,( pmEMT εεfε  , (3.8) 

where fEMT is a function or a functional that also depends on the filling fractions and 

the morphology of the components. Various Effective Medium Theories (EMTs) 

have been formulated to concretize (3.8). 

After photoexcitation, generated charge carriers exhibit a microscopic 

transient conductivity Δσmic, which contributes to the permittivity of the particles 
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This microscopic transient conductivity Δσmic is the sought-after quantity that 

characterizes the transport of the electric charge inside the nanoelements. However, 

in the probing THz field, photocarriers are separated due to sample morphology (as 

in the LP concept) and the accumulated positive and negative charge clouds give rise 

to intra- and interparticle depolarization fields that sum with the probing field. The 

microscopic transient conductivity Δσmic constitutes the response of the charge 

carriers to the local field which differs from the applied probing THz field. The 

composite thus exhibits a measurable macroscopic transient conductivity Δσ  
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which is related to the microscopic one through the applicable EMT: 

 
*We drop the frequency argument (ω) of ε and σ variables in the general EMT equations for the 

sake of legibility.  
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The microscopic transient conductivity Δσmic can be retrieved from the macroscopic 

one only if one knows in which manner it is encoded therein, i.e. which form does 

fEMT take in the particular sample. The mathematical complexity of the retrieval of 

Δσmic from THz photoconductivity spectra is in a sense the trade-off for the 

experimental advantage of not needing any physical electrical contacts attached to 

the sample. We begin below with the concept of the depolarization factor Λ of a 

single polarizable particle and review three well known EMTs in order to present our 

own EMT transparently and in a wider context in the following chapter. 

Depolarization factor and shape factor 

The polarizability of a semiconducting nanoparticle in the THz frequency 

range occurs generally mostly due to the separation of electrons and holes (both 

conductive/valence or bound in excitons or localized in surface states), rather than 

ions. The local electric field in a single particle is 

  
0

loc
ε

P
ΛEE  , (3.12) 

where P is the polarization of the inclusion caused by separation of charges in it due 

to the ambient THz field E. The dimensionless depolarization factor Λ is connected 

to the shape and orientation of individual nanoparticle. Λ = 1 for a plane 

perpendicular to the field; Λ = 1/2 for a cylinder perpendicular to the field and 

Λ = 1/3 for a sphere. A (semi)conductor parallel to the field has depolarization factor 

equal to 0 — it does not polarize, naturally. Polarization in (3.12) is proportional to 

the microscopic permittivity of the particle and to the local field: 

   locp0 1 EεεP  . (3.13) 

After substituting (3.13) into (3.12), one can factor out Eloc: 
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The first two EMTs mentioned below (Maxwell Garnett and Bruggeman) stem from 

this single-particle view and are suitable for description of composites with 

inclusions that all have the same shape (i.e. the same Λ). Their equations take simple 

forms when using an alternative of Λ, the so called shape factor K ≡ 1/Λ − 1. 

(K = 2 for spheres or K = 1 for cylinders perpendicular to the probing field.) The 

third well known EMT (Bergman) and also our approach (introduced in Chapter 4) 

are more clearly linked to the depolarization factor Λ. 
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3.4.1. Maxwell Garnett EMT 

Maxwell Garnett (MG) theory [60,61] is one of the simplest EMTs and is 

applicable when one of the components forms non-percolated and rather sparse 

inclusions in the other component. The relation between the macro- and microscopic 

parameters takes a rather symmetric form 
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where s is the volume filling fraction of the non-percolated component (it may be 

either the semiconducting or the insulating component). In the case of 

semiconducting inclusions in an insulating matrix, the macroscopic transient 

conductivity in this approximation is related to the microscopic one as 
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Mics shows in the Subsection 2.1.1 of his thesis [37] that when the transient 

microscopic conductivity of charge carriers in the inclusions follows the Drude 

model (3.2), the effective response of the composite takes the form of a damped 

harmonic oscillator 
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with damping γ = 1/τS.  

 
(Fig. 2.4 in [37]) 

Fig. 3.3 Multi-THz mobility μ = σ/(e·Ne) of a sparse semiconducting spheres 

with Drude type of microscopic conductivity — left: the microscopic 

mobility; right: the macroscopic mobility according to 

Maxwell-Garnet EMT at different carrier densities Ne. 

This response is exactly equivalent to the conductivity of the localized plasmon (3.5) 

with the coefficient between the resonance and the plasma frequency (3.6) given 

 Maxwell-Garnett EMT 
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solely by the morphology of the structure and its equilibrium microscopic 

permittivities  
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The effective response of inclusions thus shows a resonance (see Fig. 3.3) at a 

frequency that shifts with the square root of carrier density (cf. (3.6)).  

The MG model is exact in the limit of low filling fractions. [62] In that case, the 

impact of mutual capacitances between the inclusions on the macroscopic 

conductivity is negligible in comparison with the intra-nanoparticle effect of charge 

separation and plasmon oscillation.  

3.4.2. Bruggeman EMT 

The Bruggeman EMT treats the phases of a heterogeneous system completely 

symmetrically in a way similar to that of Maxwell Garnett. Each individual piece of 

the material with local permittivity εp, εm is considered as an inclusion that is 

embedded in the rest of the composite which possesses the effective (macroscopic) 

permittivity ε. The two materials are thus treated symmetrically. The Bruggeman 

mixing rule can be easily derived using the MG formula (3.15): ε plays the role of the 

matrix in the Bruggeman model, therefore the permittivity of the matrix εm is 

replaced by ε in (3.15) and a second term is added to the right-hand-side of the 

equation to account for the inclusions of the matrix material present in the rest of the 

composite with the complementary filling fraction (1 − s). The Bruggeman formula 

then reads: 
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The numerator on the left hand side is clearly identical to zero and one obtains the 

Bruggeman summation [63] in which the matrix and the photoconductive particles 

play symmetrical roles. The formula (3.19) is additive and can be expanded with 

another fraction describing a third component of the composite with a different 

permittivity and/or shape factor. 

In contrast to the MG model, The Bruggeman EMT is valid for any filling 

fraction s. However, it dictates the following percolation thresholds of the two 

components based only on their filling fractions and depolarization factor, 

independent of different possible spatial arrangements. For s > 1/(K + 1) ≡ Λ the 

photoconductive component is percolated and it is non-percolated for lower values. 

The percolation threshold is found analogically for the matrix with filling 

fraction (1 − s). In the case of spherical inclusions, for instance, the semiconductor is 

non-percolated for s < 1/3, matrix is non-percolated for s > 2/3 and both are required 

to be percolated in between. Vice versa, with photoconductive cylinders 

perpendicular to the field (Λ ≥ 1/2), the two components for can never be percolated 

simultaneously. In morphologies composed of higher portions of non-percolated 



 

 

 
 

28 

inclusions or with more complex percolation morphology, another EMT must be 

used.  

3.4.3. Bergman EMT 

The Maxwell Garnett EMT characterizes the photoconductive inclusions with 

a single shape factor; the Bruggeman EMT can take into account a specific 

distribution of shape factors but requires mathematical bonds between filling 

fractions and percolation thresholds of individual components. The Bergman EMT, 

in contrast, is technically able to parametrize a two-component system of any 

morphology, e.g. a sample containing both percolated and non-percolated 

semiconducting elements with a continuous distribution of shape factors in a matrix. 

We first overview several equivalent formulations of the Bergman EMT that occur in 

the literature and then shortly discuss its properties. The material is described by the 

volume filling fractions of the percolated parts Vm and Vp (called also percolation 

strengths) of the matrix and the photoconductive components, respectively, and by a 

so called spectral function (or distribution) v(l), which characterizes the density of 

non-percolated parts with various shapes (denoted by the parameter l: 0 < l < 1) in 

the sample.  

In the general case, the spectral function and the filling fractions are 

normalized as 
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The effective permittivity of the structure is then given by an integral over the whole 

spectral distribution 
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We use this variant of the Bergman EMT that is more suitable for 

interpretation of our VBD EMT in the next chapter. The Bergman EMT is more 

frequently found in an equivalent form in the literature [64–66] with a different 

definition of the spectral function and of the percolation factor: 
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where Cp is the percolation factor of the photoconductive material (the portion that is 

percolated) and g(l) is a variant of the spectral density function: 
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The normalized percolation strength is sometimes included as a delta function  

in an extended spectral function [67]: 

  
 

 








10,

0,p

ext
llg

llC
lg


, (3.24) 

reducing (3.22) to 
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Bergman [68] and Bergman and Stroud [69] equivalently represent the spectral 

function gext(l) with a sum of real simple poles 0 ≤ sn < 1 of the integrand in (3.25) 

with real positive residues 0 < Fn < 1 
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where the residues are normalized to the filling fraction of the photoconductive 

component: 
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A comparison of the denominator in the integral of (3.21) to that in the local 

electric field in a polarizable inclusion (3.14) suggests that the parameter l has the 

intuitive meaning of the depolarization factor Λ. Indeed, in the limit of very low 

filling fractions (inclusions with negligible mutual electrostatic interaction), the 

spectral distribution would feature a series of delta peaks positioned at the 

depolarization factors belonging to the respective shapes present in the sample (l = Λ) 

and their amplitudes would correspond to the values of the filling fractions of these 

shapes. With increasing filling fractions, mutual capacitive coupling between 

individual (photo)conductive inclusions increasingly change their polarizability in a 

complex way. This behavior is represented by widening and shifting of the peaks in 

the spectral distribution v(l) and even by completely new peaks arising due to 

complex electrostatic couplings between near and far parts of the structure. This 

observation shows the general character of this description, compared to the 

terminology of discrete depolarization factors. 

From the mathematical point of view, in the case when one of the 

permittivities is negative (metallic behavior), there exists an l (or Λ in (3.14)) for 

which the denominator vanishes. The contribution of the integral to the effective 
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permittivity then describes plasmon oscillations in inclusions of a particular shape 

(localized plasmon resonance). The spectral function v(l) can thus also be understood 

as the distribution of oscillator strengths for the different shapes of semiconducting 

inclusions present in the sample.  

The Bergman EMT is seldom used to interpret experimental data because the 

spectral function of the particular  sample cannot be  usually easily found (see the 

related discussion in [65,66]). In our work it provided us with a background for the 

development of a simpler expression which appeared to be particularly suitable for 

the interpretation of THz photoconductivity spectra and which is described in 

Chapter 4. 

3.5. Monte Carlo simulations of carrier confinement 

Our group has developed a program that calculates the mobility spectrum of 

classical thermal motion of a charge carrier in a semiconductor (nano)particle of a 

given shape [70]. The main physical input variables are: 

 size and shape of the semiconductor nanoparticles (cubes, spheres, 

ellipsoids); 

 scattering time of the carrier in the bulk volume of the particle, together 

with carrier velocity it defines the carrier mean free path lfree; 

 temperature and velocity distribution (Maxwell-Boltzmann or 

Fermi-Dirac) from which the carrier randomly selects its velocity 

magnitude after a scattering event; 

 probabilities that the carrier scatters at, reflects from or tunnels through the 

particle boundary to an adjacent particle; 

 distribution of a static electric and/or magnetic field inside the particle. 

The algorithm records the carrier velocity vector coordinates vi (i = x, y, z) in 

time t′ for a statistical ensemble of initial conditions and trajectories determined by 

the temperature T. The Kubo formula then yields its mobility spectrum from the 

velocity autocorrelation function [71]: 
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where kB is the Boltzmann constant and brackets denote averaging over a canonical 

ensemble with given temperature.  Note that μij is generally a tensor — its diagonal 

elements describe motion along the axes (these are identical when modeling isotropic 

structures); the off-diagonal elements reflect the impact of possible external magnetic 

field on the carrier motion, as discussed in [72]. The simulation program is capable 

to take into account other processes such as carrier trapping on bulk and surface 

defects and their thermal reemission or the presence of a non-uniform electric field in 

the nanocrystals. 
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(FIG. 1. in [70], notation adapted) 

Fig. 3.4 Mobility spectra of carriers (m* = 1 me) at 300 K (thermal velocity 

1.17×105 m/s, scattering time 85.6 fs) in isolated spherical particles 

(100% probability of carrier reflection at particle boundary) with 

various ratio of nanocrystal diameter d and carrier mean free path.  

Fig. 3.4 shows the calculated mobility spectra of a carrier in an isolated 

spherical particle with different ratios between the particle diameter and the carrier 

mean free path. With infinite particle diameter (black line), the carrier exhibits a bulk 

behavior and shows the Drude type of mobility. With a finite inclusion diameter, the 

theoretical DC mobility must drop to zero because the insulating boundaries of the 

inclusion deny the long-range transport. The real mobility peak (centered at zero 

frequency for Drude mobility) shifts with decreasing particle size to a higher 

frequency that is related to the round-trip of the carrier in the inclusion. [70] The 

imaginary part of the mobility simultaneously decreases to negative values in the 

range below the resonance frequency, producing a capacitive type of response there.  

This type of spectral change is qualitatively (!) similar to that caused by the 

depolarization fields in samples with non-percolated nanoparticles, compare in 

Fig. 3.4 and Fig. 3.3.  

3.6. Remarks on nanoscale conductivity 

We have shown in the previous two sections that the capacitive type of 

photoconductive response is own to nanomaterials but that it may be produced by 

two different effects: the effective medium response of a non-percolated composite 

and confinement of charge carrier in individual nanoparticles. Let us point out the 

difference. 

On the nanoscale, the microscopic mobility of carriers depends dramatically 

on the size of the confining nanoparticle (Fig. 3.4): with particle size below the 

carrier mean free path, the mobility changes from inductive to capacitive. The carrier 

density does not play a role here (carrier–carrier interaction may come into play at 

high densities).  

By contrast, the absolute size of the photoconductive particles does not play 

any role in their macroscopic (effective) response. Instead, the macroscopic 
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conductivity of the composite depends strongly on the carrier density (or, strictly 

speaking, on their microscopic conductivity), see Fig. 3.3.  

We thus see that the capacitive type of THz photoconductive response is not 

necessarily connected to charge carrier localization on the most expected length scale 

(usually the size of an elementary building block of the nanomaterial) and a more 

detailed analysis should ensue from such results. For example, Mics et al. [47] 

studied THz photoconductivity of CdS nanocrystals (NCs) with diameters of 10.4 nm 

and observed capacitive type of response. Their analysis of depolarization fields and 

possible arrangements of the sample surprisingly showed that charge localization 

occurs at ~40 nm length scale. Transmission electron microscopy (TEM) images 

then confirmed that individual 10-nm NCs were packed to clusters of a 

corresponding size.   

3.7. Drude-Smith model 

In 1968, N. V. Smith proposed a modification of the Drude model to describe 

the unusual, capacitive-like conductivity of mercury — such behavior is very 

uncommon among both liquid and solid metals. [73] His so-called Drude-Smith (DS) 

model was used later on by different groups to fit the THz photoconductivity spectra 

of nanostructured semiconductors, although the physical interpretation of its fitting 

parameters remained unclear, namely in the cases when the effect of the 

depolarization fields was not carefully evaluated. In 2009, Němec et al. [70] 

published an analysis trying to relate the parameters of the DS model to actual 

physical properties of a wide range of model systems. Below, we review the DS 

model and its drawbacks according to that paper. 

Smith suggested that “the backscattering of the electrons in mercury is so 

strong that, after a time of the order of the scattering time τ, an electron tends to 

reverse its direction of motion.“ [73] To describe this assumption, he introduced the 

parameter cp (denoted originally β) as “the expectation value of cos ϑ after a collision 

where ϑ is the scattering angle“ [73], which is supposed to be the measure of 

persistence of the initial velocity of an electron after p collisions. (The collisions are 

counted from the beginning of the motion of the electron when it was accelerated 

with a unit impulse of electric field.) The complex conductivity with Drude-Smith 

time τDS then reads [74]: 
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Smith pointed out that in the case of independent collision, cp = (c1)
p, (3.29) actually 

does not lead to qualitatively new behavior as it is easily summed up to take the form 

of the Drude conductivity (3.2) with a modified scattering time  1DSS 1/ cττ  . To 

benefit from the new parameter cp, Smith truncated the series by setting cp = 0 for 

p > 1 and thus introduced the so-called single scattering approximation. The 

conductivity of mercury was fitted with the obtained equation 
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yielding a good agreement with experimental data with N = 2.7 electrons per atom 

and c1 = −0.49. Equation (3.30) is since then referred to as the Drude-Smith model of 

conductivity. The justification for single scattering approximation was unclear in the 

original work of Smith [73]. In 2001, Smith suggested that only the first scattering is 

ballistic, with preferential backscattering, and the following events are diffusive [74].  

In samples with DS type of THz (photo)conductivity, it is assumed that the 

first collision of a carrier accelerated by the probing THz field is its backscattering 

on the boundary of the nanoparticle in which it was generated and the following 

scattering events in the volume of the particle are random.  The parameter c1 with 

values between 0 and −1 is then interpreted as the extent of the localization of 

carriers inside the particles. [75]  

Němec et al. [70] fitted the Drude-Smith model to the broadband mobility 

spectra calculated from the Monte Carlo simulations (cf. Section 3.5) of classical 

motion of a charge carrier in various systems of particles. They found out that: 

 The DS model fits well the carrier mobility only when a limited part of the 

spectral range is considered. 

 The low-frequency extrapolation of the DS model that was fitted on actual 

(experimental, simulated) data in a limited spectral range may lead to 

quantitatively wrong conclusions on long-range transport in the NP 

system. 

 An analytical connection between the DS parameters c1 and τDS and 

physical transport parameters of the nanosystem (namely the probability of 

carrier backscattering on the particle boundary, bulk scattering time τS and 

the time of carrier round trip in the particle) can be found only when the 

diameter of the particle is smaller than lfree.  

The truncated DS model is thus physically adequate for describing the 

microscopic conductivity of particles that are smaller than the mean free path of the 

charge carriers in them. [70]  Nevertheless, in this case the depolarization fields that 

affect the measurable macroscopic conductivity should be taken into account 

independently; the DS model should be put inside an applicable EMT in the place of 

the microscopic conductivity term Δσmic to obtain a model of the measurable 

macroscopic conductivity Δσ. If this step is overlooked, the Drude-Smith parameters 

may lose their physical significance completely as described below; in addition, they 

would strongly depend on the photocarrier density. 

The review of experimental papers in Section 3.9 shows that this procedure 

was not always followed in practice — the DS model has been relatively frequently 

used to fit the measured macroscopic response of different nanomaterials. Below we 

show that this approach cannot yield physical information as it leads to intermixing 

of several phenomena in too few parameters. With c1 = 0, the DS model clearly 
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reduces to the Drude conductivity of an ensemble of delocalized electrons (3.2). In 

the other limit, c1 = −1, equation (3.30) can be easily rearranged into the form of a 

damped harmonic oscillator: 
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where, adopting the localized plasmon notation according to (3.5), the undamped 

angular frequency DS0 /1 τω   and the damping rate DS/2 τγ   are bound together in 

a fixed ratio 02ωγ  , which represents critical damping of the oscillator.  

The DS parameter c1 thus constitutes a smooth parametrization of a transition 

between two special cases of macroscopic conductivity: Drude model and the 

localized plasmon model in the regime of critical damping. However, even the 

simplest example of macroscopic response of particles with Drude microscopic 

conductivity within the Maxwell Garnett EMT (3.17) showed that there is no 

requirement for the plasma frequency and the damping rate to be bound in an exact 

ratio. The DS model is thus essentially under-parametrized for the purpose of 

physical interpretation of macroscopic response of a composite (although it often 

provides satisfactory fits in a limited spectral range). In other words, if the DS model 

is used to fit directly the measured THz conductivity spectra, the effects of both the 

carrier confinement and depolarization fields are mixed in each of the DS fitting 

parameters c1 and τDS and the physical interpretation of such fits would be 

completely obscure. The information obtained from DS fits of macroscopic THz 

photoconductivity spectra can be useful for categorizing the data and e. g. for 

describing evolution of the spectra in a series of samples with systematically varied 

parameters such as those presented in [76]. 

We use the DS model in this thesis solely as an instrument for analytical 

reproduction of Monte Carlo mobility spectra in a limited spectral range in order to 

speed up fitting with these spectra that are based on time-consuming simulations. 

3.8. Quantum confinement 

Quantum confinement, i. e. discretization and shifting of energy levels in a 

semiconductor due to decreased size of the crystal, is an important property of 

nanomaterials. It occurs on sizes below ~10 nm or less, depending on the material. 

Samples containing nanocrystals with substantial quantum confinement are studied 

in Chapter 6 but the size distribution of these NCs was too wide to enable monitoring 

of single energy levels by THz spectroscopy in this thesis. Hendry et al. [77] used 

kinetics of spectrally averaged transient THz response to observe electron-to-hole 

energy transfer in CdSe quantum dots (QDs) in dependence on QD diameter (from 

1.7 to 10 nm). This was possible because the ~meV energies of THz photons are 

small enough to avoid interband excitations in the QDs. The lowest energy hole state 

has the highest polarizability in the given system according to Wang et al. [78] and 

transient THz absorption thus served as a measure of the population of this state.  
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3.9. Published experimental works  

A selection of experimental papers on THz photoconductivity gives an 

overview of the achievements and uncertainties of our method in the debated field. 

We mention some systems that may be relevant for our study. The results in this 

section are grouped into subsections by the studied material. First two parts are 

dedicated to semiconductors most relevant for this study — silicon and titanium 

dioxide. Some other inorganic nanocrystals are briefly review in subsection 

afterwards and the last subsection covers studies on 1-dimensional structures. 

3.9.1. Silicon micro- and nanocrystals 

Nienhuys and Sundström [52] investigated silicon microcrystals (1–30 μm in 

diameter, produced by grinding of a Si wafer) in a polymer matrix. They found a 

good agreement between the measured THz photoconductivity spectra and the 

localized plasmon model (3.5) and identified the plasmon damping time of about 

150 fs with the Drude scattering time of electrons in the volume of microcrystals. 

The expected plasma frequency dependence Nω ~0  (3.6) was approximately 

reproduced in the examined pump fluence range. 

The group of Frank A. Hegmann [75] measured THz photoconductivity 

spectra of Si nanocrystals (NCs) in SiO2 matrix produced by annealing of 1 μm thick 

SiO films. Samples with NC diameter from 3 nm to 7 nm and with an increasing 

average interparticle spacing of 0.7–1.4 nm were obtained. The Drude-Smith model 

was found to provide the best fit after considering also some other approaches 

(effective medium theory alone, two-site hopping model [79], localized Drude 

model [80]). The parameter of the Drude-Smith model c1 decreased towards −0.98 

with decreasing NC diameter. The non-zero DC transport corresponding to c1 > −1 

was confirmed by contact measurements; the fitted values of τDS ~ 15 fs were 

successfully linked to the NC sizes. 

In another paper of the same group [76], silicon-rich SiOx (x = 0.2-1.0) films 

were annealed similarly to obtain samples of Si nanocrystals with different degrees 

of percolation in SiO2 matrix with different degrees of percolation. The time 

evolution and Si-content dependence of the measured THz photoconductivity spectra 

were evaluated by using the Drude-Smith model and by random-walk simulations of 

carrier motion in a 3D array of closely packed nanospheres without bulk scattering. 

Percolation threshold for Si filling fractions above 38% was observed and a carrier 

diffusion length on the order of 100 nm was derived in percolated samples. 

Fekete et al. [43] studied hydrogenated microcrystalline silicon with variable 

degree of crystallinity, prepared by plasma enhanced chemical vapor deposition from 

silane and hydrogen. The transient THz kinetics scans showed a sub-ps ultrafast 

component attributed to a Drude-like transport of carriers inside the grains with a 

mobility of 70 cm2V−1s−1; within ~600 fs, the carriers got captured in shallow states 

at the boundaries of 20–30 nm large grains and the transport at longer times was 

dominated by the hopping process.  
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3.9.2. Titanium dioxide nanocrystals 

Turner, Beard and Schmuttenmaer [81] studied 25 nm large Degussa P25 

TiO2 nanoparticles sensitized with the Ru535 dye at 77 K. The carrier cooling was 

observed during the first ~300 fs and, at longer times, the carrier mean free path was 

estimated to range between 1.6 and 4.0 nm. The complex conductivity spectra were 

fitted by the Drude-Smith model and it was shown that charge carriers, whose long-

range mobility is reduced by the disorder, are still quite mobile on a short range 

inside nanoparticles. From our perspective the parameters of the Drude-Smith model 

do not carry a clear physical meaning in this case since lfree was much smaller than 

the nanoparticle diameter. 

Hendry et al. [82] also noted that the interpretation of the results in [81] using 

the DS model is problematical and they investigated samples sintered from the same 

commercial precursor (Degussa P25 TiO2) without any sensitizing dye. Fits with the 

Drude model of microscopic conductivity within the Maxwell Garnett EMT 

reproduced well the main features of the measured THz photoconductivity spectra. 

Moreover, the carrier density and temperature dependences of the measured THz 

photoconductivity were fully explained as consequences of the dependence of the 

carrier mobility on these parameters. Carrier mobilities of ~0.01 cm2/(V∙s) in the 

nanoparticles and ~1 cm2/(V∙s) in a reference bulk rutile sample were reported at 

room temperature.  

The study by Němec et al. [70] presenting Monte Carlo simulations and 

comparing them with the Drude-Smith model of the conductivity (cf. Section 3.5), 

was supported by experimental data measured on 7 nm TiO2 and 15 nm ZnO NCs. 

The effective response of the samples was found to be a linear function of the 

microscopic carrier conductivity because the NCs were conductively percolated. 

Fitting of the experimental data with the mobility spectra obtained by Monte Carlo 

calculations provided reasonable values of the quantum yield of photoexcitation and 

of the probability of carrier backscattering on NC boundaries.  

Nanocrystalline mesoporous films made of 4 nm percolated TiO2 were also 

studied by Nemec et al. [83] and the Monte Carlo method gave excellent fits to the 

spectra, providing microscopic parameters of the carrier localization. The NCs were 

dielectrically percolated or at least “glued” together with amorphous titania and 

linear scaling between microscopic and effective conductivity was justified.  

In another paper of Němec et al. [48] a comparison of sub-ps dynamics of 

charge carrier injection in two pairs of samples made of 9 nm TiO2 and 15 nm ZnO 

NCs sensitized with two different dyes (Ru- and Zn-based) showed a striking 

difference between the two materials, independent of the dye. Electrons in TiO2 

exhibit a low mobility due to the very strong electron-phonon coupling in contrast 

with ZnO where the electron mobility is higher by nearly two orders of magnitude. 

On the other hand, sensitized TiO2 NCs accept photoelectrons from the excited dye 

molecule much faster than ZnO NCs because the high permittivity of TiO2 provides 

better screening of the excited dye cation. Attraction between the dye cation and the 

injected electron then significantly slows down the transport in ZnO. Spectra of THz 
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photoconductivity were interpreted within the framework of the Monte Carlo method 

that took into account distribution of the electric field of the dye cation inside the 

NCs. [3] 

Tiwana et al. [84] studied THz photoconductivity kinetics both in 

dye-sensitize and bare sintered films of 20 nm TiO2 nanoparticles. In the bare films, 

the photoconductivity onset was faster than the experimental time resolution and the 

signal decayed on the ~1.5 ns time scale. Sensitization with a Ru-based dye led to an 

appreciable slower injection speed — the photoconductivity kinetics displayed a 70 – 

200 ps rise followed by a ~5 ns decay. Mobility of about 0.1 cm2/(V∙s) was reported 

at room temperature both in the bare and dye-sensitized samples.  

Another study of this group [85] compared the THz photoconductivity 

kinetics in three promising photovoltaic materials, nanoporous films of TiO2¸ ZnO 

and SnO2 sensitized with the same dye. Parallel transient device photocurrent 

measurements showed a correlation between the in-device carrier mobility and the 

rate of early-stage carrier injection rate observed by THz spectroscopy. The carrier 

injection into TiO2 was faster (in accord with the findings of Němec et al. [48]) and 

the in-device mobility was closer to the bulk value than in the other two oxides. 

3.9.3. InP, InGaAs, CdS, CdSe, VO2 nanoparticles 

Beard et al. [86] observed almost purely imaginary capacitive THz 

photoconductivity in disordered arrays of InP nanoparticles (3.2 nm in diameter). 

The photoconductivity increased 6 times when the average spacing between NPs was 

decreased from 1.8 to 0.9 nm and the spectra were fitted with the Drude-Smith 

model. Transient THz kinetics scans showed that NPs with smaller spacing have 

longer trapping time; this was attributed to enhanced inter-NP tunneling. Control 

sample of bulk InP epitaxial layer displayed relatively slow (~3 ps) 

photoconductivity onset due to the scattering of hot electrons to low-mobility L and 

X valleys, this process was missing in samples with nanoparticles.  

In another study [87], this group successfully used the Bruggeman EMT with 

Drude mobility to characterize the size-dependence of THz photoconductivity in 

CdSe nanoparticles of various sizes between 2.5 and 25 nm. The decrease of electron 

mobility with particle size was explained in terms of scattering on nanoparticle 

boundaries at sizes above the electron Bohr radius (4.9 nm).  

Merchant et al. [88] studied depletion regions around surface states at 50 nm 

pores in S-doped nanoporous InP membranes by means of both transient and 

equilibrium THz spectroscopy. In the steady state, the depletion regions of adjacent 

pores nearly touch and carriers in the remaining non-depleted regions exhibit 

localized (capacitive) response. of the membrane. Upon photoexcitation, the 

depletion regions narrow as many of the pore surface states fill and the conductive 

photocarriers exhibit Drude type of conductivity 

Cocker et al. [89] investigated metal-insulator transition of nanogranular VO2 

(94 ± 26 nm grain diameter) film between 320 and 390 K by steady-state THz 

spectroscopy. The variation of the macroscopic conductivity with temperature 
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(changing filling fractions of grains in metallic and in insulating state) could not be 

reproduced using Bruggeman nor Maxwell Garnett EMT with Drude microscopic 

mobility. Direct fit with the Drude-Smith model and evaluation of its amplitude (via 

plasma frequency) yielded electron densities in the metallic state consistent with 

values reported elsewhere. The condition of comparable carrier mean free path and 

nanoparticle size (cf. Section 3.7) was partly justified.  

Mics et al. [47] studied a thin film of 10 nm CdS nanocrystals prepared from 

chemical bath followed by annealing. Fits of the THz photoconductivity spectra with 

the result of Monte-Carlo calculations showed that electron localization occurs at 

length scales > 28 nm, suggesting that groups of adjacent NCs are in a good 

conductive contact and form aggregates that are mutually connected only by narrow 

channels. THz photoconductivity spectra and kinetics measured at different 

excitation densities and with two pump photon energies revealed existence of energy 

barriers between the NCs; electrons with high excess energy (soon after 

photoexcitation or at high excitation densities due to band filling) showed higher 

probabilities of passing to adjacent NCs and clusters. 

3.9.4. Quantum wires, nanotubes 

Parkinson et al.  [53] examined an array of randomly oriented GaAs 

nanowires (50–100 nm in diameter, 5–10 nm long). They successfully fitted THz 

photoconductivity spectra with a sum of the Drude model (conductivity of nanowires 

parallel to THz field) and a localized plasmon mode (conductivity of perpendicular 

nanowires). The same sum conductivity model was successfully used in their next 

study [90] that compared THz photoconductivity spectra and dynamics of GaAs 

nanowires after different production and post-growth conditions. The importance of 

surface passivation was pointed out in order to increase carrier lifetime in GaAs, 

based on experimental results.  

In another paper of this group [91], THz (photo)conductivity of randomly 

oriented GaAs, InAs and InP nanowires of various diameters (20-200 nm) was 

compared. The localized plasmon model was used and the behavior of plasma 

frequency (ωp ~ N1/2) was examined in detail. The THz photoconductivity kinetics 

showed a decrease of carrier lifetime with decreasing NW diameter due to the 

surface recombination in all 3 materials. InP NWs showed the lowest surface 

recombination velocity and were studied further in [92] with the help of 

time-resolved photoluminescence and HRTEM* images of the NWs. HRTEM 

images revealed transversal stacking faults that on the one hand increase the carrier 

scattering rate but, on the other hand, effectively separate electrons from holes and 

thus increase the carrier lifetime.  

The first Optical pump–THz probe study of GaN nanowires [93] was also 

accomplished by the group of Parkinson et al. High-quality NWs grown by 

 
* High-resolution transmission electron microscopy 
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molecular-beam epitaxy exhibit a ~2.5 ns lifetime which is several times longer than 

in bulk and thin film samples. Conductivity spectra of randomly oriented NWs lying 

on a substrate were successfully fitted with the sum Drude+LP model yielding a 

mobility of 800±100 cm2V−1s−1 in the NWs, comparable to or higher than in a 

reference commercial bulk sample. 

The group of Frank A. Hegmann [94] detected large anisotropy in the 

photoconductivity of a high-mobility 2D wetting layer of InGaAs which had parallel 

chains of self-assembled InGaAs quantum dots on it. Transient THz kinetics revealed 

that the nanochains act as fast and efficient traps for carriers moving perpendicular to 

the them in the 2D wetting layer at low temperatures while thermal emission from 

the nanochains and nanodots into the 2D wetting layer dominates the THz 

photoconductivity spectra at temperatures above 90 K.  

The same group found [95] also a strong anisotropy in transient THz kinetics 

of laterally ordered InGaAs quantum wires embedded in a GaAs matrix. Here, the 

carriers excited in the matrix and in the wetting layer were captured in the quantum 

wires in the first 6-30 ps after photoexcitation and then showed the Drude type of 

mobility along the nanowires.  

Ponseca et al. [96] measured the transverse THz photoconductivity of a 

regular array of heavily Sn-doped InP nanowires (150 nm in diameter). The structure 

exhibited strong waveguiding effects of the excitation light that were evaluated by 

precise numerical calculations. The mobility of electrons localized in the transverse 

direction of the NWs was evaluated by Monte Carlo simulations (cf. Section 3.5). 

Sets of THz photoconductivity spectra measured over a wide range of excitation 

densities at two pump wavelengths (400 nm and 610 nm) were successfully fitted 

with the effective conductivity obtained from the Monte Carlo mobilities through 

Maxwell Garnett EMT.  
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4. VBD effective medium theory 

The VBD effective medium model was developed in our group on the basis 

of numerical calculations of electric field distribution in nanomaterials with various 

morphologies. The formula for the effective conductivity/permittivity of a composite 

that we propose within this model may be understood from a simple equivalent 

electric circuit approach depending on 3 parameters: V, B, D. In this Chapter, we first 

summarize the derivation of the model that we published in [97]. Next, we relate it to 

the experimental method of this thesis. We interpret the parameters V, B, D in terms 

of the Maxwell Garnett EMT for some morphologies and we further show that the 

model can be understood in the framework of the Bergman effective medium 

approach with a single representative depolarization factor. The model itself was 

developed by Ivan Rychetský, Hynek Němec and Petr Kužel; the author participated 

in the discussions and interpretations of the model in the later parts of this Chapter.  

4.1. Effective permittivity calculation  

Numerical electrostatic calculations were carried out with a number of model 

structures. Fourteen different periodic two-dimensional structures consisting of 

spherical particles and linear connectors with an equilibrium permittivity of εp = 35 

in a matrix with the permittivity εm = 1 were designed (Fig. 4.1 shows several 

examples). 

 
(selection from Fig. 1. in [97]) 

Fig. 4.1 Examples of 2D structures examined in presented model; black: 

particles with adjustable permittivity, white: dielectric matrix, gray 

dashed line: boundary of elementary periodic unit cell. 
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Each structure was non-percolated along the y coordinate and featured a more or less 

complex percolation pathway across the unit cell along the x coordinate and thus it 

was utilized to obtain data for both percolation regimes in our calculations. Four 

different classes of structures were analyzed: 

 7 structures were variants of a simple chain type “n⊕m” (first row in 

Fig. 4.1); purpose: inspecting the effects of the length of the pathway and 

of the spacing between parallel sections of the pathway.  

 4 structures combined 2 different types of simple chains — like the 

“8⊕8 & 2⊕4” structure in Fig. 4.1 inspecting a possibly different 

coupling between the chains than in simple chain structures. 

 3 fractal structures showed the effects of increasing fractal complexity of 

backward meanders, starting from one of the simple chains and ending 

with “Moore 3” in Fig. 4.1.  

 2 irregular structures (one percolated, shown in Fig. 4.1, and one 

non-percolated) were investigated as a reference to the ordered ones.  

The structures were approximated by non-uniform triangular meshes by a suitable 

image processing procedure [98] for the purpose of the numerical calculations.  

The distribution of the local electric field E(x, y) in each structure upon 

applying external static electric field along one of the coordinates was calculated by 

solving quasi-static Maxwell equations with periodic boundary conditions using the 

finite element method (namely the programming language FreeFem++ and the 

software of the same name). The calculated distribution of electric energy was 

averaged over the volume of the unit cell and equated to the situation where the same 

amount of energy was distributed homogeneously in a unit cell with the 

permittivity ε: 
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where ε(x, y) is the microscopic permittivity in the structure, i.e. it equals εp inside 

particles and εm inside the matrix. The calculated permittivity ε then represents by 

definition the effective (macroscopic) permittivity of the structure in the 

non-photoexcited state.  

Finally, an imaginary contribution iΔεp″ was added to the particle permittivity 

εp (in order to simulate the photoexcitation) and the calculation was repeated for a 

wide range of values of Δεp″. The complex valued change Δε of the effective 

permittivity (with respect to its equilibrium value ε) as a function of the additional 

imaginary permittivity of the particles Δεp″ was thus obtained. We further refer to Δε 

and Δεp″ as to the transient effective permittivity and transient imaginary permittivity 

or particles, respectively, to keep in the context of the thesis chapters. However, we 

stress that the field calculations above are performed in the quasi-static limit and the 

adjective transient refers only to the fact that transient (photo)excitation is used to 

induce these changes in the experiment.  
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(selection from Fig. 2. in [97], labels added) 

Fig. 4.2 Calculated dependences of the change of effective permittivity on 

the transient imaginary permittivity of particles in examined 

structures with the field applied (a,c) along the percolation pathways 

and (b,d) perpendicular to the percolation pathways. Color legend is 

the same for both plots on a row. 

Fig. 4.2 shows Δε(Δεp″) dependences for several simple chain and fractal 

morphologies for the field applied along x and y (i.e. in both percolation regimes). 

Both the real part (dashed lines) and the imaginary part (full lines) of transient 

effective permittivity show a power dependence for Δεp'' < 10, and the power 

dependences have the same slopes in the log-log scale for all percolated and 

non-percolated structures. For high values of the particle transient permittivity 

(Δεp'' > 103 in chains and Δεp'' > 104 in the most complex fractal Moore 3), the real 

part of effective permittivity shows a saturated behavior in both percolation regimes. 

The imaginary effective permittivity, in contrast, shows a distinct difference between 

the percolation regimes for high Δεp'': it further increases steadily for percolated 

structures (Fig. 4.2(a,c)) and it decreases for non-percolated structures 
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(Fig. 4.2(b,d)). A transition region is observed in between, whose spectral width 

increases with increasing complexity of the structure.  

Compared to the phenomena observed in Fig. 4.2, neither the irregular 

structures, nor the other periodic ones exhibited qualitatively new features in the 

effective permittivity dependences. Before we analyze the obtained dependences 

further, let us introduce the equivalent electric circuit model. It provides an analytic 

formula that fits these dependences well and gives an intuitive interpretation of the 

calculated response of examined structures. 

4.2. Equivalent electric circuit model 

Our EMT works in the quasi-static approximation and thus we can consider 

electric circuit analogies to our structures on the same level of approximation. The 

particles in the photoexcited state are basically just pieces of a conductor that 1) are 

connected along the percolation pathways into wires with some resistivity and/or 

2) behave as capacitors with certain capacitance wherever they are separated from 

each other by a sheet of the dielectric matrix in the direction of the applied field. We 

want to find the simplest possible electric circuit whose response is in a general 

agreement with the results of the numerical simulations above. Fig. 4.3 shows the 

two simplest circuits that may represent a percolated and a non-percolated structure.  

The capacitor CNP in the RC branches in both circuits accounts for the 

capacitance of the matrix-filled gaps between the non-percolated particles or between 

parallel sections of particle chains and the resistor RNP stands for the resistance 

across these elements in the direction of the applied field. The lower branch in 

Fig. 4.3(a) stands for the resistance along the percolation pathway RP. (A rigorous 

analogy would require additional parallel R and RC branches for different pathways 

and different capacitive gaps that can be found in the modeled structures. As it will 

be shown later, single representative capacitive and resistive factors satisfactorily 

describe the response of most structures.) 

 
(Fig. 3. in [97], notation adapted) 

Fig. 4.3 Equivalent electric circuits of modelled structures: (a) with and 

(b) without a percolation pathway. 

The admittance of the circuits in Fig. 4.3 is simply found as 
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with the standalone 1/RP term omitted in the admittance of the non-percolated circuit 

in Fig. 4.3(b). The inverse resistances 1/RP,NP are naturally proportional to the real 

part of particle transient conductivity Δσmic′, as opposed to the capacitance CNP that is 

related only to the morphology of the sample and the permittivity of the matrix.  

We do not seek specific relations between the quantities describing the circuit 

and the nanostructure. The definition of the admittance (4.2) serves us merely as the 

function pattern for our EMT − the relation between the microscopic and the 

effective conductivity. The total circuit admittance is analogous to the effective 

transient conductivity Δσ of the represented structure: 
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where V is the percolation strength of the photoconductive material 

(cf. Subsection 3.4.3). Note that, from now on, we simplify the notation V ≡ Vp as we 

deal only with the change of the effective conductivity/permittivity. The constant 

percolation strength Vm of the dielectric matrix does not play a role in the change of 

the effective quantities and using V only for Vp is thus unambiguous. B and D 

constitute morphology parameters whose interpretation is discussed in the following 

subsections. 

Equation (4.3) defines the VBD effective medium model in terms of complex 

conductivity. In order to fit it to the calculated effective transient permittivities, we 

convert it using the definition 
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to the probably briefest variant in terms of complex permittivity 
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For purely imaginary Δεp = iΔεp″, the dependence is explicitly 

 
    
























2
p

p2
p

2
p

Δ1

Δ
Δ

Δ1

Δ
ΔΔ

εD

εB
εVi

εD

εDB
εiε

p
. (4.6) 

Equation (4.6) was found to fit the calculated Δε(Δεp″) dependences very well 

for all examined structures (see Fig. 4.4), except for the non-percolated direction of 

the most complex fractal “Moore 3”. (See Section 4.6 below for comments on the 
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larger deviation between the simulations and our analytical model in that case.) This 

confirms that a set of only 3 parameters, V, B and D is sufficient to characterize the 

impact of morphology on the way in which the transient microscopic permittivity of 

nanoparticles translates into the transient macroscopic permittivity of the composite 

structure. In Section 4.5, we provide the interpretation of these fitting parameters 

within the framework of the Bergman EMT.   
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Fig. 4.4 Symbols: calculated Δε(Δεp″) dependences (selection of curves from 

Fig. 4.2); lines: fits with the VBD model. Color legend is the same 

for both plots on a row. *Red lines in (c,d): fit of the Moore 3 fractal 

chain with a two-component VBD model (two parallel RC branches 

are considered). 

Let us explain the trends in Fig. 4.4 or Fig. 4.2 in terms of the VBD model 

(4.6). The response of non-percolated structures (panels (b,d) in both Figures) is 

characterized by the two fractions on the right hand side of (4.6):  

 as long as (DΔεp″)2 ≪ 1, the real effective permittivity Δε′ increases with 

the second power of Δεp″ and the imaginary effective permittivity Δε″ is 

directly proportional to Δεp″; this corresponds to specific slopes of the 

curves in the log-log scale in the Figures for small Δεp″; 
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 for (DΔεp″)2 ≫ 1, Δε′ saturates and Δε″ is inversely proportional to Δεp″.  

The position of the elbow of the curves in the Figures is characteristic for the RC 

resonance which will be interpreted also as the localized plasmon resonance of the 

non-percolated nanoparticles later on. (An additional bend appears in the mid-range 

in structures with increased fractal complexity.) 

Percolated structures (panels (a,c) in the Figures) show a behavior similar to 

non-percolated ones in Δε′ in the whole range, and also in Δε″ for (DΔεp″)2 ≪ 1. The 

main difference to the non-percolated structures is marked with the additional iVΔεp″ 

term in (4.6), due to which: 

 the imaginary part of transient effective permittivity Δε″ continues to be 

directly proportional to Δεp″ also in the upper range, (DΔεp″)2 ≫ 1. 

The sharp difference between the effective permittivity of percolated and 

non-percolated structures in the high-(DΔεp″)2 regions constitutes a useful 

experimental marker for characterizing real samples in Optical pump–THz probe 

experiments as shown below. 

4.3. Application of the VBD model  

in Optical pump–THz probe experiments 

An OPTP experiment yields the transient effective conductivity Δσ of the 

studied sample. For a correct interpretation of the results the relation between Δσ and 

Δσmic is of prime importance. In the previous paragraph we discussed the role of the 

threshold value of the imaginary part of the permittivity (DΔεp″)2 ≈ 1. In a similar 

manner, the discussion can be carried out for a complex microscopic conductivity 

which appears in (4.3). We are again interested in the threshold value of the 

denominator term DΔσmic'/(ωε0) ≈ 1:  

 for |DΔσmic/(ωε0)| << 1, Δσ is proportional to Δσmic both in percolated and 

non-percolated structures; 

 for |DΔσmic/(ωε0)| ≥ 1, Δσ depends on Δσmic in a complex non-linear 

manner in non-percolated structures; the linear proportionality Δσ ∝ Δσmic 

holds in percolated structures.  

The amplitude of DΔσmic/(ωε0) can be easily varied in Optical pump–THz 

probe experiments because the transient microscopic conductivity Δσmic scales with 

the photocarrier density — it can be controlled by the excitation fluence ϕ of the 

optical pump beam. A linear dependence of the measured effective response on ϕ 

means that the measured transient conductivity Δσ spectrum has the shape of Δσmic 

(i.e. of the microscopic mobility spectrum of photocarriers). A non-linear dependence 

of Δσ on ϕ, directly indicates that a substantial portion of photocarries is confined in 

non-percolated inclusions in the sample. These two regimes can be simply discerned 

in the plots of the transient transmittance per single excitation photon ΔTnorm (2.10): 

any dependence of ΔTnorm on ϕ indicates the non-linear regime. 
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In an ideal experimental case, the linear regime of a structure is achieved by 

decreasing the excitation fluence and the spectrum measured under these conditions 

yields the actual microscopic carrier conductivity spectrum Δσmic (without the effect 

of depolarization fields). Subsequently, photoconductivity spectra measured over the 

widest possible range of higher excitation fluences show whether the structure 

exhibits the non-linear response (i.e. whether non-percolated inclusions contribute to 

the conductivity of the sample) or whether the response remains linear (i.e. the 

structure is percolated). Below, we provide an estimate of the photocarrier density 

that should be reached in order to distinguish between contributions from percolated 

and non-percolated parts. A global fit of the fluence dependent conductivity spectra 

of the sample then can be performed and the parameters V, B, D yielded by the fit 

can be linked to the morphological properties of the structure such as the filling 

fraction of the non-percolated inclusions or the representative depolarization factor 

of the structure. This procedure is extremely sensitive to:  

 percolated parts of the structure, whose signal scales up with ϕ;  

 large inclusions in which the carrier mobility can be quite high and whose 

response exhibits strong non-linearity versus ϕ.  

For example, in Chapter 6, OPTP spectroscopy discovered large inclusions 

with high carrier mobility at a particularly low filling fraction of 10−4. These 

inclusions were not detectable by other employed techniques due to their low 

concentration.  

Kužel and Němec [45] have derived an estimate of carrier density in typical 

non-percolated inclusions (D ~ 10−2) that brings about a transition between the linear 

and the non-linear regime in the THz range as: 
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μ

ν
N . (4.7) 

We stress that the transition region is several orders of magnitude wide (cf. Fig. 4.4) 

and the value of 1018 presents an order of magnitude estimate. Specific morphologies 

with high capacitances (e.g. containing field-parallel semiconducting chains 

separated with thin sheets of the matrix) are characterized with a lower D (D in (4.3) 

is in inverse position to CNP in (4.2)). The response of such structures can thus be 

measured in the linear (mobility-like) regime at higher carrier concentrations than 

indicated by (4.7). High-mobility materials, on the other hand, require lower 

densities to measure the true carrier mobility spectral shape. Obtaining linear 

response above the estimated threshold density means that the material does not 

contain a substantial portion of non-percolated inclusions with the expected mobility 

and morphology D factor. 

Fig. 4.5 shows the behavior of a THz spectrum in non-percolated inclusions 

with Drude type of mobility upon a change of the carrier density. At low carrier 

densities (red squares), the transient photoconductivity spectrum still resembles 

Drude response with a decreasing real part and a peaking positive imaginary part. 
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With increasing carrier density, the conductivity peak decreases and blueshifts and 

the imaginary part flips to negative values in the accessible frequency range. This 

resonant behavior can be understood also as the signature of the localized plasmon in 

photoconductive inclusions. 

 

 
(Fig. 5(b) in [4], notation adapted) 

Fig. 4.5 Theoretical spectra of normalized transient transmittance of a model 

non-percolated thin film sample with Drude mobility spectrum at 

various excitation densities; full symbols: real part, empty symbols: 

imaginary part. The displayed frequency range is typical to 

time-domain THz spectroscopic setups with ZnTe sensor. The input 

properties of the model nanostructure correspond to sample A in 

Chapter 6 at 20 K.  

4.4. Interpretation in terms of the Maxwell Garnett EMT 

In the case of a composite with well isolated particles described with a single 

shape factor K, our model (4.5) reduces exactly to the Maxwell Garnett EMT as 

introduced in Subsection 3.4.1 with the parameters defined by the ground state 

properties of the composite 

 0V , (4.8) 
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where ε is here the ground state effective permittivity of the composite in the 

Maxwell Garnett approximation (3.15).  

4.5. Relation to the Bergman EMT 

The effective permittivity in Bergman EMT was introduced in 

Subsection 3.4.3 as: 
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The integrand in (3.21) has in fact the form of the total capacitance of two planar 

capacitors with permittivities εp and εm, thicknesses (1−d) and d, respectively, and of 

the same area A, connected in series:  
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In this view, the depolarization factor l in the Bergman EMT is related to the relative 

thickness of the dielectric matrix and of the photoconductive material along the field. 

Integration over l in (3.21) is equivalent to summing up the total capacitance of 

capacitors Cseries(d) with various thickness ratios that are connected in parallel — the 

weighing function v(l) then has the meaning of the effective cross-section of the 

morphology subpattern with a given depolarization factor. The Bergman EMT thus 

virtually describes an electric circuit with an infinte number of parallel RC branches 

with different values of Rnp and Cnp and the analogy to an equivalent electric circuit 

(cf. Fig. 4.3) is very pertinent.  

We have found that, up to a certain level of complexity, many 

two-component structures can be approximated by a single dominant RC branch 

(cf. fits in Fig. 4.4), i.e. by a single δ-peak in v(l) at a “representative” depolarization 

factor Λ in the Bergman spectral function with an amplitude v:  

    Λlδvlv   (4.12) 

The Bergman transient permittivity then reads: 
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which is identical to our VBD formula (4.5) with the following relations between 

B, D and v, Λ: 

  
 

  2mp

2
m

1

1

εΛεΛ

vεΛ
B




 , (4.14) 



 

 

 
 

50 

 
  mp 1 εΛεΛ

Λ
D


 . (4.15) 

The value of D obtained from a fit of experimental data as proposed in Section 4.3 

thus yields the representative depolarization factor of the structure 
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4.5.1. Spectral function analysis 

To study the meaning of Λ, we reconstructed the Bergman spectral functions 

of the model structures. The reconstruction (reproduction of values of v(l) for every 

0 < l < 1) can be done by analyzing the Bergman EMT formula. A localized plasmon 

resonance corresponds to a pole in the denominator of the integrand in (3.21) 

   01 mp   ll , (4.17) 

i.e., for a given l, one can find a real negative εp ∈ (−∞;0) which provides the 

resonance. Using the residual theorem and analogously to [66,97], one can evaluate 

the spectral function using the limit 
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where the complex 
p

~  is chosen near the resonance (4.17) such that  
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The effective permittivity  pm
~,  with the particle permittivity p

~  for a 

given structure is again calculated numerically following (4.1) and the value of the 

spectral function (4.18) is then evaluated with a very small positive value of δ 

(δ = 0.005 in our calculations).  

Fig. 4.6 shows the calculated spectral functions of several structures. The 

vertical arrows above the spectral functions indicate the representative depolarization 

factor Λ as calculated through (4.16) from the value of D that provided the best fit of 

the effective permittivity with the VBD model (4.6) in each structure. Note that Λ 

coincides with the global maximum of the spectral function in non-percolated 

structures (second row in Fig. 4.6). In these cases, Λ bears the meaning of the 

depolarization factor that is dominant in the spectral function. This is not exactly true 

in structures with a percolation pathway — e.g. the green curve in Fig. 4.6(a) 

features a maximum at l = 0.12, far from the green arrow at Λ = 0.05. Instead, the 

representative depolarization factor falls to the peak or the group of peaks that lies at 

the lowest l in the spectral function. This means that morphological features with 
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lower depolarization factors play a more important role in determining the effective 

response of the composite than the morphological features with high depolarization 

factors in a broad range of particle permittivities. Let us remind that low 

depolarization factors correspond either to percolation pathways (Λ = 0 for infinite 

wires parallel to the field) or, for example, to field-parallel chains of particles 

separated by narrow gaps. High depolarization factors, on the other hand, 

characterize isolated inclusions or thin field-perpendicular disks and layers. 
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(selection from Fig. 2. in [97], notation adapted) 

Fig. 4.6  Lines: Reconstructed Bergman spectral functions of the model 

structures. Vertical arrows: Fitted values of representative 

depolarization factors Λ. Color scheme and panel labelling is 

identical to that in Fig. 4.2.  

4.6. General character and limitations of the VBD effective 

medium model 

The VBD model of effective medium response was explicitly confirmed by 

application of the numerical calculations of the macroscopic permittivity of 

composites with a purely imaginary particle permittivity contribution Δεp″. The VBD 

model (4.3,4.5) is nevertheless valid for any complex-valued particle permittivity 

contribution, as long as the total particle permittivity εp + Δεp stays positive. In this 

case, the integral in the Bergman representation of the structure avoids poles and no 

qualitatively new behavior is expected in comparison to the effective permittivities 

shown in Fig. 4.2. Bringing a semiconductor nanomaterial out of this regime, i.e. to a 

completely metallic behavior, by photoexcitation is seldom achievable. It would be 
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possible for example in high-mobility semiconductor structures (nanoislands, 

nanowires, nanotubes, etc.) under very strong excitation. 

The simple variant of the VBD model, stemming from the admittance of an 

equivalent electric circuit model with only one conductive and one capacitive branch, 

proved to be adequate for reproducing the effective properties of a wide range of 

morphologies. However, thanks to the additive character of the formulas (4.3,4.5), it 

can be straightforwardly extended to more complex composites containing several 

types of inclusions with different transient permittivites Δεj (transient microscopic 

conductivities 
micΔ jσ ), percolation strengths Vj and morphology factors Bj, Dj, 

corresponding to an equivalent electric circuit with multiple parallel branches: 

 
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Namely, in the case of the most complex non-percolated fractal structures (Moore 3 

in Fig. 4.1), the calculated dependences of effective permittivity (blue lines in 

Fig. 4.4(c,d)) cannot be reproduced with the simple 3-parameter VBD model both in 

the high- and low-Δεp″ regions at the same time (black lines in Fig. 4.4(c,d)). Red 

lines in Fig. 4.4(c,d) show excellent fits with the two-component variant of the VBD 

model (eq. (4.20) with j = 1, 2). The two-component VBD model was reduced in this 

case to one type of semiconductor in both photoconductive components 

(Δε1 = Δε2 ≡ Δεp″), naturally with a single percolation strength V1 (V2 ≡ 0) and two 

pairs of morphology parameters B1, D1 and B2, D2. 

Another reduced variant of the two-component VBD model is applicable in 

samples containing both very small and relatively large* photoconductive particles of 

one semiconductor. Such structures are obtained e.g. after chemical or thermal 

aggregation of small precursor nanoparticles, which is a relatively frequent 

production procedure. The Monte Carlo simulations of our group (Section 3.5) 

showed that the carrier mobility spectrum (and thus also the transient contribution 

Δσmic to the microscopic conductivity) may be sharply different inside the small 

isolated particles and inside large interconnected clusters or percolation chains made 

of the same material (same ground state permittivity εp). In a sample containing 

particles in both these regimes, the contribution to the transient effective conductivity 

 
* By small or large we mean here that the characteristic size of the particle is comparable to or 

much larger than lfree, respectively, cf. Fig. 3.4. 
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is ]/Δ1/[ 0
mic

percnon ωεσiDB   for the non-percolated component and  
mic
percΔσV  for the 

percolated one. The transient effective conductivity in the VBD approximation then 

reads 
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This is again the point where the localization of mobile carriers in nanoparticles of a 

semiconducting material has a two-level impact: the conductivity of the 

semiconducting material is altered on the short-range — it takes the microscopic 

spectrum 
mic

perc-nonΔσ  due to the interactions of individual carriers with boundaries of 

small particles — and this spectrum is further modified in the collective carrier THz 

response due to depolarization fields originating in the macroscopic (long-range) 

morphology of these particles.  
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5. Wave equation solution — measurable vs. local 

conductivity 

In this chapter we derive the theoretical measurable transient THz 

transmittance spectrum ΔTnorm(ω) of a semiconducting nanomaterial and the relation 

of this quantity to the microscopic conductivity of its constituents in the framework 

of the VBD effective medium theory. Our approach is based on the linearization of 

the wave equation for a THz probe pulse (respectively for its transient part) that was 

introduced in 2002 [99] and revised in 2007 [42]. These publications deal with 

homogeneous (or layered) media and focus on the retrieval of ultrafast (sub-ps) 

dynamics from transient THz response. Our aim here is to generalize this approach 

for nano- or microstructured media with or without percolation pathways. We restrict 

our attention to the phenomena which occur on the time scale longer than the THz 

pulse length, i. e. ~ps or slower (the quasi-steady-state approximation, 

cf. Section 2.3).  

We first review the wave equation for the transient THz field and its 

boundary conditions. Subsequently, we solve the wave equation in terms of 

ΔTnorm(ω), which represents the transmitted transient THz field, both in the case of 

percolated and non-percolated (nano)structures and discuss some experimentally 

useful approximations. These results are used for the interpretation of our 

experimental results obtained with Si nanostructures in Chapters 6, 7. Lastly, we 

show the general solution of the wave as the starting point for the cases that are not 

covered by the VBD approximation. This general solution is utilized in Chapter 8 for 

bulk TiO2 that features electron–hole scattering upon strong excitation. The results 

were partly published in [4] and [97] and summarized in a review paper [45]. 

5.1. Transient THz wave equation 

The wave equation for the transient THz field ΔE (2.3) was mentioned in 

Section 2.3 along with its right-hand side source term (2.4). Put into one equation, 

they read:  
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The THz field in the sample E together with the effective transient conductivity Δσ 

on the right-hand side of (5.1) constitute a transient current Δj = Δσ∙E which emits 

the transient THz field ΔE . The driving THz field is the sum of the primary probe 

field Eprobe and of the transient field: E = Eprobe + ΔE. The main assumption of this 

model is that ΔE ≪ Eprobe and E(ω,z) can be replaced by Eprobe(ω,z). The wave 

equation is then linear and its solutions can be found analytically. [42]* The 

 
* This linearization also justifies using of equilibrium refractive index n(ω) without a transient 

contribution of Δσ on the left-hand sides in (2.3), (5.1) and further. 
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distribution of the primary probe field in the sample of thickness L can be calculated 

from the incident field Einc: 

          LzikrikzatωEzωE 2expexp, 21incprobe  , (5.2) 

where k = k0∙n(ω) is the wavenumber of the THz wave in the unexcited sample and 
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 (5.3) 

is the sum accounting for Fabry-Perot reflections of the THz probe pulse in the 

sample. The transmission coefficients through the front (index 1) and rear (index 2) 

interface of the sample t1,2 and the internal reflection coefficients for the normal 

incidence r1,2 are given by the Fresnel equations where refractive indices n1 and n2 of 

the media surrounding the photoconductive layer are introduced: 
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 (5.4) 

The first summand in the square brackets in (5.2) represents the forward propagation 

of the THz pulse through the sample and the second term stands for its backward 

propagation after being reflected from the sample rear surface.  

The solution of the Equation (5.1) is found as a linear combination 

        zGikzAikzAzE  expexpΔ 21 , (5.5) 

where A1,2 are the factors of the homogeneous solution and G(z) is the particular 

solution with the given right-hand side. The formula for the transmitted transient 

field ΔEt(ω) is obtained by applying the proper boundary conditions — i.e. the 

continuity of the tangential components of the electric and magnetic field at the front 

and the rear surfaces of the sample. The intensity of the transient magnetic field is 

proportional to the space derivative of the electric field: 

 
dz

Ed

ωμ

i
H

Δ
Δ

0

  (5.6) 

with μ0 being the vacuum permeability. The boundary conditions for the electric 

intensity then can be formulated as follows [42]: 
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where ΔEr is the transient electric field emitted from the sample in the backward 

direction (measurable optionally as the transient change of the probe field reflected 

from the sample in an experiment arranged in the reflection geometry). The derived 
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transmitted transient field ΔEt then only needs to be compared to the reference field 

transmitted through the sample in equilibrium, which is simply 

      ωEikLattωE inc21t exp . (5.8) 

One thus obtains the theoretical transient transmittance (2.5) (or its normalized form 

(2.10)) of the model photoconductivity Δσ(ω,z) that was injected into the right hand 

side of the wave equation (5.1). The model conductivity may consist of several 

additive contributions originating in different types of photoconductive elements in 

the sample. These conductivity components translate linearly into the transient 

transmittance thanks to the linearity of the wave equation. In the following sections, 

we derive the solutions of the wave equations for the effective photoconductivity 

separately for a sample with percolated photoconductive pathways and for a sample 

with non-percolated photoconductive inclusions. Below we introduce a notation 

which is common to these two cases. 

The microscopic transient conductivity is proportional to the density and 

mobility of the carriers inside the inclusions. With a negligible dependence of the 

mobility of a single carrier on the carrier density, the microscopic transient 

conductivity takes on a variable-separated form 

      ωμzeNzωσ ,Δ mic   (5.9) 

The photocarrier density in the semiconductor (nano)particles is proportional 

to the excitation fluence, the local absorption coefficient of the inclusions αmic and 

decays with depth according to the macroscopic (effective) absorption coefficient α 

of the sample: 

      zαNzαξαzN  expexp mic

0
mic . (5.10) 

Where we abbreviated the photocarrier density in the particles at the photoexcited 

surface as mic

0N . To shorten the following formulas, we introduce the transient 

microscopic conductivity spectrum at the surface of the sample  ωσmic
0Δ  as: 
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(Note that 
mic
0Δσ  was denoted Δσ0 in [45]. We keep the superscript “mic” in this 

work to stress that the quantity has the microscopic character and has the spectral 

shape of charge carrier mobility.) 

5.2. Percolated semiconducting pathways and bulk samples 

In nanomaterials where the semiconductor forms percolated pathways, the 

macroscopic photoconductivity is just the microscopic one multiplied by the 

percolation strength: 

      zαωσVzωσ  expΔ,Δ mic
0

perc
. (5.12) 
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The source term of the wave equation (5.1) is then 

        zωEzαωσVZikzωU ,expΔ, probe

mic

000   (5.13) 

and the particular solution reads 
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Applying the boundary conditions (5.7) yields the transient transmitted field 
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The general contribution of percolated semiconducting elements to the normalized 

transient transmittance (2.10) with the reference field (5.8) is then 
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Let us remind that according to (5.10,5.11): 

    ωξμαeωσ micmic
0Δ  , (5.17) 

i.e. ϕ cancels out 
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and the normalized transient transmittance spectrum of percolated components (5.16) 

retains the shape of the carrier mobility spectrum and does not depend on excitation 

density in most experimental cases. This is not exactly true only when n, n1 or n2 

exhibit a substantial dispersion in the THz range or with a specific combination of 

THz optical thickness and pump light absorption coefficient. In the latter case, 

additional modulation may occur in the spectra due to Fabry-Pérot interferences of 

the primary or transient THz field, as described by the term a or the term in the curly 

brackets in (5.16). These terms depend on the THz wave vector only and not on the 

microscopic conductivity; thus the true interpretation of the THz spectra cannot be 

missed if their analysis is carefully carried out.  
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For bulk samples, one trivially finds that V ≡ 1 and αmic ≡ α. In the following, 

we review several analytical limits of (5.16) that will be applied in the experimental 

chapters. 

5.2.1. Thin samples 

In the case of a thin sample (kL << 1), all exp(2ikL) terms tend to 1 and the 

normalized transient transmittance condenses to: 
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In the case of strong absorption of the optical pump pulse 1 << αL  
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VωT

mic
perc

norm
Δ  , (5.20) 

while in the case of weak absorption αL << 1 

    ωμξLαVωT micperc

norm
Δ  . (5.21) 

It is clearly seen that the measurable spectrum ΔTnorm(ω) has directly the shape the 

photocarrier mobility spectrum in the three cases above. 

5.2.2. Thick samples  

With a thick sample (kL >> 1), the direct pass of the THz probe pulse is well 

separated in time from Fabry-Pérot echoes. The time-domain windowing of the 

signal then can be applied experimentally [37]. In our calculations, the time-domain 

windowing means that the terms with the phase larger than 2ikL are omitted from the 

wave equation solution (5.16): 
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Under conditions of strong optical absorption (1 ≪ αL), the normalized transient 

transmittance of percolated components reads 
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5.3. Non-percolated semiconductor inclusions 

Let us remind the contribution of non-percolated semiconducting particles to 

the macroscopic conductivity in the VBD approximation (4.22): 
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In Optical pump–THz probe experiments, photocarrier density decreases 

exponentially from the photoexcited surface of the sample at z = 0. We first comment 

on the specific depth-profile of Δσnon-perc in this case because it somewhat clarifies 

the relatively complex solution of the corresponding wave equation that we derive 

subsequently. 

5.3.1. Depth-profile of effective conductivity 

We already pointed out that the macroscopic conductivity (5.24) is 

proportional to the microscopic one for low microscopic conductivity values and that 

it saturates with increasing microscopic conductivity. With the transient microscopic 

conductivity decreasing exponentially below the photoexcited surface (5.11), the 

saturation effect translates into a non-exponential depth profile of the effective 

conductivity: 
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(Fig. 2. in [45]) 

Fig. 5.1 Depth profiles of transient effective conductivity in the VBD 

approximation (5.24) in a model non-percolated semiconducting 

structure with the usual exponential microscopic conductivity profile 

due to the Lambert-Beer absorption law (5.11) with ξ = 1, 

μ = 1350 cm2V−1s−1, 1/α = 1 μm, V = 0, B = 0.28 and D =  0.031 at 

various densities at 1 THz, Bωε0/D = 502 Ω−1m−1: (a) magnitude per 

single charge carrier (= mobility), (b) magnitude, (c) real part and 

(d) imaginary part. 
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At low excitation densities, the effective conductivity linearly follows the 

exponential depth profile of the carrier density (magenta lines in all panels in 

Fig. 5.1). For higher excitation densities (other colors in Fig. 5.1), the macroscopic 

conductivity retains the linear regime (and follows the exponential depth-profile of 

excitation) only in deep layers of the sample, where the intensity of the excitation 

light is decreased by absorption and the microscopic conductivity is low enough. The 

frontmost layer of a strongly excited sample exhibits a capacitive effective 

conductivity saturated at the value −iBωε0/D (Fig. 5.1(b)) that is given only by the 

morphology factors, i.e. the capacitive properties of the insulating matrix. The 

intermediate region presents a transient resistive layer that features a peak of the real 

part of effective transient conductivity as shown in Fig. 5.1(c).  

5.3.2. Solution of the wave equation in non-percolated case 

The source term of the wave equation (5.1) in non-percolated samples with 

exponential excitation depth profile is  
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To abbreviate notation, we condense what is analogous to the capacitive impedance 

spectrum of the RC branch in the equivalent electric circuit in the VBD theory (4.2): 
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The solution of the wave equation with the (5.26) right-hand side is found in terms of 

the following integrals 
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where Ln stands for the principal value of the logarithm function, and  
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where 2F1 is the Gaussian hypergeometric function of 4 complex arguments. [100] 

For our specific bonds between the arguments, we can define a 2-argument 

function 
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with κ = 1 − 2ik/α. This specific variant of the hypergeometric function can be 

expressed as the power expansion  
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for |Z| < 1 (Statement 15.1.1 in [100]), and 
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for |Z| > 1 (Statement 15.3.7 in [100]).  

The particular solution of the wave equation for the right-hand side given 

by (5.26) is then 
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where κ* denotes the complex conjugate of κ. Applying the boundary conditions 

(5.7) yields the transient transmitted field 
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The general contribution of non-percolated inclusions to normalized transient 

transmittance (2.10) with reference field (5.8) is then 
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In the linear regime, i.e. for low microscopic conductivities or high probing 

frequencies, the depth profile of effective conductivity follows the exponential 

absorption law (magenta in Fig. 5.1), Z(ω,z) decreases towards zero according to 

(5.27), and the hypergeometric function 2F1 tends to 1. The equation (5.35) then 

reduces to the form of the percolated sample (5.16) with B in the place of V. 
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Following Eq. (5.1), the process of THz probing can be understood as an 

emission process of the transient wave E, i.e. when the probing THz pulse Eprobe 

propagates through the sample, it generates the transient signal ΔE proportional to Δσ 

at the given depth. The total transmitted transient pulse ΔEt is then composed of 

many partial waves generated at different times and positions in the sample. This is 

exactly taken into account by the term in the curly brackets in (5.15) and (5.34). For 

example, in the simple case when Δσ decays exponentially with depth (e.g. in the 

percolated case without a strong carrier diffusion), the transient signal arises 

dominantly in a thin frontmost layer of the sample and the partial transient waves 

sum up to a transmitted pulse with a relatively simple analytical shape like (5.15). In 

the case when Δσ attains a saturated value in a several-μm thick layer (non-

percolated case depicted in Fig. 5.1), the partial transient waves are generated within 

a relatively thick region with comparable amplitudes. The dephasing and 

interferences between these waves are then analytically described with the so-called 

hypergeometric function as given in (5.34). We will show later with the help of our 

experimental results that these terms lead to peculiar interferences in the spectra of 

Tnorm. Eqs. (5.16) and (5.35) correctly describe these effects and allow 

deconvoluting them properly.  

5.3.3. Thin film with strong absorption 

In the important case of pump light penetration depth substantially shorter 

than probing THz wavelengths, α << k, the hypergeometric function simplifies 
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and the normalized transient transmittance reads: 
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In a thin film sample, (1 << kL, k << α), the response finally is 
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5.4. General solution  

The THz wave equation (5.1) can be also solved for any general depth profile 

of transient conductivity of the sample Δσ(ω,z). Without knowing the exact form of 

the source function, the solution reads: 
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which can be solved analytically or numerically after injecting the applicable 

Δσ(ω,z). 

5.4.1. Thick sample with strong absorption 

For a thick sample with a short penetration depth (1 ≪ αk), the general 

normalized transient transmittance is: 

    ωΣ
nαe

ωT Δ
1

11
Δ norm





, (5.40) 

where 

         

L
L

dztzNNωμedzzωσωΣ

0

p
0

,;,ΔΔ  (5.41) 

is the transient sheet conductivity. 

In the experimental Chapter 8, photocarrier mobility in thick rutile slabs with 

an extremely short optical penetration depth (12 nm) are analyzed and the excitation 

light readily generates carrier densities > 1019 cm−3. The carrier mobility itself then 

depends on carrier density due to electron–hole scattering and evolves in time 

through diffusion. We use the numerical solution of (5.40) in that case. 
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6. Transport in Si-NCs derived from nanoporous Si 

In this chapter we present the results of our research of Si-NC samples that 

were prepared in the Center of Nanotechnology and Materials for Nanoelectronics at 

our Institute (the Nanocenter). The samples contain Si NCs with an average size of 3 

nm; such small NCs feature strong quantum confinement manifested as luminesce 

visible to the naked eye under UV illumination. Extensive studies of the optical 

properties of these samples have been conducted at the Nanocenter and we were 

invited to a collaboration with the aim to characterize the ultrafast transport of 

photogenerated carriers inside the nanocrystals.  

We have found that the distribution of sizes of NCs has a crucial impact on 

the outcomes of photoluminescence and THz photoconductivity measurements in 

silicon. On the one hand, photoluminescence is by the nature of quantum 

confinement sensitive to small NCs with size below several nm. THz 

photoconductivity response, on the other hand, is dominated by the conductivity of 

larger NCs with sizes in tens of nm or more, although such NCs are relatively sparse 

in the studied samples. We thus demonstrate here the complementarity of Optical 

pump−THz probe spectroscopy to more traditional methods such as 

photoluminescence, dynamic light scattering or atomic force microscopy for 

characterizing samples that contain semiconducting nanoparticles of various sizes.  

The first section below gives details on the preparation of the sample and of 

its morphological composition as determined by our collaborators at the Center of 

Nanotechnology and Materials for Nanoelectronics by non-THz characterization 

methods. Section 6.2 presents our original results obtained by THz photoconductivity 

measurements that were also summarized in [4]. 

6.1. The sample 

The sample was fabricated by electrochemical etching from a p-type 

crystalline silicon (c-Si) wafer ((100)-orientation, doped by boron to 0.075–

0.100 Ωcm) in an ethanol solution of hydrofluoric acid at a current density of 

1.6 mA/cm2. See Fig. 6.1 for a scheme of the production process. In 2 hours, a 

nanoporous layer was etched at the front face of the wafer. The sample was then put 

into H2O2 for several minutes, thoroughly rinsed in pure ethanol, dried and finally 

oxidized for several hours in an air environment with stabilized temperature and 

humidity. The resulting system of SiO2-covered Si NCs was mechanically scraped 

off the remaining substrate. The obtained fine powder was further pulverized in an 

ultrasonic bath in pure ethanol for several hours. The size of the non-oxidized c-Si 

cores of the obtained nanoparticles depends on the duration of the post-etching 

treatment in H2O2 and also on other parameters of the production procedure. This 

was documented in detail in the photoluminescence study by Dohnalová et al. [101]; 

the samples used here are referred to as “blue” in that paper. The non-THz properties 

of the material reviewed in this Section were measured with nominally the same 

samples that were used for the THz photoconductivity measurements.  
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Fig. 6.1 Schematic of the fabrication process of the Si-NC powder. Dashed 

line indicates a possible particle with multiple Si cores.  

6.1.1. Non-THz characterization 

These data provide essential information on the composition of the sample 

that allowed us to discuss our THz data.  Fig. 6.2 shows an X-ray photoelectron 

spectrum (XPS) of the sample powder in the energy range characteristic to 

transitions of 2p electrons in the electron shell of silicon atoms. 

 
(Fig. 1D in [102]) 

Fig. 6.2 Black line: X-ray photoelectron spectrum of the sample powder; red 

line: fit with a sum of 3 Gaussian curves; green lines: Gaussian 

components of the fit. 
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The XPS spectrum is well fitted by a sum of 3 Gaussian peaks at binding energies of 

104, 106 and 108 eV that are attributed to transitions in Si atoms bound into Si lattice 

or in SiOx (x < 1) and SiO2 molecules, respectively.  

The fit of the XPS data shows that 83% of silicon is completely oxidized into 

silica shells; 12% of Si formed silicon sub-oxides, probably in the interlayer between 

the completely oxidized outer shell of the nanoparticles and the unoxidized Si cores; 

and 5% of silicon atoms remained in the crystalline cores after oxidation. In 

Table 6.1, we use the atomic masses ma of crystalline silicon, silicon monoxide and 

silica glass and their densities ρ to calculate the volume occupied by the respective 

molecules/atom (3rd column in Table 6.1). In the last column, we recalculate the XPS 

Si-bond fractions to the volume fractions occupied by the respective phases in the 

solid part of the sample.  

 

ma 

(mu) 

ρ 

(kg/m3) 

volume per 

1 Si 

(×10−29m3) 

XPS: Si 

atomic 

fraction 

molecule 

volume 

fraction 

c-Si 28 2330 1.99 5% 2.3 % 

SiOx 44 2130 3.43 12% 9.6 % 

SiO2 glass 60 2200 4.53 83% 88.0 % 

Table 6.1 Properties and fractions of individual Si compounds in the sample 

powder.  

Fig. 6.3(a) shows the distribution of particle diameters obtained by AFM 

scanning of the surface of a nominally same sample powder specimen that underwent 

an additional stage of ultrasound treatment in methanol. This procedure breaks larger 

pieces of the oxidized material that may contain multiple Si cores (schematized by 

the dashed rectangle in Fig. 6.1).  

  

Fig. 6.3 (a) Points: Nanoparticle diameter histogram (0.5 nm bin width) 

obtained from AFM pictures of the sample, line: log-norm fit of the 

histogram. (b) volume filling fractions of variously sized 

nanoparticles calculated from data in (a); the right-hand axis is 

renormalized by the volume filling fraction of crystalline Si.  
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The distribution of sizes of solid particles in this specimen is thus the nearest to the 

distribution of sizes of crystalline Si cores. During AFM measurement only a few 

particles larger than 20 nm were observed; however, it has been also shown that even 

bigger particles can be occasionally present in the sample as e.g. the solitary 47-nm 

particle reported in Fig. 6.3. The red line shows the log-norm fit as the probable 

extrapolation of the particle distribution to the large-diameter region if the counting 

were done on a statistically much larger amount of particles.  

 The photoluminescence of Si NC samples is proportional to the number of 

very small NCs which feature quantum confinement. However, the THz conductivity 

does not scale with the number of NCs possessing a given size but rather with the 

total volume that the photoconductive NCs occupy in the sample. For this reason, we 

recalculate the particle count from Fig. 6.3(a) to volumes occupied by the particles in 

Fig. 6.3(b). (The left-hand axis in Fig. 6.3(b) gives the volumes occupied by particles 

of a given diameter among the total volume of all the particles. The right-hand axis is 

normalized by a factor of 1.2% because crystalline Si occupies 2.4% of the solid 

particle volume (Table 6.1) and we show later that the sample powder contains about 

50% of air.) 

 
(Fig. 1.(c) in [4]) 

Fig. 6.4 Dynamic Light Scattering data on our sample of 

nanoporous-Si-derived Si nanocrystals. 

The red-line fit from panel (a) was also recalculated and shown in panel (b) to 

provide an estimate of the volume occupied by the larger particles. We see that in 

terms of volume, the filling fraction of particles above 10 nm cannot be neglected. 

Fig. 6.3(b) then appears much more relevant to the analysis of THz conductivity data 

than Fig. 6.3(a). Note that the role of very large solitary particles in the total 

photoconductivity signal can be very important. Indeed, Dynamic light scattering 

(DLS) data in Fig. 6.4 shows that there may be several particles as big as 0.5 μm in 

the sample. Let us remind that the DLS signal is proportional to d6 and the light 

scattering of the small NPs, clearly present in the AFM data, is thus completely 

hidden by the response of the few large particles in Fig. 6.4. On the other hand, DLS 

data do not provide any information about the composition and morphology of the 

particles that it detects; consequently, we cannot affirm with certainty that the 
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volume of the largest particles contains one percolated c-Si network (without e.g. 

SiO2 barriers) or several isolated c-Si cores. 

6.1.2. Preparation of samples for THz measurements 

The powder specimen for each sample was put into a custom-made cuvette 

for the purpose of transient THz transmission spectroscopy. The cuvette was 

composed of two 1-mm-thick fused silica plates serving as input and output windows 

separated by a 200 μm thick polytetrafluoroethylene (PTFE, Teflon) spacer. A 

circular hole in the spacer with a diameter of about 5 mm served as the cavity for the 

specimen. The specimen was put into the cavity by a pipette and slightly pressed 

between the silica plates before the whole cuvette was glued together. Special 

attention was payed not to let the glue soak into the central area of the specimen 

cavity. The cuvette was then attached onto the sample holder (a thin steel plate with a 

circular 3mm-in-diameter aperture).  

Three samples were prepared in total. The sample labelled C was damaged by 

evacuation of the cryostat sample chamber between individual sets of measurements; 

the air that was sealed with the sample powder inside the cuvette cavity tore apart the 

cuvette and subsequently, a substantial amount of the sample powder was virtually 

vacuum-cleaned away from the cuvette. This sample thus did not provide a complete 

sets of data necessary for successful analysis. Only a short THz transient kinetics 

scan is presented. The cuvette and the specimen in the cavity remained visually 

undamaged and homogenously opaque in the case of samples A and B and the THz 

photoconductivity measurements were reproducible. These two undamaged samples 

were prepared from the very same dose of the sample powder. The powder for 

sample A was, in addition to the treatment underwent by sample B, left in a high 

power ultrasonic bath with ethanol (absorbed energy 400 kJ) that was supposed to 

break large NC clusters into smaller ones.  

6.2. THz photoconductivity 

 Table 6.2 summarizes the steady-state THz and optical properties of the 

sample that were measured independently on THz photoconductivity spectra to serve 

as input parameters of the presented THz photoconductivity model. The THz 

refractive index was obtained from the measured sample thickness and the time delay 

of the transmitted THz pulse induced by the unexcited sample introduced into the 

THz beam path.  

The total filling fraction of the solid phases (Si+SiO+SiO2) in 3rd column of 

Table 6.2 was calculated from the Bruggeman EMT (3.19) for spherical particles 

under the assumption that the THz refractive index of the solid phase lies between 

1.97 and 2.1. This estimate is based on the fact that the solid phase contains 90% of 

silica (Table 6.1) with a THz refractive index of 1.97 and minor fractions of SiO and 

Si with higher THz refractive indices. With >50% of the samples occupied by air 

(Table 6.2), the c-Si occupying 2.4% of volume of the solid phase of the sample 

(Table 6.1) has a filling fraction <1.2% in the total volume of the samples.  
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The effective absorption coefficients α of the samples at 400 nm (3.1 eV, see 

the last two columns of Table 6.2) was assessed by comparing the powers of the 

incident, reflected and transmitted excitation light as measured with a power meter.  

Sample L (μm) nTHz 
filling fraction 

(Si+SiO2+SiO)  

α400 nm  

(cm−1) 

1/α400 nm  

(μm) 

A 220 1.45 0.44–0.49 590 17 

B 260 1.33 0.34–0.37 500 20 

Table 6.2 Summary of the optical and steady-state THz properties of the 

samples. 

Transient THz kinetics 

Excitation at 400 nm (3.10 eV) was used for the following THz 

photoconductivity measurements in a range of fluences between 2×1012 and 

1×1015 photons/cm2. Several THz kinetics were measured at the maximum fluence to 

find the optimal time interval for measuring transient THz photoconductivity spectra. 

The black line in Fig. 6.5(a) shows the transient kinetics at 20 K for sample C: the 

transient response of the sample does not decay in the measured time range but 

features an unexpected oscillation of the transient signal between 0 and 10 ps that 

was identified as a parasite signal as follows. The blue line in Fig. 6.5(a) shows the 

net THz field detected by the sensor when the THz probe beam was blocked out. The 

same parasite signal was also detected with a completely different sample (CdS thin 

film on silica substrate) while it was never observed in measurements without the 

cryostat. The parasite signal thus must be emitted by the cryostat sapphire input 

windows upon excitation by the intense pump pulses (optical rectification).  

 

Fig. 6.5 Transient THz kinetics of Si-NC samples B and C.  

Fig. 6.5(b) shows the transient kinetics at 300 K for sample B: the signal 

decays on the time scale of ~450 ps; we attribute this decay to the trapping of carriers 

in the states at nanocrystal boundaries, as the prevailing part of radiative 

recombination occurs on much longer time scales [101]. THz photoconductivity 

spectra were measured between 20 and 30 ps after photoexcitation to avoid the 

parasite signal due to optical rectification in sapphire and still obtain the highest 
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measurable photoconductivity response. The transient THz spectra were measured at 

20, 100, 200 and 300 K. Accumulation of the transient THz spectrum at the lowest 

excitation density (signal level below 10−4 with respect to the steady state 

transmission) took up to 17 hours. 

6.2.1. Measured spectra and fitting model 

Experimental spectra of THz photoconductivity of sample A are shown as 

symbols in Fig. 6.6 at various temperatures and excitation fluences. All the spectra 

feature a periodic oscillating pattern (~0.3 THz wide peaks/minima) due to 

dephasing and interferences of the transient THz waves in the sample that has an 

unfavorable combination of thickness, transient THz refractive index and pump light 

penetration depth with respect to THz wavelengths. The final fitting function 

(color-matched lines in Fig. 6.6) does take these effects rigorously into account and 

we comment on them in detail in a separate subsection after we present the principal 

results of our analysis and fits. First, let us discuss the overall shape of the measured 

spectra: we leave out of account the periodic pattern and consider the global slope 

and/or global extreme of the real part and the sign of the imaginary part of the 

normalized response in Fig. 6.6. 

The preparation procedure of the sample virtually excludes the possibility of 

long-range percolation pathways in the sample. In this case the effective medium 

analysis in Chapter 4 suggests us to look for a localized plasmon resonance in the 

spectra. The signature of the resonance in the spectrum is a maximum in the real part 

of the response and the imaginary part being negative below the resonance frequency 

and positive above it. The spectra measured at the highest excitation densities 

(rightmost plots in Fig. 6.6) feature a capacitive type of response at all temperatures 

— such response corresponds to a resonance located above the accessible frequency 

range. With decreasing excitation fluence (from right to left at each row), the 

resonance redshifts as predicted by the EMT analysis (cf. Fig. 4.5 on p. 48). At the 

same time, the amplitude of the response increases, as indicated in Fig. 4.5.  

In Chapter 4 (Section 4.3 in particular), we have shown that with decreasing 

carrier density, the measured THz photoconductivity can finally enter the linear 

regime in which the measured spectrum has basically the same shape as the actual 

spectrum of microscopic carrier conductivity. The lowest excitation density in 

sample A was achieved at low temperatures (4th row in Fig. 6.6), when the signal is 

the strongest due to increased carrier mobility in silicon. In the magenta spectrum, 

the resonance has redshifted below the accessible frequency range and an inductive 

type of response is observed: the real part of the response is decreasing with 

frequency and the imaginary part is positive. Such a response, disregarding the 

periodic oscillations, corresponds to Drude-like conductivity of the material. This 

unambiguously indicates the presence of carriers that are delocalized on the length 

scale of at least several carrier mean free paths. [70] We consequently performed the 

first series of fits as follows. 
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Fig. 6.6 Symbols: THz photoconductivity spectra of sample A at various 

temperatures (rows) measured 20 ps after excitation with 400 nm 

pulses at various excitation fluences ϕ as indicated in the legend 

(only 3 fluences were used at 100 K). ϕ increases from left to right at 

each row, the x-axis is the same for all plots. Color-matched lines: fit 

with (6.3); gray lines: linear component of the fit.  
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Primary fitting model 

At each temperature, spectra of the normalized transient transmittance 

measured at different excitation densities were fitted with the theoretical response 

function  ,perc-non

normT  calculated according to (5.35), i.e. the general response of a 

sample with non-percolated photoconductive inclusions in the VBD approximation.  

The changes of the spectral shape with excitation density is expressed in 

(5.35) through the dependence of Z ∝ Δσmic ∝ ϕ (5.27). The spectral shift of the 

resonance is described by the [Ln(1+Z(ω,0))−Ln(1+Z(ω,L))]/Z(ω,0) term in (5.35). 

The terms with the hypergeometric function F(κ,Z) in (5.35) describe the periodic 

oscillations in the spectra. The input for the theoretical response function is the 

model spectrum of the microscopic conductivity at the photoexcited surface 

 ωσmic
0Δ .  

Due to the observation of the Drude type of effective conductivity at low 

photocarrier densities, the conductivity spectrum of carriers with Drude type of 

mobility (3.1) was used:  

    
S

Smic
2

Drude

mic

0

mic

0
1* 




im

e
Ne


 , (6.1) 

with τS (bulk scattering time) and ξ (quantum yield of photogeneration) being the 

fitting parameters of the microscopic response. The carrier effective mass was fixed 

to that of electrons in bulk silicon m* ≈ 0.26 me.  

The morphology factors B, D in (5.35) were defined by an adjustable value of 

s (c-Si filling fraction) within the Maxwell Garnett approximation (4.9,4.10). This 

approximation of the morphology factors is applicable here because the expected 

value of the filling fraction of crystalline Si (Table 6.1) is rather low and the 

existence of percolation pathways in our samples is highly improbable: the c-Si NCs 

are surrounded by insulating oxide shells. The shape factor K in (4.9,4.10) was fixed 

to 2, which represents particles with an average aspect ratio close to 1. All spectra at 

one temperature were fitted with a single set of 3 fitting parameters: s, ξ and τS.  

These fits (not shown) reproduced well the major part of the measured 

photoconductive response, indicating that the most of the signal indeed originates in 

non-percolated nanocrystals with Drude microscopic conductivity spectrum. Two 

remarkable facts lead us to an extension of the fitting function:  

1) The filling fraction s converged to values in the order of 2×10-4 for all 

temperatures which is more than an order of magnitude below the expected 1.2% 

total filling fraction of c-Si. This means that the major, Drude-like, part of the 

measured response originates in a relatively small subgroup of the nanocrystals in the 

sample. Fig. 6.3(b) shows at the right-hand axis that c-Si cores in a wide range of 

larger diameters may just correspond to a filling fraction around 2×10-4. We show 

later by Monte-Carlo calculations that the Drude-like response originates in bigger 

nanocrystals. 
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2) The single-component model fits the photoconductivity well for lower 

excitation densities (typically left and medium column in Fig. 6.6) but it 

underestimates the actual measured response at the highest excitation densities. An 

additional term thus has to be added to fit satisfactorily the data for all measured 

excitation densities within a single model. As this component comes out only for 

high pump fluences, it must be described by a ϕ-linear transient transmittance 

contribution where the signal saturation due to the depolarization fields does not 

occur. This condition is fulfilled in two cases: either the component is percolated — 

which is not probable — or it is non-percolated but characterized by such a low 

microscopic mobility and/or low morphology D-factor that the macroscopic 

conductivity still scales linearly with the microscopic one at the present excitation 

densities (cf. Section 4.3). The normalized transient transmittance function (5.35) of 

this additional component then reduces to (5.16) with the morphological parameter B 

at the place of the filling fraction V in (5.16).  

Final fitting model 

As the nature of the microscopic mobility corresponding to the second 

component is unclear, we first formally described it using the Drude-Smith shape of 

the microscopic conductivity spectrum (3.30) that provides an analytical flexibility 

for both capacitive or inductive type of carrier response in a limited spectral range: 

     














DS

1

DS

DSmic
2

Smith-Drude

mic

0

mic

0
1

1
1*

Δ
ωτi

c

ωτi

τ
ξα

m

e
BωμNBeωσB  . (6.2) 

The adjustable parameters of this component are τDS (characteristic time of the 

Drude-Smith model), c1 (Drude-Smith “backscattering” parameter) and the 

morphologic parameter B (the morphologic parameter). The adjustable quantum 

yield ξ is common for both the components (6.1,6.2). The actual character of the 

microscopic transport corresponding to the model Drude-Smith spectrum is 

evaluated afterwards by using Monte-Carlo calculations of the mobility spectra of 

carriers confined in nanocrystals of various sizes. 

The final fitting was performed using the prescription: 

      ωTωTωT linear
norm

perc-non
normnorm Δ,Δ,Δ    (6.3) 

where perc-non
normΔT  is given by (5.35) with the  Drude microscopic conductivity 

spectrum (6.1) and linear
normΔT  is given by (5.16) with Drude-Smith microscopic 

conductivity spectrum (6.2) in the place of  ωσV mic
0Δ . We further refer to the 

non-linear Drude term as to the primary conductivity component and to the linear 

Drude-Smith component as to the secondary component. The absorption coefficient 

of Si NCs is significantly modified with respect to its bulk value only in the smallest 

NCs, which are not expected to contribute significantly to the THz conductivity 

spectra. Therefore, we assume that the local absorption coefficients in both 



 

 

 
 

74 

photoconductive components are the same: αmic = αSi = 1×105 cm−1 at 300 K, 

decreasing linearly to 7×104 cm−1 at 20 K.  

The spectra obtained for different excitation densities were weighted by their 

statistical errors (indicated by the error bars in Fig. 6.6) in the global fit at each 

temperature.  The fitting parameters were s, and τS for the primary component B, c1 

and τDS for the secondary component and ξ for both components. Results of these 

complex fits are shown as lines in Fig. 6.6. A very good match was achieved for all 

the spectra.  

The secondary contribution 
linear

normΔT  is also plotted separately as gray lines in 

Fig. 6.6. For clarity, we plot it only in selected plots at each temperature. We remind 

that the part of the normalized transient transmittance ΔTnorm (2.10) related to the 

linear contribution does not depend on ϕ and thus it makes the same contribution in 

all spectra at each individual temperature. Consequently, it presents a significant 

contribution only for the highest excitation densities.  

Legend: 
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Fig. 6.7 Symbols: THz photoconductivity spectra of sample B at 300 and 

20 K (rows) measured 30 ps after excitation with 400 nm pulses at 

various excitation fluences ϕ as indicated in the legend. ϕ increases 

from left to right at each row, the x-axis is the same for all the plots. 

Lines: fit using (6.3).  
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6. Transport in Si-NCs derived from nanoporous Si 75 

Fig. 6.7 shows spectra of the measured THz photoconductivity at 300 and 

20 K for sample B. Spectra at 100 and 200 K (not shown) were also measured and 

successfully fitted. We observe qualitatively the same behavior as with sample A. 

However, the normalized response of sample B is almost 10 times lower at the 

highest excitation fluences than that of sample A (compare black symbols in Fig. 6.7 

to the same in Fig. 6.6). At the lowest excitation fluences (<1×1013 cm−2, magenta 

symbols in Fig. 6.7), the response of sample B is still 2 times lower than that of 

sample A at comparable excitation fluences (≈1×1013 cm−2, green symbols in 

Fig. 6.6). For this reason, it was not possible to reach as low excitation fluences as 

with sample A. The two-component normalized response model (6.3) was also 

successfully used to fit the spectra of sample B as shown in color-matched lines in 

Fig. 6.7. 

6.2.2. Spectral oscillations 

Our model very well reproduces the interference pattern observed in the 

measured spectra (Fig. 6.6, Fig. 6.7). The THz probing process can be understood as 

an emission of the transient THz wave E in the photoexcited sample [40] as it has 

been already discussed at the end of paragraph 5.3.2. If we keep this language, the 

emitted THz partial waves inside the sample will have the wave vectors parallel and 

antiparallel with the probing THz wave; interference of these waves is described by 

the expression in curly brackets of (5.35) and it is at the origin of the observed 

spectral modulation of the transient signal. The standard “steady-state” Fabry-Pérot 

interferences are described by the term a in (5.35). The role of these interferences is 

demonstrated in Fig. 6.8.  

Black lines in Fig. 6.8 show the fit of one actual experimental spectrum of 

sample A (cf. the blue spectrum at 20 K in Fig. 6.6). The dotted red line in Fig. 6.8 

shows the hypothetical response of sample A if the steady-state Fabry-Pérot 

interferences were neglected in the measured transient transmittance: we clearly 

observe that this effect is only very minor. The blue dash-dotted line in Fig. 6.8 

shows the hypothetical spectrum of sample A without the terms containing the 

hypergeometric function F in (5.35). This approximation corresponds to neglecting 

partial waves with antiparallel wave vectors to the probing wave as described above 

and leads to the suppression of the interference of forward and backward emitted 

transient waves. The resulting spectrum is almost flat.  

It is clear from Fig. 6.8 that the oscillations in the experimental spectra are 

caused dominantly by the dephasing effect in the non-percolated sample while the 

interferences due to the multiple reflections on the cuvette walls have only a 

negligible effect on the transient transmittance spectra of our actual samples. This 

shows the importance of a careful evaluation of non-equilibrium interference 

phenomena in the spectra in order to avoid misinterpretation of the experimental 

results. 
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(Fig. 2. in [4]) 

Fig. 6.8 Theoretical spectra of Tnorm following (5.35); black solid line: fit to 

the data (sample A, T = 20 K, moderate excitation density), dotted 

red line: spectra with the same parameters but with a = 0 

(equilibrium Fabry-Pérot internal reflections are neglected), dash-

dotted blue line: spectra with the same parameters but terms with the 

hypergeometric function (transient interference terms) are neglected.  

6.3. Discussion 

Fig. 6.9 presents the temperature dependences of the converged values of 

fitting parameters in both samples. Parameters of the two contributions entering (6.3) 

are arranged separately in panels I. and II. of the figure. The error bars indicate 

standard uncertainty of the fit. The Smith coefficient c1 (not plotted) was found in 

general to be close to −1 with the exception of sample B at 300 K where its value 

converged to −0.93 ± 0.02.  

We first discuss the values and temperature dependences of the characteristic 

times of the Drude and Drude-Smith microscopic conductivity models. By a 

comparison of the fitted microscopic conductivity spectra of the two components to 

the mobility spectra of carriers confined in NCs calculated using the Monte-Carlo 

method, we link the two components to different sizes of individual photoconductive 

NCs. Subsequently, we discuss the quantum yield and filling fraction parameters in 

relation to the non-THz measurements presented in the introduction of this Chapter. 

Drude scattering time and Drude-Smith time 

The Drude scattering time τS (Fig. 6.9(I.a)) and the Drude-Smith (DS) time 

τDS (Fig. 6.9(II.a)) follow a similar temperature dependence (this is observed in both 

samples). This suggests that τDS may be of similar origin, i.e. the DS component may 

also arise from charge carriers with Drude-like motion that are confined inside 

smaller NCs. This process was described in [70], where the Drude-Smith time fitted 
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6. Transport in Si-NCs derived from nanoporous Si 77 

to mobility spectra of free carriers in NCs of various sizes was shown to decrease 

progressively from the value of the Drude scattering time of the carriers upon a 

decrease of the NC size: exactly this behavior is observed in Fig. 6.9: τDS is 

comparable to or smaller than τS. The monotonous decrease of the Drude scattering 

time with temperature indicates that carriers inside the examined NCs scatter mainly 

on phonons — this is natural when we consider that the crystalline NC cores 

originate from a low-defect source Si wafer. A similar behavior is found also with 

the Drude-Smith time in sample A; in sample B, a possible temperature dependence 

of τDS is below the uncertainty of the fit. 

 

I. Primary component 

(non-linear, Drude) 

II. Secondary component 

(linear, Drude-Smith) 
 

 

III. Common, others 

   
(panels τS, τDS were published in Fig. 7. in [4]) 

Fig. 6.9 Temperature dependence of the fit parameters of individual 

components of the model (6.3). The quantity in panel (III.b) is 

calculated from (I.a) as μDC = e·τS/mSi*, with mSi* = 0.26 me. 

Monte-Carlo mobility spectra 

In order to find the origin of the Drude and Drude-Smith components, we 

carried out Monte-Carlo calculations of the THz mobility spectrum of carriers in 

isolated Si NCs with various sizes. We focus mainly on the sample A at low 

temperatures where the longest Drude scattering time of 300 fs (cf. Fig. 6.9(I.a)) was 

observed because this situation provides the best opportunity for correlating the THz 

spectra with the characteristic sizes of nanocrystals. The results of the simulations are 

shown in Fig. 6.10. Based on these spectra we can state that the Drude-like response 

in the available frequency range is characteristic to NCs larger than ~60 nm. The 

shape of the mobility spectrum of such nanoparticles qualitatively corresponds to the 
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observed microscopic spectrum of the dominant non-percolated contribution 

(magenta lines in Fig. 6.6). This implies that sample A must contain a certain amount 

of large (>60 nm) Si NCs whose effective response dominates the THz transmission 

spectrum at low to medium excitation densities. The additional fluence-independent 

contribution is described with the Drude-Smith spectral shape with τDS = 160 fs 

(cf. Fig. 6.9(II.a)). The blue lines in Fig. 6.10 show the Drude-Smith–type mobility 

(Eq. (6.2) divided by eαϕ) for this case — we see that it corresponds very well to the 

mobility of free carriers confined in NCs with diameters between 20 and 30 nm.  

 
(Monte Carlo data as published in Fig. 8. in [4]) 

Fig. 6.10 Symbols: Spectra of microscopic mobility in Si NCs with various 

sizes at temperature 20 K (τS = 300 fs, m* = 0.26 me, lfree = 10 nm) 

calculated by the Monte Carlo method of carrier motion. Lines: 

Drude-Smith type of mobility for m* = 0.26 me, c1 = −1 and 

τDS = 160 fs (solid blue line) or τDS = 40 fs (dashed black line).  

Note, that the distribution of the NC size in our samples is very broad 

(cf. Fig. 6.3). The exact photoconductive response is given by a sum of partial 

contributions over all NC sizes (weighted by their volume). It is not possible to infer 

such complete information from the experimental data. For this reason, we 

approximated the real situation by two contributions (each describing a broader 

distribution of sizes) related to large and medium NCs. The amplitude of the signal 

due to medium and small NCs is much lower than that due to large NCs (Fig. 6.10) 

hence the role of depolarization fields should be weaker, in agreement with 

observations. We were unable to develop a more quantitative model, as the observed 

Drude-Smith component is rather weak; moreover, phenomena such as carrier–

carrier scattering may already come into play for the highest excitation densities.  

Quantum yields and filling fractions 

The filling fraction s of the primary component, plotted in Fig. 6.9(I.b), 

converged to approximately 2 times larger values with sample A than with sample B. 
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6. Transport in Si-NCs derived from nanoporous Si 79 

At the same time, the primary component in sample B is characterized by a 5 times 

shorter Drude scattering time (Fig. 6.9(I.a)). This means that sample A contains a 

significantly larger amount of large NCs than sample B and that the large NCs in 

sample A are more conductive.  

The quantum yield ξ (for both components) and morphology parameter B (for 

the secondary component) occur as multiplicative factors of τS and τDS in the 

amplitude of the respective microscopic conductivities (6.1), (6.2). The relaxation 

times τS and τDS are essentially linked to the shapes of the spectra and thus they 

represent the primary fitting parameters of the models. The parameters ξ and B are 

partially anti-correlated to them and we do not plot the values of ξ, B in 

Fig. 6.9(III.a,II.b), respectively, in the cases when the fitting uncertainty of τS, τDS is 

larger than its mean value.  

We find the quantum yield to be of the order of 10–30%, mostly temperature 

independent. This indicates that a large fraction of excitation photons creates carriers 

that are very rapidly (< 500 fs) trapped or that it is absorbed in surface-related defect 

states, which do not interact with THz radiation. Note that the NCs probably have a 

spongy structure (due to the etching) characterized by a large surface area which 

enhances the absorption near the surface. Photonic confinement effects may be also 

responsible for the decrease in the effective absorption as observed in [96]. 

Fig. 6.9(II.b) shows that the morphology parameter B of the secondary 

component is of the order of 10−5 in sample A and probably even lower in sample B. 

The Maxwell Garnett interpretation of the VBD model (4.9) can be used to extract 

the filling fraction of the secondary component from the fitted value of B. Filling 

fractions of the order of 10−4 (cf. Fig. 6.3(b)) are not contradictory to B ~ 10−5. 

However, we find equation (4.9) to be very sensitive to input parameters (e.g. the 

permittivity of the “matrix” formed of voids and Si oxides) for such low value of B. 

Finally, we stress that the observation of better photoconductive properties in 

the sample A (as compared to the sample B) is counter-intuitive and rather surprising 

(cf. Fig. 6.6 and Fig. 6.7). The additional treatment in ultrasonic bath that the sample 

A had been submitted to, was expected to split large agglomerates (50-100 nm in 

diameter) of interconnected NCs and, accordingly, to break narrow conductive 

channels between them. The experiment did not confirm this expectation. Several 

hypotheses may be put forward to explain it: 

(i) Under strong prolonged sonication, smaller aggregates of Si NCs 

approximately 20–30 nm in diameter are created, indeed (see Fig. 1), but 

being subsequently compressed in the measurement cuvette, the Si NCs 

cores may become connected to each other, giving rise to a higher 

microscopic conductivity. 

(ii) The oxidized shells of some NCs or aggregates might be damaged and 

partially removed owing to the sonication. This may favor the formation 

of Si NC aggregates with good electrical connection among the 

crystalline cores; such aggregates then behave as effectively larger 

particles with higher microscopic conductivity. 
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(iii) Accidental presence of a few big micrometer grains of bulk Si (as a 

reminder of the silicon wafer on which the native porous silicon was 

prepared) can overwhelm the contribution of Si NCs to the overall 

photoconductivity. In this respect, Si NCs samples with narrower size 

distribution and free of possible micrometer grains are needed for 

subsequent study. 

6.4. Conclusion 

THz photoconductivity spectra of SiO2-covered Si nanocrystals prepared by 

electrochemical etching of Si monocrystal were analyzed between 20 and 300 K. The 

response of investigated samples is dominated by the carrier-density-dependent 

effective conductivity of large NCs with the Drude type of carrier mobility. The size 

of such nanocrystals was estimated to be at least 60 nm by comparing the data to 

Monte Carlo calculations of the carrier mobility in variously sized nanostructures. 

An additional low-conductivity component appears in the measured THz 

photoconductivity spectra at high excitation densities when the response of the 

dominant component is shifted above the accessible frequency range by the effect of 

depolarization fields in the non-percolated sample. The response of this additional 

component was identified to be characteristic to the mobility of carriers in NCs in the 

size range 10−30 nm. 

The presence of nanoparticles in the range between 50 and 100 nm was not 

revealed by more traditional techniques of Atomic force microscopy, 

Photoluminescence of quantum-confined carriers and Dynamic light scattering. 

Transient THz spectroscopy thus occurs to be a very valuable complement to these 

techniques, which is further stressed by the fact that the response of large NCs was 

unambiguously assessed despite of their low volume filling fraction.  

These facts shed light on the long-lasting discrepancy in nanomaterials that 

feature measurable long-range conductivity and simultaneously exhibit effects of 

substantial carrier confinement.  Such a situation was recently observed e.g. in 

nanocrystalline CdS [47] where the confinement within ~10 nm sized nanocrystals is 

observed by a shift of the intra-band absorption edge [103] while the carrier transport 

at THz frequencies does not seem to be significantly hindered by the nanocrystal 

boundaries. Long- or mid-range charge transport in such nanomaterials can be 

mediated by very small fractions of larger nanoelements that are: 

1. hardly detectable by experimental techniques that have been tailored for 

characterizing the physically novel properties of the smallest constituents 

of the examined nanomaterials and  

2. whose presence is not expected in these materials because their fabrication 

procedure focuses on preparing the highest attainable concentrations of the 

really small nanoelements. 
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7. Si-NC superlattices  

The study of nanocrystals derived from nanoporous Si in the previous chapter 

showed that the THz photoconductive response of nanomaterials may be cloaked by 

the response of low concentrations of large photoconductive particles that form only 

a tail in the nanoparticle size distribution. Therefore, we aimed to get more control 

on the nanocrystal size distribution. In this chapter, we examined THz 

photoconductivity of Si nanocrystals made by thermal decomposition of epitaxial 

layers of Si-rich silicon oxides, resulting in much narrower NC size distributions.  

We first overview the sample growth procedure, the energy-filtered 

transmission electron microscopy (EFTEM) pictures and NC size distribution 

analysis that we received from the production laboratory at Freiburg University. THz 

photoconductivity spectra are analyzed subsequently using the VBD effective 

medium model with model mobility spectra of carriers confined in NC calculated 

using the Monte Carlo method. 

In brief, superlattices of alternating layers of a defined silicon oxide (SiOx, 

x < 1) and pure silicon dioxide (SiO2) were prepared by plasma enhanced chemical 

vapor deposition. Each sample consisted of 40 SiOx/SiO2 bilayers. One hour of 

annealing at 1150°C lead to disproportionation of silicon monoxide in the SiOx layer: 

 SiSiOSiO2 2   (7.1) 

and the precipitates of atomic Si together with the excessive Si formed nanocrystals 

separated by the remaining silicon dioxide. The SiO2 interlayers serve as diffusion 

barriers for Si and the obtained Si NCs are thus retained in single-NC-thick layers. 

All SiOx layers in a single sample have the same thickness Llayer and stoichiometry 

parameter x and the samples thus contain NCs with a narrow size distribution. By 

changing these two parameters (Llayer and x), samples with NCs of different sizes are 

prepared  [104,105]. 

7.1. Sample morphology and optical properties 

We investigated THz photoconductivity of 5 different samples as listed in 

Table 7.1. The letters L, M, S in the sample names in the Table stand for Large, 

Medium and Small and refer to the SiOx layer thickness provided explicitly in the 2nd 

column. The number in the sample names refers to the oxygen-to-silicon content 

ratio x in the original SiOx layers. The thickness of the SiO2 interlayers was set to 

4 nm for all the samples. We studied samples with 4 different SiOx stoichiometries 

and 3 layer thicknesses (Table 7.1) 
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SiOx layer  

 properties 
EFTEM 

Optical 

 properties 

Sample 
Llayer 

(nm)* 
x* 

sarea* 

(%) 

sd 

(%) 

〈d〉* 

(nm) 

〈d〉
d

2  

(nm) 

Transm. 

(%) 

α  

(cm−1) 

L93 5.0 0.93 30 20 3.4 4.7 41 41000 

M100 3.5 1.00 Data not available 79 11000 

M93 3.5 0.93 17.7 11.8 2.6 3.0 70 19000 

M85 3.5 0.85 22.3 14.9 3.0 3.6 73 16000 

M64 3.5 0.64 24.6 16.4 3.2 4.4 52 41000 

S93 2.0 0.93 Data not available 83 12000 

*Values are taken from ref. [106] that deals with these very samples. 

(Selection from Table I. in [46]) 

Table 7.1 Properties of investigated Si-NC/SiO2 superlattices.  

Fig. 7.1 shows EFTEM images of single-layer samples with analogous properties (a 

single annealed SiOx layer between SiO2 substrate and SiO2 overlayer [105]). The 

observed Si NCs have shape of solidified droplets. At low Si concentration 

(Fig. 7.1(c)), individual NCs are isolated and relatively round. With increasing Si 

content (Fig. 7.1(d,e)) the initial droplets are formed nearer to each other and tend to 

merge together, forming larger and less regularly shaped NCs. Increase of the SiOx 

layer thickness (from Fig. 7.1(c) to Fig. 7.1(b)) allows formation of precipitates with 

larger dimensions that tend to merge already at relatively low Si concentration. 

 
(Selection from: (a) Fig. 3.11 in [107], (b-e) Fig. 4 in [105]) 

Fig. 7.1 Examples of EFTEM images of samples with nominally the same 

properties as the samples studied in this work with the following 

thicknesses and compositions of the SiOx layer: (a) side view of 5 

bilayers of 4 nm SiO2/3.5 nm SiO0.93 ~ M93, (b-e) top view of 

single-layer samples: (b) 4.5 nm, SiO0.93 ~ L93, (c) 3.5 nm, SiO0.93 ~ 

M93, (d) 3.5 nm, SiO0.85 ~ M85, (e) 3.5 nm, SiO0.64 ~ M64. White 

lines indicate larger clusters of NCs. 

From the EFTEM images, the mean NC diameter 〈d〉 and NC areal filling 

fraction sarea were determined. [107] See Fig. 7.2 for examples of NC diameter 

distributions and the EFTEM section in Table 7.1 for the results. The volume filling 

fractions were calculated as sd = 2sarea/3, based on the assumption that the NCs are 
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approximately spherical. The diameter distribution histograms based on the number 

of NCs with the given lateral size in the EFTEM images (upper panel in Fig. 7.2) 

were weighted by the square of the diameter to obtain volume distribution of 

corresponding NC cross-section functions (lower panel in Fig. 7.2). In fact, the 

vertical size of the nanocrystals is assumed to be imposed by the SiOx layer thickness 

for a given sample and does not change the volume distribution histogram. 

  
(FIG. 1. in [46]) 

Fig. 7.2 Examples of distributions of NC sizes. Points: distributions 

determined from EFTEM data, solid blue lines: fit with log-normal 

probability distribution, dashed green verticals: mean values 

〈d〉, 〈d〉
d

2. 

In order to determine the (photo)carrier concentration in NCs and the 

resulting depth-profile of the effective conductivity (cf. Fig. 5.1) the effective 

absorption coefficient of each sample had to be assessed. This was achieved by 

measuring the power of the pump beam transmitted through each sample (column 

Transm. in Table 7.1). The absorption coefficient was then simply calculated, taking 

into account the surface reflectance, which was measured to be ~4% for all samples. 

The resulting α of several 104 cm−1 is well below the absorption coefficient of bulk 

silicon, αSi = 7×104 cm−1 at 400 nm.  

From the point of view of radiation at 400 nm, the sample consisting of 

nanocrystals with a size of a few nm can be still described by an effective medium 

model. For this reason we employed the Maxwell Garnett EMT (3.15) to relate the 

effective absorption coefficient of the sample α to the intrinsic absorption of 

individual nanocrystals αSi. For this evaluation we use the filling fractions s from 

Table 7.1, the shape factor K = 2 and the permittivities, which enter the Maxwell 

Garnett formula read: 
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 (7.2)  

where nSi ≈ 5. The Maxwell Garnett formula (3.15) provides α only in the order of 

103 cm−1. To obtain the 10 times higher measured value of α, the NC intrinsic 

absorption coefficient of the nanocrystals αmic would have to be ~100×αSi. As we do 

not find any justification for such a high value of αmic, we attribute the increased 

effective absorption coefficient of the sample to other absorption centers that do not 

produce mobile photocarriers, such as amorphous Si, compounds with residual 

nitrogen (present in the SiOx layers from the deposition source reactants) or surface 

states. In the THz photoconductivity analysis below, we calculate the carrier density 

in the NCs using αmic = αSi and with the quantum yield ξ = 1. 

7.2. THz photoconductivity 

The samples were oriented perpendicular to the THz beam in our setup as 

usual. The in-plane photoconductivity of the NC layers is thus measured, due to the 

transversal polarization of the probe THz pulses. The charge transport perpendicular 

to the superlattices was studied by conventional techniques in [108,109]. We used 

excitation at 400 nm with fluences between 9.0×1012 and 6.3×1014 photons/cm2 and 

the samples were kept at room temperature for all the measurements.  

Let us first shortly refer to Fig. 7.3, showing in symbols the experimental 

THz photoconductivity spectra, to provide motivation for the fitting model 

introduced below. All samples exhibit the capacitive type of response with an 

increasing real part and a negative imaginary part. The normalized transient 

transmittance increases with decreasing excitation density which clearly means that 

depolarization fields alter the response and that an EMT must be implemented in the 

data evaluation.  

The linear regime of the effective response was achieved only in the 

silicon-richest sample M64. The green symbols plotted in Fig. 7.3(a) correspond to 

the lowest photoexcitation density and the blue symbols correspond to an about four 

times higher density. The data show an identical behavior below 1 THz; some 

deviations in the real part of these two curves are observed; we attribute this seeming 

decrease of the green spectrum with respect to the blue one to increased experimental 

errors for such low carrier densities. (Note that the green spectrum corresponds to the 

measurement taking 15 hours.) The fact that these two spectra are identical within 

the statistical errors means that they are not affected by depolarization fields, thanks 

to the achieved low carrier densities. This means that the observed capacitive type of 

response is also characteristic to the microscopic transport, i.e. charge carriers are 
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substantially confined inside the nanocrystals. Similar qualitative behavior is 

expected also in samples with lower Si content.  

 
(FIG. 2. in [46]) 

Fig. 7.3 Examples of THz photoconductivity spectra of NC-Si/SiO2 

superlattices, symbols: measured 10 ps after photoexcitation with 

indicated photon fluences at 400 nm, lines: calculated according to 

the fitting model described below. 

Lines in Fig. 7.3 show the response calculated with the following fitting 

model:  

1. The Monte Carlo method (Section 3.5) was used to calculate the model 

spectra of room-temperature microscopic mobility μd(ω) of carriers 

confined in spherical NCs with diameter d fixed to the value 〈d〉
d

2 as 

obtained for each sample from the EFTEM distributions (Fig. 7.2 and 

Table 7.1). The mean value of area-weighted NC diameters 〈d〉
d

2 was used 

instead of the mean value of NC diameters 〈d〉 because the contribution to 
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the total photoconductivity of the sample is proportional to the volume of 

the NCs, rather than to their count. The fitting parameters of the Monte 

Carlo calculation were the bulk scattering time τS and the probability of 

inter-NC transport pF,d.  

2. It was already pointed out that in some samples, the NCs tend to merge 

into clusters of various sizes. In the cases where the presence of such 

clusters seems justifiable, we approximate their contribution to the total 

response by the mobility spectrum μδ(ω). This mobility is calculated again 

with the Monte Carlo method for carriers confined in spherical 

nanocrystals of a diameter δ > d with a given probability of inter-cluster 

transport pF,δ. The diameter δ is a fitting parameter, in contrast to d. By 

adjusting δ to get the best fit of the experimental data, we aim to find the 

average size of the clusters in the given sample. 

3. The theoretical normalized transient transmittance of the thin film sample 

containing nanocrystals with diameters d and δ, both with a possibly 

percolated (5.20) and non-percolated (5.38) response contribution, was 

calculated: 
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The morphology factors of non-percolated inclusions Bi, Di were defined 

according to the Maxwell Garnett EMT (4.9,4.10) as we assume that the 

MG approximation that was derived for isolated inclusions does hold also 

for samples with a very low levels of percolation: 
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The steady-state permittivities in the THz range are εSi = 12 and εSiO2 = 4, 

the shape factor was fixed to K = 2 for spherical particles, the filling 

fraction of the smaller NCs sd was fixed to the value obtained from 

EFTEM measurements (Table 7.1) and sδ was a fitting parameter of the 

model. 
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4. The calculated spectra of ΔTnorm were fitted to the experimental ones: all 

the spectra measured for one sample at various excitation fluences were 

fitted together with a single set of parameters. The bulk scattering time τS 

was found to be larger than 100 fs in all samples and does not influence at 

all the response of carriers confined in NCs of given sizes in the THz 

frequency range. In the samples with low Si content the introduction of the 

clusters according to point 2 is not justified; also introduction of the 

clusters is not necessary to reproduce the spectra and their dependence on 

the photoexcitation density. For these samples (M93, M85, M100, S93) we 

are left with two fitting parameters: Vd, pF,d. For samples with larger Si 

content or with thicker Si layers (M64, L93) where formation of clusters is 

more probable, fits with 6 fitting parameters were performed: Vd, pF,d, δ, sδ, 

Vδ and pF,δ. 

7.3. Results and Discussion 

The spectra of samples with lower Si content M85 and M93 (Fig. 7.3(b,c)) 

show a strongly capacitive type of response with a linear imaginary part and a 

several times lower real part. Examples of Monte-Carlo calculations of carrier 

mobility spectra (Fig. 7.4) in NCs of various sizes indicate that this type of spectra 

originates in nm-sized NCs.  

 
(FIG. 3. in [46], rearranged) 

Fig. 7.4 Examples of mobility spectra of isolated Si NCs with different sizes 

calculated using the Monte-Carlo approach. In order to emphasize 

the difference in the shape of the real part, the spectra are scaled to a 

matching initial slope of the imaginary part. 

The spectra of Si-poor samples M85 and M93 are indeed best matched by the 

theoretical model with NC sizes given by the EFTEM measurements, with no 

percolation and no connectivity among the small nanocrystals (Vd = 0, pF = 0) and 

without any larger clusters (sδ = 0). Since there is no other adjustable parameter, we 

find that the VBD approximation of effective conductivity with the filling fraction sd 
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obtained independently from EFTEM measurements and with Monte Carlo 

calculated microscopic response spectrum provides a theoretical model that agrees 

well with the experimental response of these samples. In other words, for samples 

with small nanocrystals, we are able to reproduce quantitatively the experimental 

spectra by using Monte Carlo and effective medium models where only the nominal 

parameters of the samples are introduced and none of them needs to be further 

adjusted by the fitting procedure. Despite the fact that there are no EFTEM data 

avaliable for the samples with the lowest Si content M100 and the thinnest SiOx layer 

S93, we verified by scanning over an interval of filling factors that the nature of the 

response of these samples is the same: the THz spectra confirm the lack of 

percolation (Vd = 0)  and of inter-NC connectivity (pF,d = 0) as well as the absence of 

larger clusters. See Table 7.2 for an overview of the parameters of the fits. 

 

Sample Vd pF,d δ (nm) sδ/sd* Vδ pF,δ 

L93 0 4 16 30% 0.0015 0 

M100 0 0 - 0 - - 

M93 0 0 - 0 - - 

M85 0 0 - 0 - - 

M64 0 0 29 5%* 0.0012 0 

S93 0 0 - 0 - - 

*Filling fraction sδ applies to clusters with an average dimension δ. 

(Selection from Table I. in [46]) 

Table 7.2 THz fit parameters.  

The response of the Si-richest sample M64 and the sample with the thickest 

SiOx layers L93 (Fig. 7.3(a,d)) is more complex. In particular, the response is about 

an order of magnitude stronger than for previously discussed samples, the real part of 

the conductivity increases quite rapidly with frequency in the accessible spectral 

range, and the imaginary part is no longer strictly proportional to the frequency. 

Fig. 7.4 shows that such a spectrum can be explained only by the presence of a non-

negligible amount of particles whose size along the polarization of the THz probe 

pulse is significantly larger (tens of nm). In reality, a broad distribution of shapes and 

sizes is expected to exist with a significant tail towards larger dimensions, similarly 

as observed for samples described in the previous Chapter. Indeed, the fitting model 

converged to non-zero values of the filling fraction sδ of larger particles.  

In fact, the samples M64 an L93 contain a similar amount of Si per layer —  

L93 has ~50% thicker SiOx layers than M64, M64 has ~50% more of Si in each layer 

per unit thickness — and their Si filling fractions and are also alike (Table 7.1). 

However, the experimental spectra and our fits show quite a different character of 

clustering of the small NCs in these two samples. The spectra of sample M64 are 
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then best fitted with a low concentration sδ/sd = 5% of relatively long clusters, δ ≈ 29 

nm.  The EFTEM image in Fig. 7.1(e) shows several clusters of such length.  

For sample L93 we find, in contrast, that almost 30% of Si is present in the 

form of relatively smaller clusters with δ ≈ 16 nm (Table 7.2). This means that the 

very long clusters (>30 nm) observed in the thick Si-poor layer in Fig. 7.1(b) are in 

fact not well conductive from one end to the other; instead, they are just a group of 

several smaller (~16 nm) clusters that are not well connected. Spectra and fit results 

of samples M64 and L93 further differ in the low-frequency conductivity: in sample 

L93, it slightly deviates from zero which indicates a certain possibility of long-range 

inter-NC charge transport — the fit converged to 4% probability of transport 

between adjacent NCs. This means that some of individual NCs in thick SiOx layers 

are no longer perfectly isolated from each other but they form at least pairs separated 

by finite energy barriers (similar behavior was observed in CdS NCs prepared by 

chemical bath deposition in [47]).  

 
(FIG. 4. in [46]) 

Fig. 7.5 Scheme of the morphology of investigated samples as deduced from 

THz photoconductivity measurements. (a) NCs in samples S93, 

M93, M85, and M100 are well isolated from each other and no 

tendency to aggregation is observed. (b) NCs in the sample M64 

form clusters; some of these clusters may form a percolation network 

on a medium length scale (the pathways closest to the percolation are 

illustrated by thick dotted lines). (c) In thick layers (L93), weakly 

connected NCs may develop. The electron transport among these 

NCs is limited. Insets: Equivalent electrical circuits of the structures. 

The difference between the morphology of the two samples can be explained 

by different diffusivity of Si. The diffusion coefficients of atoms (Si) in a glass 

(SiO2) increases with concentration of the atomic material. In the Si-richer layer 

(M64), atomic Si diffuses faster, clusters are formed in early stages of annealing and 

have more time to crystallize into well conductive objects. Si is also able to diffuse 

further to its target NC, resulting in wide gaps between individual precipitates as 

observed in Fig. 7.1(e). In a Si-poorer layer, L93, Si atoms diffuse more slowly and 

NCs merge into clusters in later stages of the annealing. The clusters thus probably 

have a lower quality (crystallinity, conductivity) of internal connectors. Si atoms also 

travel shorter distances during annealing and a larger amount of smaller NCs is 
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predominantly formed with narrower gaps between them, as seen in Fig. 7.1(b), that 

more probably allow inter-NC transport (pF ≈ 4%). The different clustering regimes 

are illustrated in Fig. 7.5. 

All fitting parameters are summarized in Table 7.2. The fitted percolation 

strengths of the clusters in both clustered samples is rather small (Vδ ~ 10−3), but a 

non-zero value is required for reproducing the fluence-independence at the smallest 

excitation densities when the response of the larger objects dominates. Note that, as 

already pointed out in [45], the non-vanishing percolation strength does not strictly 

mean a continuous conductive pathway through the entire sample, but only on a 

distance substantially longer than the size of the insulating gaps between the NCs. 

Morphologies with very small gaps between NCs imply a high capacitance between 

the photoconductive elements, and upon clustering, some of the gaps close, i.e., the 

capacitance effectively increases (Fig. 7.5). At high (THz) probing frequency, the 

impedance of the capacitor drops down and the circuit impedance is dominated by 

the resistance mimicking the percolation.  

The microscopic picture of the charge carrier transport in the studied systems 

is schematically summarized in Fig. 7.5. We stress that the linear polarization of the 

THz pulse is parallel with the sample surface which means that only in-plane 

conductivity is probed. The conclusions on the size of aggregates and percolation 

strength thus apply only to lateral directions. Possible coupling among individual 

SiOx layers is not encoded in our signal. 

7.4. Kinetics 

Spectrally averaged photoconductivity kinetics in Fig. 7.6 show the evolution 

of photoconductivity in its early stages. On the time scales longer than a few 

picoseconds, the decay can be described by a single stretched exponential. This is in 

agreement with the recent report on photo-initiated dynamics of identical samples 

studied by time-resolved absorption and luminescence [110] where the dynamics was 

attributed to the non-radiative bimolecular recombination of carriers in the core of Si 

NCs. 

A notable behavior of most of the samples is the presence of a sub-

picosecond decay component. This feature is particularly pronounced in samples S93 

and L93. There is no pronounced excitation fluence dependence of this component 

(with the exception of sample S93 where the amplitude decreases with increasing 

excitation fluence). The decay thus cannot be due to Auger recombination, which is a 

strongly intensity dependent process. Since the NCs were found to be mostly isolated 

from each other, charge migration towards energetically favorable isolated particles 

as observed in [111] should not play an important role here; besides that, the sub-

picosecond time scale is too short for such a process to take place. A fast initial 

decay component in Si NCs prepared by electrochemical etching was recently 

attributed to the carrier trapping at interface states [112] [37]. Also one cannot 

exclude the possibility that the charges are initially generated at higher energy levels 
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in which they are more delocalized; subsequent fast relaxation to more localized 

states then could manifest itself as a rapid initial drop in the photoconductivity, 

similarly as it has been observed in CdS NCs [47]. 

 

 
(FIG. 5. in [46]) 

Fig. 7.6 Transient THz kinetics scans for samples (a) with different SiOx 

layer thickness and (b) with different composition x. The pump 

fluence in all measurements was in the range 

3.1−3.6×1013 photons/cm2. The lines serve as guides to the eye. 

7.5. Conclusion 

THz photoconductivity spectra of superlattice samples of Si nanocrystals with 

various narrow size distributions embedded in SiO2 matrix were measured. Spectra 

of the samples with small well-isolated NCs are excellently reproduced by the VBD 

effective medium model that incorporates microscopic carrier mobility spectra 

calculated by the Monte Carlo method in model NCs of given, independently 

measured, properties. 

In samples with a higher content of Si (M64) and with thicker layers (L93), 

additional (tens-nm-sized) clusters with larger localization scale were identified by 

fits of the spectra with Monte Carlo mobility in the VBD effective medium model.  

These clusters form a short- or medium-range percolation network and do not 

possess any significant internal structure which could hinder the intracluster transport 

of charges. In addition, groups of weakly mutually connected nanocrystals develop in 

SiOx layers with a larger thickness. A limited probability of short-range inter-NC 

transport was also observed in the latter sample suggests that these structures may 

develop at the end of the growth of individual nanocrystals inducing higher 

concentration of defects at the grain boundaries. The size of the observed clusters 

(tens of nanometers) is large enough to suppress possible effects of the strong 

quantum confinement. 
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8. Dynamics of density-dependent response in bulk 

rutile 

Titanium dioxide is a common mineral that is characterized by a very strong 

electro-phonon interaction and has a relatively wide band gap of ~3 eV that is used 

e.g. in Grätzel photovoltaic cells. Outside optoelectronics, titania particles are used as 

one of the most common white pigments in industrial paintings, dyes and colorants 

thanks to the high refractive index of the material. The band gap at the high-energy 

edge of the visible spectrum makes it also an effective UV filter that is transparent in 

the visible range and used in most sun screening lotions together with ZnO. 

 

Fig. 8.1 The tetragonal unit cell of rutile. Oxygen atoms are red; titanium 

atoms are grey. C-axis is vertical in the figure. [113] 

Rutile (Fig. 8.1) is the most common natural crystallographic form of titanium 

dioxide. In this Chapter, we investigate THz photoconductivity of a monocrystal 

rutile slab at temperatures between 10 and 300 K in the first 600 ps after 

over-the-band-gap excitation with photon fluences changing over 2 orders of 

magnitude. The main motivation of these measurements was to obtain independent 

data on carrier transport in bulk rutile as a reference for the previous and further 

investigations of TiO2 nanosystems in our group. The following sections present: an 

in-depth time- and density-resolved study of carrier transport at low temperatures; a 

short section on the temperature dependence of photocarrier conductivity; the 

temperature dependence of electron–hole recombination as observed in OPTP 

kinetics scans; and lastly the transient photo-induced change of (multi)THz 

permittivity of rutile at room temperature. Most of the results were published 

recently in [114]. 

Our sample was a 10×6 mm2 large, 260 μm thick, (001)-oriented slab of rutile 

single crystal provided by Patrick Mounaix and Mario Maglione. Fig. 8.2 shows the 

dielectric function of our sample at various temperatures that was measured by 

steady-state THz spectroscopy (cf. Section 2.2) in order to characterize the dispersion 

of the refractive index needed to calculate correctly the spectra of normalized 

transient transmittance (2.10). With increasing temperature, we observe a dispersion 



 

 
 

8. Dynamics of density-dependent response in bulk rutile 93 

and an absorption tail of the lowest-frequency polar phonon at 183 cm−1 [115]; the 

phonon damping progressively decreases as the temperature is lowered. 

 

 
(data as published in FIG. 1. in [114]) 

Fig. 8.2 Dielectric function of our sample of rutile (E ⊥ c) at various 

temperatures. 
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penetration depth 11.8 nm 1/α 

Table 8.1 Characteristics of bulk rutile. 

8.1. Picosecond dynamics of charge transport at low 

temperatures  

In a previous OPTP work, Hendry et al. [118] reported a decrease of the 

scattering time of charge carriers in rutile with increasing excitation density, as 

inferred from fits of THz photoconductivity spectra with the Drude model. The 

evaluation in [118] neglected the depth-inhomogeneity of excitation that is due to a 
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high absorption coefficient of the used 266 nm (4.7 eV) excitation light. We 

reviewed the proposed scattering model in similar experimental conditions on a 

deeper level by taking into account:  

 the exact depth profile of photocarrier density and  

 the temporal evolution of the density profile due to carrier diffusion and 

recombination.  

For this purpose, we measured the THz photoconductive response at various pump–

probe delays between 10 and 610 ps after photoexcitation with 266 nm light at 

several excitation fluences between 2×1012 and 2.5×1014 photons/cm2. Then we 

employed numerical solution of carrier diffusion equations through this time interval. 

This plasma diffusion model was employed with data measured at 10 and 70 K 

where effects of the diffusion are most pronounced.  

8.1.1. Published scattering model and data comparison 

Hendry et al. [118] measured the transient THz photoconductivity of 

(001)-rutile at a temperature of 30 K, solely at tp = 10 ps, using the same excitation 

wavelength as we did, with fluences between 4×1012 and 6×1014 ph/cm2. They fitted 

the transient transmittance spectra with Drude-type conductivity in the form [118] 
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where the superscript “av” was used to emphasize that Δσav(ω) represents an 

averaged photoconductivity for all photocarriers across the excited region. The 

average excitation density is Nav ≈ 0.63αϕ (cf. footnote 19 in [118]).  The fitted value 

of τav is characteristic to the shape and amplitude of the measured photoconductivity 

spectrum, but it is not meant as the arithmetic mean of the scattering times of the 

carriers distributed in the sample with a varying concentration. It is connected the 

actual distribution of density-dependent carrier scattering times in a complex manner 

that has not been formulated. We refer to (8.1) as to the single-component model. 

Fig. 8.3 shows the τav(Nav) dependence in empty boxes together with data obtained 

from our measurements by the same evaluation method (full boxes).  

A very good correspondence between our and their results can be seen, 

indicating that samples of similar quality were used. Hendry et al. fitted the 

dependence of the single-component-fit carrier scattering rate on the average carrier 

density Nav with the following model: 
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where τ0 stands for the scattering time in the low-density limit and a and b are the 

proportionality constants of the electron–hole scattering and of an enhanced 

scattering of carriers on acoustic phonons, respectively. The latter effect was 

reasoned as follows: carrier mean free path between collisions on acoustic phonons is 
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constant at a given temperature [119] and the velocity of mobile carriers obeys the 

Fermi distribution ∝ N1/3 at increased carrier densities due to the band filling. At low 

densities, the carrier velocity obeys the Maxwell-Boltzmann distribution and the 

value of b can be estimated from the scattering time of carriers on acoustic phonons 

in the low density limit τA [118],  
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where mDOS is the density-of-states mass. In another paper, Hendry et al. have shown 

that in undoped rutile at low temperatures, scattering on acoustic phonons is the 

dominant mechanism and τA can be in this case identified with τ0. [96] 

 

 
(adaptation of FIG. 4 in [114]) 

Fig. 8.3 Single-component scattering times in a 260 μm thick rutile (E ⊥ c) 

sample 10 ps after photoexcitation at 266 nm. [*]30 K data as 

published by Hendry et al. in [118].  

8.1.2. The general plasma-diffusion model 

We show in the following that both electrons and holes play an important role 

in the measured THz photoconductivity spectra at low temperatures. For this reason, 

we explicitly distinguish between electrons and holes (subscripts e, h, respectively) 

in the following equations. The depth profile of the carrier density initially follows 

the absorbed photon density (Lambert-Beer absorption law): 

     he,;exp0,  izααzN i  , (8.4)  

Since bimolecular (electron–hole) recombination is expected to be the dominant 

process of mobile carrier loss on the subnanosecond time scale at high carrier 

densities, we describe the evolution of the carrier density in time and space by using 

the second Fick’s law combined with a bimolecular recombination term 
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where B is the bimolecular recombination constant and DA(Ni) is the ambipolar 

diffusion coefficient 
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which directs diffusion of both electrons and holes at the same rate. This is because 

the electrostatic attraction between the two carrier types prevents the more mobile 

one from diffusing away from the less mobile one. Diffusion coefficients De,h of 

electrons and holes, respectively, are connected to their DC mobilities μe,h at given 

carrier densities via the Einstein relation 

 
e

Tkμ
D

Bhe,

he,  . (8.7) 

(Equal temperature of electrons and holes is assumed after the first few 

picoseconds after photoexcitation when the thermalization is completed.) The 

ambipolar character of diffusion together with the dominant character of the 

bimolecular recombination imply that in our case, tp ≲ 600 ps, we can consider the 

concentrations of electrons and holes in the sample as identical: 

N(z,tp) ≡ Ne(z,tp) = Nh(z,tp).  

Carrier mobilities in the bulk crystal are expected to be Drude-like and to 

depend on the carrier density through the scattering time 
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which we assess independently for electrons and holes in contrast to (8.2): 
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because electrons and holes are not expected to have the same low-density scattering 

time τ0i and carrier–phonon scattering rate bi. The density-dependent ambipolar 

diffusion coefficient is then: 
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After solving numerically the diffusion equations (8.5) with density 

dependent ambipolar diffusion coefficient (8.10), our fitting procedure integrates 

carrier mobilities (8.8) at given times tp over the depth (cf. transient sheet 

conductivity 5.41) and in this manner we obtain the model spectra of normalized 

transient transmittance: 
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Here L is the sample thickness and, in our case, L >>> 1. A single set of parameters 

me*, mh*, τ0e, τ0h, a, be, bh, B of the calculated spectra is iterated by the simplex 

downhill method following the criterion of least squares to obtain the best fit to a set 

of spectra of ΔTnorm measured at different excitation densities and pump–probe 

delays. 

8.1.3. Kinetics and simplified analysis 

Fig. 8.4 shows the transient THz kinetics of the response of photocarriers 

excited with the highest fluence available in cryostat at 10 and 70 K. The time axis of 

the plot is shifted by 1 ps to include the instant of excitation at tp = 0 ps. Immediately 

after that, we see an unusually slow 100 ps increase of the transient absorption at 

10 K, indicating an increase of the transient conductivity of the photoexcited 

electron–hole plasma. Our hypothesis is that the dense carrier plasma (initial surface 

photocarrier density is 1.3×1020 cm−3) expands from the 12 nm absorption layer 

deeper into the sample by diffusion. This leads to a decrease of the carrier density, 

accompanied by an increase of the scattering time (8.2) and an increase of the 

amplitude of the average Drude conductivity (8.1). At 70 K this effect is weaker, yet 

it keeps up the transient signal at a constant level for the first 100 ps. 

  

Fig. 8.4 Transient THz kinetics of rutile (E ⊥ c)  after excitaion with 

1.6×1014 photons/cm2 at 266 nm at 10 and 70 K. Points: measured 

data; line: guide to the eye. Arrows: time delays at which THz 

photoconductivity spectra was measured. Inset, boxes: measured 

ΔTnorm spectra; lines: fit with single-component model (8.1). 
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A slower process of carrier recombination decreases the carrier density, too, but it 

also reduces the total number of conductive carriers at the same time. This decrease 

of the conductivity due to the loss of conductive carriers takes over at approximately 

tp ≈ 100 ps and a monotonous decrease of transient absorption is observed 

thereafter.* 

Arrows in Fig. 8.4 indicate time delays at which transient THz waveforms 

were measured to obtain spectra of normalized transient transmittance. Three 

selected spectra are shown for 10 K along with their fits by the single‑component 

Drude model in the inset of Fig. 8.4. An increase of the scattering time (narrowing of 

the resonance at zero frequency) is clearly seen. The amplitude of the fit with the 

single‑component Drude model cannot be analyzed straightforwardly, as it includes 

the increase of the scattering time and averaging over a decreasing number of 

recombining carriers. Before presenting quantitative results of our fits with the 

plasma-diffusion model introduced in the Subsection 8.1.4, we present a simpler 

model that clearly justifies our interpretation of the observed evolution of the OPTP 

kinetics and spectra. 

Two-component Drude model 

Within this model we assume that the photoexcited part of the sample 

consists of two regions: a high-density plasma region (close to the surface, subscript 

H) and a low-density plasma region (deeper in the sample, subscript L). The carrier 

response in both regions is considered Drude-like and the total THz signal equals the 

sum of these two contributions: 

       
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 , (8.12) 

with a constant low-density scattering time τ0 in the low-density region and a 

time-dependent scattering time τH that presents an average (again not in the exact 

meaning of an arithmetic mean) over scattering times of carriers that have not yet 

reached the low-density region. The process of plasma expansion (diffusion of 

carriers between the two regions) is taken into account by the fractions ξH and ξL of 

carriers in the two regions that are considered as independent quantities evolving in 

time. In a good quality bulk sample, as this one, we presume unitary quantum yield 

at the beginning ξH(0) + ξL(0) = 1. Eleven experimental spectra measured at 10 K at 

the highest pump fluence at delays indicated in Fig. 8.4 were fitted with (8.12). The 

quality of the fits is slightly superior to the fit with the general plasma-diffusion 

model, which is presented afterwards, but let us remind that here the fitting 

parameters ξH, ξL, τH are independent for each spectrum and τ0 is the only global 

 
* A minor oscillation that occurs in the transient kinetics between tp = 2 and 6 ps does not originate 

in the sample. It was checked that similarly as in the case of nanocrystalline Si (see Fig. 6.6) we 

observed here a small THz signal generated unintentionally in the sapphire windows of the 

cryostat by intense pump pulses. 
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parameter (common for all the spectra). Fig. 8.5 displays the resulting parameters 

versus the pump–probe delay.  

  

Fig. 8.5 Parameters of a fit by the two-component Drude model (8.12) of 

ΔTnorm spectra of rutile at 10 K at the highest available excitation 

fluence as a function of the pump–probe delay. 

The sum ξH + ξL represents the decay of the total carrier number by recombination 

while the individual variations of ξL and ξH involve the transfer of carriers from the 

high-density region to the low-density one. The increase of τH with the pump-probe 

delay towards τ0 qualitatively indicates that the average carrier density in the high-

density region decreases with time. For longer times, τH must inevitably approach τ0 

and the response will tend to a single-component one: this effect along with the 

decrease of ξH leads to the growing error bars in Fig. 8.5.  

Apparently, the carrier recombination is a process occurring on a comparable 

time scale as the plasma expansion and homogenization. All these findings clearly 

support our hypothesis of the importance of the competition between the carrier 

diffusion and recombination for the analysis of our spectra. We thus now proceed to 

the discussion of the plasma-diffusion model introduced in the theoretical part of this 

section. 

8.1.4. Results and discussion 

The general plasma diffusion model was applied to a set of 23 complex THz 

spectra of normalized transient transmittance at 10 K:  

 11 spectra measured at the maximum fluence of 1.6×1014 photons/cm2 for 

approximately logarithmically increasing pump–probe delays between 9 

and 600 ps (arrows in Fig. 8.4, evaluated also with the two-component 

model);  

 8 spectra measured at a decreased fluence of 1.3×1014 photons/cm2, with 

slightly longer pump–probe delay steps between 11 and 600 ps;  

 4 spectra at t = 10 ps at further decreased fluences of 5.4×1013, 1.8×1013, 

5.9×1012 and 2.0×1012 photons/cm2.  
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A set of 15 spectra was evaluated at 70 K: 

 10 spectra measured at the maximum fluence for approximately 

logarithmically increasing pump–probe delays between 11 and 600 ps; 

 5 spectra at t = 10 ps at decreased fluences of 5.4×1013, 1.7×1013, 5.9×1012 

and 2.0×1012 photons/cm2.  

A global fit of all spectra at one temperature with a single set of parameters was 

performed. The fitting procedure optimized the parameters by the downhill simplex 

method following the criterion of least squares in the frequency interval 0.19–

1.9 THz over all spectra. (The experimental data showed the lowest experimental 

errors in this interval.) The global fit has at most 8 free parameters (me*, mh*, τ0e, τ0h, 

a, be, bh, B). Below we present the results of the fits and discuss additional 

constraints which we imposed on the parameters.  

Polaron effective masses 

Up to now, we have not distinguished between electrons and holes in the 

interpretation of the measured spectra of THz photoconductivity. Our 

plasma-diffusion model indeed discriminates the two carrier types because it stems 

from two presumptions that are essentially connected to two carrier type of opposite 

polarities: (i) diffusion has ambipolar character due to Coulomb attraction and (ii) 

carrier loss is dominantly due to bimolecular recombination. This excludes the 

possibility that the sum fit (8.11) modelled two regimes of one charge carriers type 

e.g. in two different valence or conduction bands or valleys. Moreover, the second 

lowest conduction band and the second highest valence band are separated from the 

respective edge band in rutile by more that 0.3 eV. [120]  

However, THz spectroscopy cannot tell which model carrier mass and 

scattering parameters are connected to which carrier polarity because mobility of 

both electrons and holes is additive in the measured spectra (8.11). The carrier 

effective mass m* in the two-component model (8.12) is understood as the reduced 

electron–hole mass and the obtained scattering times thus also represent an 

unspecified averaging over the two carrier types. The same can be said about the 

analysis through the single‑component Drude model in Subsection 8.1.1 (Fig. 8.3). 

The following review of published carrier masses in rutile shows that we cannot 

unambiguously attribute the lighter carrier mass in the model to electron as usual in 

most semiconductors. 

In rutile the charge carrier mass is increased due to the formation of the 

polaron [118] and, consequently, in the following text we argue in terms of the 

electron polaron and hole polaron effective masses. In some older works it has been 

argued that the effective mass of hole polarons is much smaller than the effective 

mass of electron polarons (mh* < me, me* ≫ me) [121,122], where me is the electron 

rest mass. Later on, it was shown by transient diffraction grating experiments [123] 

that the effective mass of the hole polarons in TiO2 single crystals is mh* > 3 me. The 

value of effective mass of electron polarons was then frequently reported to be in the 
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range of me* ≈ (5–13) me as summarized in [124,125]. It is also interesting to note 

that the effective electron mass as inferred from experiments seems to be larger than 

the effective hole mass in the anatase form of TiO2 [124,125]. Recent first principle 

calculations within the local density approximation [126] and taking into account 

various corrections [120] determine the band structure of rutile and predict the band 

mass of electrons and holes and their anisotropy. The Fröhlich electron–phonon 

coupling theory then provides the electron and hole polaron effective masses in the 

ab-plane of 2.4 me and 8 me, respectively [120], i.e. the hole polaron being heavier. 

Previously, Glassford and Chelikowsky [127] found very similar band masses of the 

charge carriers in rutile; however, a follow-up study, carried out by Hendry et 

al. [128] within the Feynman polaron theory, determines the electron polaron mass in 

the ab-plane to be as high as 15 me. As one can see, distinguishing between the 

electron and the hole based on their effective conduction (polaron) masses according 

to the literature also does not provide an unambiguous answer. For this reason, we 

refer in the following discussion to the “lighter” polaron (index Lt) and the “heavier” 

polaron (index Hv) instead of hole and electron polarons, wherever we refer to them 

separately, and we keep in mind that these two polarons are related to opposite 

charges. 

 Three variants of the general plasma-diffusion model were tested out with 

the data at 10 K to check the necessity of distinguishing between the two carrier 

types: (i) the approximation of one polaron type being much lighter than the other 

(mHv* ≫ mLt*), (ii) the approximation of electrons and holes having the same masses 

and scattering properties (μe = μh). (iii) Finally, the general case of independent 

masses and scattering times of electrons and holes was modelled both with data 

measured at 10 and at 70 K. 

Assumption of one light and mobile polaron type  

First, we examined the assumption that one carrier type has a considerably 

lower effective mass than the other, mHv* ≫ mLt*, which is a usual assumption in 

many classic semiconductors with electron being the considerably lighter charge 

carrier. Assuming that the scattering time of both carrier types are controlled 

essentially by the electron–hole scattering at the present carrier densities, one also 

deduces that μLt ≫ μHv (8.8). This interpretation was also followed in  [118,128]. The 

ΔTnorm spectra (8.11) then present mostly the response of the lighter polaron type 

while their evolution in time is determined by the heavier one. It is because the 

ambipolar diffusion coefficient (8.6, 8.7) in this approximation tends to: 

 Hv
BHv

A 2
2

D
e

Tkμ
D  . (8.13) 

The set of fitting parameters is then: mLt*, τ0Lt, a, bLt, B and μHv. Various 

combinations of the proposed scattering mechanisms were examined by fixing one of 

the parameters a, bLt to zero value. In some fits μHv was considered constant and in 

some fits a possible dependence of μHv on the carrier density (8.8, 8.9) was tested. 
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However, the heavy polaron mobility that provided the best fitting ambipolar 

diffusion coefficient always converged to values that were one order of magnitude 

higher than the mobility of the lighter polaron in the low-density regime (e∙τ0Lt/mLt*). 

This is a contradiction with the μLt ≫ μHv assumption and we conclude that this 

approximation cannot be fulfilled consistently within the considered scattering and 

diffusion model.  

 

ϕ (cm−2) 1.6×1014  1.8×1013  5.9×1012  2.0×1012  

tp (ps) 9 59 339 10 

 

Fig. 8.6 THz photoconductivity spectra of rutile (E ⊥ c) at 10 K at selected 

excitation fluences and pump–probe delays (indicated above the 

graphs). Symbols: experimental data. Lines: global fit with plasma 

diffusion model in the μe = μh approximation 

ϕ (cm−2) 1.6×1014  1.8×1013  5.9×1012  2.0×1012  

tp (ps) 9 59 339 10 

 

Fig. 8.7 THz photoconductivity spectra of rutile (E ⊥ c) at 10 K at selected 

excitation fluences and pump–probe delays (indicated above the 

graphs). Symbols: experimental data. Lines: global fit with the 

general μe ≠ μh plasma diffusion model. 
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Comparably mobile electrons and holes 

Second, in order to reflect the encountered inconsistency of the μLt ≫ μHv 

hypothesis and keep the number of fitting parameters as low as possible, we reduced 

the problem to electrons and holes having the same masses and the same dependence 

of their scattering times on the carrier density. ΔTnorm then consists of two identical 

summands and the ambipolar diffusion coefficient is equal to De = Dh. The 5 fitting 

parameters are me* = mh*, τ0e = τ0h, a, be = bh and B. Fig. 8.6 shows the evolution of 

experimental spectra and their fit with this model at selected time delays (panels 

a,b,c) and excitation densities (panels a,d,e,f). One can see that the model follows the 

time and density dependences of the normalized transient transmittance quite well. 

The shapes of individual spectra are not reproduced exactly, though. Parameter 

values retrieved from this fit are presented in the first row of Table 8.2 and discussed 

together with the results of the most general fits.  

General electron–hole plasma model 

Finally, we enabled independent fitting of all 8 available parameters: mLt,Hv
*, 

τ0Lt,Hv, a, bLt,Hv and B. This fit yielded a 34% lower sum of least squares at 10 K than 

the simplified μe = μh model above (compare lines in Fig. 8.7 and Fig. 8.6, note fit–

data matching e.g. in the low-frequency section of the imaginary part in most panels) 

and thus confirmed the need to consider both electron and hole polarons separately in 

the observed response.  

The converged values of parameters of the general plasma-diffusion model at 

10 and 70 K are given in the “μe ≠ μh” rows of Table 8.2. One can see that the masses 

of electron and hole polarons exhibit a low ratio of ~1.6 (as expected after a 

contradiction with the mHv* ≫ mLt* hypothesis was found).  
 

T 

 (K) 
model 

mLt*  

(me) 

mHv*  

(me) 

τ0Lt  

(fs) 

τ0Hv  

(fs) 

a (10−20  

cm3/ps) 

be,h  

(103 m/s) 

B (10−23  

cm3/ps) 

10 μe = μh 10.8±0.1 690±20 6.1±0.3 0±0.01 6.1±0.4 

10 μe ≠ μh 7.5±0.5 12±1 280±20 ≳10 ps 6.7±0.2 0±2 6.3±0.3 

30  [118]  6 ~600 0–2.3 be = 4–8 – 

70 μe ≠ μh 5.6±0.8 9.2±0.3 37±8 540±30 8.1±0.5 – 7.7±0.8 

Table 8.2 Coefficients of carrier transport and decay in rutile (E ⊥ c) as 

obtained from THz photoconductivity. Indices Lt and Hv denote 

respectively the lighter and heavier of the electron and hole polarons. 

In [118] electrons were considered as the much more mobile carrier 

type. The error values are standard deviations provided by the fit. 

The lighter polaron tends to have about one order of magnitude shorter 

scattering time than the heavier one. With comparable masses, this means that the 

DC conductivity (e·τ/m*) is carried rather by the heavier polarons. This is evident 

also in the low-frequency contributions of the two polaron types to the real part of 
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the response in Fig. 8.8. (We have checked that the longer low-density scattering 

time cannot be attributed to the carrier type with lower effective mass in the model.) 

The low-density scattering times in Table 8.2 show an almost order of magnitude 

decrease from 10 to 70 K. The spectrum of the lighter polaron type indeed becomes 

flat at 70 K, due to high scattering frequency, and the heavier polaron governs the 

spectral shape of the total response. The slight increase of the electron–hole 

scattering and recombination coefficients and the decrease of polaron masses from 

10 to 70 K is near the indicated fitting uncertainty of our model (Table 8.2). We 

provide an inspection of the dependences of some of the transport parameters in a 

wider temperature range in the following two sections. 

 
(Panels (a,b,c): FIG. 5. in [114]) 

Fig. 8.8 THz photoconductivity spectra of rutile (E ⊥ c) at 10 and 70 K at 

selected pump–probe delays (indicated) at the highest fluence 

ϕ = 1.6×1014 photons/cm2. Symbols: experimental data. Full black 

lines: global fit with the general “μe ≠ μh” plasma diffusion model at 

each temperature. Contributions of electron and hole polarons are 

shown: blue dash-and-dot lines — lighter polaron type; red dashed 

lines — heavier polaron type. 
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8. Dynamics of density-dependent response in bulk rutile 105 

The low-density mobility of the lighter polaron at 10 K is estimated to be 60–

120 cm2V-1s-1 and ~10 cm2V-1s-1 at 70 K. However, this last conclusion must be 

taken with caution as the fit probably underestimates the low-density scattering rate 

of the heavier polaron (the fit is insensitive to the value of 0Hv when it rises above 

several picoseconds). A comparison of rows 1 and 2 in Table 8.2 shows that the 

values of carrier mass and low-density scattering time in the undifferentiated 

“μe = μh” model lies between the respective values of the general model. Further, 

they show a good correspondence to the results of Hendry et al. [118], regarding the 

single-component low-density scattering time and effective mass (let us remind that 

Hendry et al. attributed the whole response to a single carrier type with effective 

mass 6 me; our μe = μh model described the same response by two carrier types with 

approximately twofold mass, accordingly).  

As for the density-dependent scattering of carriers, Hendry et al. have found 

that the carrier–phonon scattering b·N1/3 term is rather more important than the 

electron–hole scattering a·N term (cf. Table 8.2) when fitting the τav(Nav) dependence 

(8.2) at 30 K. [118] Our analysis shows that the linear electron–hole scattering 

mechanism sufficiently describes the measured dependences at 10 and 70 K when it 

is taken into account explicitly by integration (8.11) over the inhomogeneously 

excited region without averaging the carrier response. The scattering of carriers on 

acoustic phonons due to their increased Fermi velocity in filled bands is then found 

less likely in undoped rutile at examined carrier densities at low temperatures. 

 Fig. 8.9 further shows two spectra measured at the same intensity at 11 and 

400 ps at 180 K. We do not have enough data at this temperature to perform a fit 

with the plasma diffusion model. However, single‑component Drude fits (lines in 

Fig. 8.9) show that the (average) carrier scattering time again increases with the 

pump–probe delay, indicating that e–h scattering or another density-dependent 

scattering process is still in play at these higher temperatures. 

 

Fig. 8.9 THz photoconductivity spectra of rutile (E ⊥ c) excited with 

ϕ = 1.2×1014 photons/cm2 at 266 nm at two pump–probe delays at 

180 K. Boxes: experimental data, lines: Fit with the 

single‑component Drude model (8.1) with τav = 49±4 fs at 11 ps and 

86±9 fs at 400 ps. 
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Fig. 8.10(a) shows the calculated density profiles corresponding to the delays 

and fluences of our experimental spectra at 10 K. An order of magnitude decrease of 

the carrier density during the first 500 ps is clearly seen, as well as the broadening of 

the carrier plasma depth profile. Panel (b) shows the calculated scattering times of 

the two polaron types, including the fitting uncertainty. When the carrier density 

drops below ~1019 cm−3, the scattering time of the lighter polaron ceases to depend 

strongly on the carrier density. The scattering time of the heavier polaron either does 

the same (the lower red borderline), or it rises so high that the corresponding Drude 

mobility peak at zero frequency is very narrow and cannot be observed in our 

experimental frequency range (cf. contributions of individual polaron types in 

Fig. 8.8(c)). Panel (a) of Fig. 8.10 shows that this regime is reached about 200 ps 

after photoexcitation (carrier density drops below 1.8×1019 cm−3 then).  

    
(FIG. 6. in [114], panel (b) is supplemented with τav) 

Fig. 8.10 (a) Calculated carrier density profiles inside the rutile sample for 

selected pump–probe delays and fluences at 10 K; colored lines: 

excitation fluence of 1.6×1014 photons/cm2, the pump–probe delay is 

increased along the arrow (values are provided in the legend); black 

lines: pump–probe delay 10 ps, the excitation fluence is decreased 

along the arrow (values: 5.4×1013, 1.8×1013, 5.9×1012, 

2.0×1012 photons/cm2). (b) τHv,Lt: carrier density dependence of the 

momentum scattering time estimated from (8.9) by using values in 

the “μe ≠ μh, 10 K” row in Table 8.2;  τav: scattering time obtained by 

single‑component Drude fits of measured spectra. 

Note also the blue data line in Fig. 8.10(b) which shows the scattering time 

values obtained by single-component Drude fits (8.1) of the spectra measured at 

10 ps as presented by the cyan data line in Fig. 8.3. The characteristic time of the 

single-component fit τav is in general nearer to the longer of scattering times of the 

two polaron types and at high carrier densities, it follows a less steep dependence 

than τHv,Lt (like ~N−1/3 as found by Hendry et al. [118]). This is clearly because of the 

averaging character of τav — the sum spectrum characterized by τav of the ensemble 
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of photoexcited carriers always contains a substantial contribution from the 

high-mobility carriers in the low-density region, which have long scattering times. 

8.2. Temperature dependence of average mobility  

We have also measured THz photoconductivity spectra of the sample at 

various temperatures with a constant pump–probe delay of 10 ps. Fig. 8.11 shows in 

symbols the spectra measured 10 ps after excitation with an intermediate photon 

fluence ϕ ≈ 6.4×1013 ph/cm2. The data are fitted with the single‑component Drude 

model of conductivity (8.1). The normalized transient transmittance (i.e. averaged 

mobility (8.11)) shows two orders of magnitude decrease from 10 to 300 K.  

 

Fig. 8.11 THz photoconductivity spectra of a bulk rutile (E ⊥ c), measured 

tp = 10 ps after excitation with ϕ ≈ 6.4×1013 ph/cm2 at 266 nm at 

various temperatures. Boxes: experimental data, lines: 

single‑component Drude (8.1) fits of individual complex spectra. 

A 30-fold decrease of the single-component-fit scattering time with 

increasing temperature is clearly seen in Fig. 8.11 and plotted for three excitation 

fluences in Fig. 8.12. The latter Figure shows a qualitative agreement with data 

obtained in a previous work of Hendry et al. [128] with more homogeneous 

excitation (photons at 400 nm excite rutile at the very edge of the band gap with 

α = 900 cm−1, 1/α = 11 μm [129]; intense pulses at 800 nm provide a very weak and 

homogeneous excitation by two-photon absorption throughout the thickness of the 

sample). Our low-density (magenta) data in Fig. 8.12 precisely copy the low-density 

data of Hendry (black and red), except for room temperature.  

The single-component scattering time shows less than a 2-fold decrease from 

10 to 70 K at individual excitation densities. This is much less than the 10-fold 

decrease of low-density scattering times of individual polaron types between these 

two temperatures as inferred from the general plasma diffusion model (cf. Table 8.2). 

This again documents the averaging character of τav. For this reason, it is not possible 
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to determine reliably any other quantity describing the transport, such as the carrier 

effective mass, from these data.  

  
(*black and red data from [128]) 

Fig. 8.12 Temperature dependence of the scattering time obtained by 

single‑component Drude fits of THz photoconductivity spectra of 

rutile (E ⊥ c) at various excitation wavelengths (in curly brackets) 

and fluences, N0 denotes initial surface carrier densities. inc denotes 

incident photon fluence (not corrected by reflection).  

8.3. Temperature dependent electron–hole recombination 

The transient THz kinetics were measured (without spectral resolution) at 

temperatures between 10 and 300 K. We first derive a theory which allows us to 

quantify the electron–hole recombination from the measurable transient kinetics and 

then we present and discuss the obtained data. 

8.3.1. Theory 

The above discussed time evolution of the spectra of depth-integrated 

photoconductive response in our sample is very complex (cf. Section 8.1, namely 

Eqs. (8.11) and previous). A transient THz kinetics scan which reflects the overall, 

spectrally averaged, photoconductivity of the sample then presents rather a 

qualitative picture of the underlying processes. However, after a certain time after 

photoexcitation the carrier density decreases (due to the diffusion and recombination) 

to such an extent that the mobility of individual carriers is mostly density and time 

independent. Let us formally introduce the time td after which the carrier response 

spectrum does not change its shape. In this regime, the expression (8.11) for the 

normalized transient transmittance expression can be factorized in terms of the 

frequency-dependent mobility and the time-dependent carrier: 
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The THz kinetics (i.e. the maximum ΔEt
max(tp) of the transmitted transient 

THz waveform) then evolves in time only due to the change of the total number of 

mobile carriers. The integral in (8.14) defines the sheet density of carriers NS(tp). The 

kinetics of this quantity is determined by the diffusion equation (8.5). After 

integration of (8.5) over the thickness of the sample, we obtain 
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where the diffusion term rigorously cancelled out after integration per partes because 

it affects only the depth-profile of the carrier density and not the integrated sheet 

density.  Let us make the following approximation at the right-hand side of (8.14):  
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where d is the characteristic thickness of the carrier plasma cloud. This 

approximation is justified for a flat depth-profile of density. We check the validity of 

the approximation in our case later. We then find a simple differential equation for 

the sheet density: 
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which leads to a hyperbolic decay of NS with a characteristic recombination half-life 

tB during which the sheet density decreases by a factor of two: 
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If the regime of time-independent carrier mobility is reached before other 

processes (such as carrier trapping) occur, one may observe the process of 

bimolecular recombination in transient kinetics separately. 

8.3.2. Discussion 

Fig. 8.13 shows transient THz kinetics in rutile at the highest available 

excitation densities at various temperatures. The data are cut from the left to the point 

where the signal reaches ~½ of the maximum after photoexcitation and individual 

data lines are slightly shifted horizontally not to overlap. On the vertical axis, the plot 

shows the actual transient kinetics amplitudes without scaling (except 300 K that is 

10 times up scaled): the decrease of the kinetics amplitude with increasing 

temperature corresponds to the decrease of the response (average mobility) of 

individual carriers (Fig. 8.11). The oscillations occurring between 2 and 6 ps were 

explained in the footnote on p. 98.  

The measured kinetics were fitted with a sum of two exponential increases 

and a hyperbolic decay: 
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where the two exponential functions were chosen for purely practical reasons and we 

do not discuss them quantitatively — we are aware that the evolution of the 

spectrally averaged kinetics due to the carrier plasma diffusion is very complex and 

probably cannot be parametrized with a simple analytical formula.  

The first exponential term in (8.19) fits the instrumental function of the signal 

rise and the fastest phase of the diffusion. The second term is qualitatively ascribed 

to a slower (tens of ps, cf. Fig. 8.14(a)) increase of the transient conductivity due to 

diffusion of carriers in the lower-density region deeper in the sample at low 

temperatures.  

  

Fig. 8.13 Points: Transient THz kinetics of rutile (E ⊥ c) excited with 

~1.6×1014 photons/cm2 at 266 nm at various temperatures; full lines: 

fit with (8.19), dotted lines: hyperbolic part of the fit.  

(The kinetics at 300 was measured with 2.6×1014 photons/cm2 and is 

scaled up 10 times in the plot.) 

Above 100 K, a new competing process occurs at the early stages of the 

kinetics: an exponential decrease of transient kinetics. The process is clearly 

observable in Fig. 8.13 and it was captured by the parameters of the second 

exponential term of the fit with a negative sign of A2 in Fig. 8.14(b). We attribute this 

decrease to the trapping of carriers in surface states or to the carrier recombination 
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through the surface states. Such effects are indeed expected to manifest themselves at 

elevated temperatures: due to increased thermal velocity, carriers from a larger 

distance from the sample front face interact with the surface states than at low 

temperatures.  

 

Fig. 8.14 Temperature dependences of the fitting parameters of the fitting 

fuction (8.19) of the transient kinetics in rutile (E ⊥ c). 

Dotted lines in Fig. 8.13 show the contributions of the hyperbolic term to the 

fits at individual temperatures. Note that after about 100 ps, this contribution is 

dominant in all kinetics (full lines coincide with the dotted ones for tp > 100 ps). 

Fig. 8.14(c) shows the temperature dependence of the recombination half-life tB – it 

is clear here as well as in the kinetics (Fig. 8.13) that the recombination runs faster 

with increasing temperature. To obtain the recombination coefficient B from tB 

(8.18), one needs to know the characteristic thickness of the carrier plasma sheet d. 

We assume that this quantity is proportional to the diffusion length of carriers during 

the recombination half-life d ≈ ldiff. Lacking specific values of ldiff for electron and 

hole polarons, we make use of the temperature dependence of the single-component 

scattering time presented in Section 8.2.  

In Fig. 8.15(a) we plot the temperature dependence of the diffusion 

coefficient calculated from the scattering times shown in Fig. 8.12 using the Einstein 

relation (8.7) and the Drude mobility amplitude (3.1): 
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for an approximate, temperature-independent, average polaron mass m* ≈ 10 me 

(cf. Table 8.2). This plot is nearest to reality in the red and black data lines from 

Hendry et al. [128], which were measured at the most homogeneous and low-density 

excitation — we observe a maximum of carrier diffusivity around 100 K and a 

decrease back to the 10-K value at room temperature. The carrier diffusion length 

related to the half-life of recombination is then   B
av

Bdiff tDtl  . Fig. 8.15(b) 

shows the temperature dependence of the bimolecular recombination constant (8.18) 

calculated from Dav (Fig. 8.15(a)) and tB (Fig. 8.14(c)) as follows: 
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where the initial carrier sheet density is given by the excitation fluence 

NS(0) = ϕ = 1.6×1014 cm−2. The values of tB(T) are linearly interpolated where 

missing. The calculated B(T) dependence yields values of B from 4 to 

12×10−23 cm3/ps between 10 and 70 K which is consistent with the values yielded by 

the general plasma diffusion model (cf. Table 8.2). A several-fold increase of B 

towards room temperature is indicated. 

 

Fig. 8.15 Temperature dependences, in rutile (E ⊥ c), of: (a) “average” 

diffusion coefficient calculated from Fig. 8.12 using (8.20); (b) 

bimolecular recombination coefficient calculated from (a) and 

Fig. 8.14(c) using (8.21). *Data from [128]. (c) Time dependence of 

integrated quadratic carrier density calculated from Fig. 8.10(a) and 

its sheet density approximation (8.16) for d = 90 nm at 10 K. 

The analysis above stemmed from the quadratic approximation (8.16). 

Fig. 8.15(c) shows that (∫Ndz)2/d makes a reasonable order-of-magnitude estimate of 

∫N2dz for 90 nm (Eq. (8.21) yields ldiff ≈ 90 nm at 10 K) in the time interval 

100 ps < tp < 600 ps.  
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8.4. Transient permittivity contribution at room 

temperature 

At room temperature the normalized transient transmittance drops to 

2 cm2V−1s−1 as can be seen in Fig. 8.16. Such a weak response made it impossible to 

decrease the excitation fluence as low as in measurements at cryogenic temperatures 

(accumulation of spectrum (a) in Fig. 8.16 took about 15 hours). On the other hand, 

the absence of the cryostat enabled to reach slightly higher excitation fluences.  

We observe that upon increasing the excitation density (Fig. 8.16(a,b,c)), the 

real part of ΔTnorm exhibits a small decrease. This can be again explained by density 

dependent electron–hole scattering. However, the slope of the imaginary part of 

ΔTnorm(ω) flips gradually from positive to negative values. The increased scattering 

rate of free carriers by itself (8.9) may only lead to a decrease of the imaginary part 

of the normalized transmittance (8.11) to lower positive values. This indicates that on 

top of the carrier conductivity, an additional response emerges due to some other 

kind of bound polar excitations, which are sensitive to the pump fluence. 

 

   
(FIG. 7. in [114]) 

Fig. 8.16 Spectra of THz photoconductivity in rutile (E ⊥ c) at (a) low, 

(b) medium and (c) maximum excitation fluences (indicated in the 

plots) at 266 nm, measured 10 ps after photoexcitation. Symbols: 

data, solid lines: linear fit of the imaginary part with (8.22). (d) 

Positive transient contribution to the real permittivity related to the 

change of slope of the imaginary mobility versus excitation fluence. 

The observed approximately linear slope of the imaginary part of ΔTnorm(ω) 

corresponds to a constant contribution to the transient real permittivity ε' that was 

determined by a linear fit (solid lines in Fig. 8.16(a,b,c)) 
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of spectra measured at 9 excitation fluences. We assume that at the lowest available 

charge carrier density, any additional localized response can be neglected (Δε' = 0) 

and the initial positive slope of  ~0.3 cm2V−1s−1 per 1 THz (Fig. 8.16(a)) corresponds 

solely to the Drude response of mobile polarons with a scattering time of about 

20−30 fs (Δε'Drude ≈ −1.6). We observe in Fig. 8.16(d) that Δε' makes a substantial 

contribution of 50 to the equilibrium value of 90 (cf. Fig. 8.2) at high photocarrier 

densities. Note, however, that this strong dielectric contribution concerns only the 

very thin (12 nm) strongly photoexcited layer close to the surface of the sample. 

Below we propose several phenomena that we find relevant to the observed 

dependence. 

Non-equilibrium phonon states 

The pump photon energy of 4.7 eV exceeds the carrier band gap by 1.5 eV; 

this excess energy of photocarriers is rapidly transferred to the lattice, i.e., a non-

equilibrium population of optical and acoustic phonons is generated in the excited 

layer of the sample. The equilibrium parameters (eigenfrequency ω0 and oscillator 

strength) of certain phonon modes can be altered under these conditions due to their 

anharmonic character. Pashkin et al. [130] directly observed characteristic spectral 

signatures of hot polar phonon population induced by optical pumping of a high-

temperature superconductor in the frequency range above 8 THz. Here we are 

probing at much lower frequencies, which means that we sense a transient change of 

the static permittivity of some high-frequency phonon modes. The related spectral 

changes in the THz permittivity (or imaginary conductivity) are predominantly due 

to the change of the phonon eigenfrequency ε  −ω0(ϕ) while changes in the 

losses (real part of the conductivity) are expected to be much smaller. A quantitative 

interpretation is complicated by the fact that rutile exhibits incipient ferroelectric 

trends [131] accompanied by softening upon cooling of A2u (172 cm-1 at room 

temperature) and Eu (189 cm-1 at room temperature) polar phonons [132] and such 

phenomena may bring strong anharmonic effects.  

Density-dependent polaron ionization 

The quantitative assessment of the observed transient permittivity 

contribution is also complicated by the polaronic character of charge carriers in 

rutile. The slow itinerant polaron motion is characterized by the Drude-like response 

at THz frequencies as observed in our experiments. Internal degrees of freedom of 

medium or large polarons, i.e., the hydrogen-like spectrum reflecting the quasi-

particle excitation or ionization, appear in the mid- or near-infrared spectral 

range [133]. The tails of the latter characteristic signatures may extend down to the 

THz region and provide another correction to the spectrum. 

Recently, an absorption peak in rutile has been observed at 115 meV and 

assigned to the intrinsic absorption in polaron trap states [134]. Using DFT 

calculations, these authors determined the ionization energy and the Bohr radius of 

the hydrogen-like potential in which the electron moves (Eion = 0.38 eV, aB  4 –
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 5 Å). For an order-of-magnitude estimation of the strength of the polaron ionization 

response at THz frequencies, we consider only the lowest (1s → 2p) hydrogen-like 

transition which provides a dominant contribution to the permittivity. The 

corresponding polaronic dielectric strength is calculated using the Fermi’s golden 

rule: 
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The order-of-magnitude estimate for the lowest excitation fluence 

(2×1017 photons/cm2) from this formula is εpol ≈ 0.4; this contribution is added to the 

steady-state permittivity of the material ε formally defined as a low-frequency 

permittivity with the polaronic effect subtracted Following (8.23), an increase of the 

photon excitation fluence ϕ leads to an increase of εpol. However, at high carrier 

densities, this increase of the material permittivity induces a polaron softening 

(decrease of the ionization energy and of the energy of polaronic transitions) and an 

increase of its transition dipole moment. Indeed, in the hydrogen-atom model, the 

energies of the intra-polaronic transitions are inversely proportional to the square of 

the surrounding permittivity: 
2

polion )(  εεE , and the Bohr radius scales with this 

permittivity: )( polB εεa  . In other words, polarons “feel” each other through their 

contribution to the permittivity of the lattice. Eq. (8.23) then represents a nonlinear 

equation for εpol due to the polaron–polaron interaction and the effect of the high 

carrier density can become very significant. For example, solution of this nonlinear 

equation yields εpol ≈ 20 at the excitation fluence of 5×1018 photons/cm2. This is, of 

course, a very crude reasoning; however, it shows that the sign and the order of 

magnitude of the expected effect is the one that we have experimentally observed. 

Time evolution of the transient permittivity component 

We measured also transient transmittance spectra at various delays up to 

430 ps at the highest excitation density, see Fig. 8.17(a) (we plot the raw data ΔΤ, not 

ΔTnorm, because the excitation fluence and refractive index do not play any role in the 

discussed time evolution). We have found that the shape of the spectrum does not 

change: The ratio between the slopes of the real and imaginary part of transient 

transmittance is constant as seen in Fig. 8.17(b). This indicates that the transient 

permittivity contribution decays hand in hand with the decay of the carrier number. 

The observation of Fig. 8.17 speaks strongly to any phenomenon that is linked to the 

carrier concentration such as the density-dependent screening of polaron ionization. 

Based on the current experimental results we are unable to draw more 

quantitative conclusions. It would be extremely useful to perform a similar pump–

probe study using a probing pulse in the multi-THz frequency range, where the 

transient contributions of the phonon modes can be directly spectrally resolved and 

the origin of the transient permittivity could be assigned.  
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Fig. 8.17 (a) Evolution of transient THz transmittance ΔT of rutile (E ⊥ c) at 

300 K, (b) the ratio of linear slopes of real and imaginary part of ΔT.  

8.5. Conclusion 

We investigated charge carrier transport in (001)-oriented rutile using time-

resolved THz spectroscopy at temperatures between 10 and 300 K in detail. 

Photoexcitation by femtosecond pulses at 266 nm leads to a highly inhomogeneous 

photocarrier density distribution in the depth of the sample. Drude like conductivity 

response is observed at low excitation fluences (both at low and at high 

temperatures). However, experiments at higher fluences reveal very complex 

underlying phenomena. 

Namely, electron–hole scattering decreases the carrier mobility by an order of 

magnitude at the strongly photoexcited surface as compared to the weakly excited 

bulk of the crystal. Moreover, the carrier concentration close to the surface decreases 

on a tens of picoseconds time scale due to ambipolar diffusion of carriers towards the 

bulk and, in turn, the mobility averaged over the carrier population increases on the 

100 ps time scale at 10 K. 

We developed a general plasma diffusion model that relates all these 

phenomena to the evolution of measured THz photoconductivity spectra during the 

first nanosecond. This allowed us to quantify the scattering, recombination, and 

ambipolar diffusion of carriers at low temperatures, to assess the role of the electron–

hole scattering and to deduce that the mobility of both electrons and holes is 

substantial in the THz charge transport in rutile at low temperatures. The DC 

mobilities of the two carrier types differ significantly due to notably different 

scattering times; rather than owing to polaron masses which differ by a factor of less 

than 2. 

Finally, at room temperature we observed a competition between the 

Drude-like contribution of the itinerant motion of polarons and a positive transient 

contribution to the real part of permittivity due to hot phonon states and/or polaron 

internal degrees of freedom. Indeed, a tail of the mid-infrared polaron excitations 

should appear in the THz photoconductivity spectra. We report the sum mobility of 

electron and hole polarons of 2 cm2V−1s−1 in our crystal at room temperature. The 
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measured transient modulation of the permittivity due to the non-equilibrium phonon 

and polaron population is very strong (up to Δε = 50). Time resolved measurements 

of the THz photoconductivity indicate that the modulation has a lifetime comparable 

to that of mobile polarons. Experiments at multi-THz frequencies would be very 

useful to elucidate which of the proposed hypotheses is correct and to quantify its 

properties. The motivation is even stronger if we consider the incipient ferroelectric 

character of TiO2 and that our results show the possibility to observe the tuning of 

the dielectric constant by means of optical excitation and carrier–phonon coupling. 
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9. Morphological interpretation of probabilistic 

parameters in Monte Carlo calculations of 

carrier mobility in nanomaterials 

Section 3.5 introduced our Monte Carlo simulations that provide the mobility 

spectra of a band carrier moving in a nanoparticle system with explicitly given 

nanoscopic properties (particle size, bulk scattering time, system temperature etc.). In 

this Chapter we compare the carrier mobility spectra calculated in two different 

spatial regimes. The first — probabilistic — regime has been introduced in [70]; it 

determines the result of interaction of a charge carrier with nanoparticle boundary 

(tunneling, backward or forward scattering) based on a set of pre-defined 

probabilities regardless of the position of the point of interaction. The second — 

morphological — regime replaces the probabilistic parameters of the first regime by 

geometrical properties of the nanosystem and it was newly developed within this 

thesis.  

 

Fig. 9.1 Schematics of the trajectory of a carrier in spherical nanoparticles in 

our Monte Carlo simulations. Note that the 4th and the 1st sphere 

overlap. Labeled events: τS = bulk (isotropic) scattering; pT = 

tunneling (transmission) thought the boundary without scattering; pS 

= isotropic scattering on a boundary;  pR = backscattering on a 

nanoparticle boundary. 

In the probabilistic regime, the carrier moves thermally in a single perfectly 

spherical particle. When the carrier meets the wall of the sphere, it is allowed to pass 

through the nanoparticle boundary into a neighboring nanoparticle with a certain 

probability. The position of the target sphere is defined ad hoc, touching with the 

current sphere at the point where the carrier passed through the wall and the position 

of the previous sphere is not stored. During the next boundary scattering event, the 

third sphere can happen to be placed over the first one (Fig. 9.1). This procedure 

mimics in a certain way a random arrangement of touching particles in disordered 
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nanosystems. The problem of superposed nanoparticles in the probabilistic regime is 

avoided only when tightly-spaced nanocubes are used instead of spheres or 

ellipsoids. 

In the morphological regime, the carrier moves thermally in a system of 

nanospheres with diameter D whose position in the space is a priori fixed e.g. in a 

cubic arrangement with a lattice constant a (Fig. 9.2 shows four qualitatively 

different structures resulting from different ratios between a and D).  

We have developed the latter model in order to investigate whether the 

perfect spatial arrangement of the nanospheres cannot bring new spectral features to 

the calculated mobility spectra, compared to the “disordered” probabilistic regime. 

Below, we provide the description of the simulations in the two regimes, we discuss 

in detail the data obtained in the morphological regime and finally we compare the 

mobility spectra calculated in both regimes. 

 

 

  

 

a/D: 0 – 1/√3(≈0.58) – 1/√2(≈0.71) – 1 –   ∞ 
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Fig. 9.2 Structures defined by cubic arrangement of spherical particles with 

different ratios of diameter D and lattice constant a. Dotted lines 

between spherical “octahedra” in the second column are plotted as 

guides to the eye in the planar 3D projection. ΣR: reflective portion 

of the surface of the unit cell, VΣ: volume of the unit cell in ratio to 

the volume VS of a sphere with the same diameter. 

 We simulate the thermal motion of the charge carrier in the volume of a 

nanoparticle identically in both regimes. The charge carrier starts with a random 

velocity (within a suitable statistical distribution as described below) at a random 

point inside the nanoparticle; after a certain time, it choses a new random velocity to 

simulate scattering at a point defect. The new velocity has a random direction and a 

magnitude chosen randomly from the Fermi–Dirac or Boltzmann (as pre-selected) 

distribution at a given temperature. The interval between these “bulk” scattering 

events is chosen randomly within an exponential distribution with a fixed average 

time τS and does not depend on the carrier position. The discussed simulation 
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regimes differ by the behavior of the charge carriers when they hit the nanoparticle 

boundary. 

In the probabilistic regime, three factors pT, pS and pR determine the 

subsequent motion of the charge carrier (see Fig. 9.1).  

 pT — carrier passes the boundary without changing its velocity magnitude 

or direction — emulating either an ideal (crystalline) conductive path to 

the neighboring particle or tunneling through possible potential barriers at 

the boundary between the two particles; 

 pS — carrier scatters at the boundary with a random change of speed and 

direction as in the case of the bulk scattering. This case simulates that the 

carrier is scattered at a surface state at the boundary.  

 pR — carrier is randomly reflected off the boundary and remains in the 

original nanoparticle with the ongoing direction randomly chosen from the 

half-space belonging to the original nanoparticle.  

 The three probabilities are naturally normalized: pT + pS + pR = 1. 

 In many cases, it is useful to evaluate the results of the probabilistic 

simulations in terms of the total probability of backward scattering 

pB = pR + pS/2 and forward scattering pF = pT + pS/2. 

In the morphological regime, the carrier behavior at the nanoparticle 

boundary is determined by its position, instead of the probabilistic quantities. In our 

model the nanoparticle is represented by an intersection of a sphere with diameter D 

and a cube with edge a which have a common center. Two types of boundaries can 

be distinguished: the cube walls do not feature any additional interface scattering 

(pT = 1.0, pS = 0) and the two adjacent nanoparticles are considered as continuous 

bulk material at this place, while the remaining spherical surfaces (green areas in 

Fig. 9.2) are defined as completely reflective (pR = 1.0). We characterize the unit 

cells with the ratio ΣR of the reflective (green) area of the boundary of the unit cell 

versus the total surface of the unit cell.  

Carrier mobility spectra in the morphological regime were calculated for 

different ratios of the carrier bulk mean free path lfree and the diameter D and for 

different degrees of the nanoparticle connectivity (different a/D ratios). These spectra 

were compared to the mobility spectra of carriers with the same lfree calculated in the 

probabilistic regime in spheres with the same D and with variable probabilities pR of 

the reflection on the sphere boundary (the interface scattering was also neglected, 

pS = 0, pT = 1 − pR). For each combination of a, D and lfree, the best fitting pR was 

found by comparing the carrier spectra in the two regimes in the frequency interval 

0.01–100 THz.  

9.1. Carrier mobility in the morphological regime 

We performed simulations of the motion of a charge carrier in a 

non-degenerate semiconductor (with Maxwell-Boltzmann velocity distribution) with 
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the conduction band effective mass equal to 1 me, and with the bulk scattering time 

τS = 86 fs at room temperature. The carrier mean free path in the bulk is thus 

lfree = 5.8 nm. The carrier motion was studied in nanoparticles with the diameters 

D = k·lfree (with k = 0.81, 2.5, 8.1, 25) and the lattice constants a ranging between D 

and √3D. The choice of carrier properties and nanoparticle sizes was motivated by a 

previous study by Mics et al.  [47] of THz photoconductivity in CdS nanocrystals. 

Fig. 9.3 shows the calculated mobility spectra in the morphological regime 

with several lattice constants for three nanoparticle diameters. For a/D < 1/√3 the 

structure represents the bulk matter (cf. Fig. 9.2) and the simulations provide the 

Drude mobility as expected (black lines in Fig. 9.3(a,b,c)). For nanoparticles with a 

diameter much larger than lfree  (Fig. 9.3(a)), the impact on the THz part of the 

mobility spectrum (shaded regions in Fig. 9.3) is rather low. The reflective parts of 

their walls constitute long- or mid-range barriers, which slow down the carrier 

transport mostly at low frequencies. Even with isolated spheres (cyan curve in 

Fig. 9.3(a)) the mobility spectrum can be fitted relatively well with the Drude model 

in the THz region (Fig. 9.4(a)). This is because the carrier meets much more often a 

bulk scattering center than the nanosphere wall. 

 

Fig. 9.3 Carrier mobility spectra calculated in the morphological regime of 

Monte Carlo simulations with lfree = 5.8 nm, D: (a) 142 nm, (b) 

14.2 nm and (c) 4.7 nm at various a/D ratios. Shaded regions delimit 

the spectral region 0.3–3 THz which is typically accessible in OPTP 

experiments. The vertical dotted lines indicate 30 GHz; the mobility 

value for this frequency is plotted in Fig. 9.4(b). 

On the other hand, nanoparticles with a diameter comparable to lfree 

(Fig. 9.3(b,c)) suppress both real and imaginary part of the carrier mobility in a wide 
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frequency range. Surprisingly, an enhancement of the real mobility occurs above the 

bulk scattering frequency, 1/(2πτS) = 1.86 THz. With more than ~70% of the 

nanoparticle surface being reflective (magenta and cyan curves in Fig. 9.3(b,c)), clear 

signs of the short-range carrier confinement in the THz frequency range are apparent 

(μ' is increasing with frequency and μ'' is negative). The resonance frequency (where 

μ' reaches its maximum and μ'' = 0) is connected to the carrier round-trip time in the 

(almost) isolated nanoparticle. [70] 

  

Fig. 9.4 (a) cyan: Carrier mobility spectrum calculated in the morphological 

regime of Monte Carlo simulations with lfree = 5.8 nm, D = 142 nm, 

a = D (same as cyan curve in Fig. 9.3(a)); and black: its Drude fit 

between 0.3-3 THz. (b) Carrier mobility at 30 GHz for various D/lfree 

ratios versus a/D for lfree = 5.8 nm. 

In Fig. 9.4(b), we plot the low frequency carrier mobility versus the a/D ratio. 

The carrier mobility decreases with the growing area of reflective parts of the 

nanoparticle boundary, as one would expect. In the largest particles (black symbols), 

the carrier mobility even does not drop to zero at a/D = 1. (Note that we cannot plot 

here the DC mobility as the Kubo formula (3.28) cannot provide the mobility at zero 

frequency from the velocity recorded over a finite time.) In systems with the particle 

diameter comparable to lfree (blue and green symbols in Fig. 9.4(b)), the carrier 

mobility decreases much faster with increasing lattice constant than in D >> lfree 

systems (black symbols).  

In the limit a/D → 1/√3, the green octahedra in Fig. 9.2 collapse into point 

defects with a volume density of a3. With increasing a/D ratio, the cross-section of 

these octahedra rapidly increases. The volume density of the defects in the “bulk” of 

nanoparticles is ≈ lfree
3. In systems with D >> lfree, the carrier encounters a bulk defect 

much more often than the particle boundary; its mobility spectrum remains almost 

Drude-like in a broad spectral range with the low-frequency value significantly 

decreased for high a/D only, i.e. when the carrier becomes effectively confined in a 

unit cell. In D ≈ lfree systems, the carrier scatters comparably often on bulk and 

boundary scatterers — when the cross-section of the boundary increases (a/D 

increases), the carrier mobility rapidly drops in the whole spectral range.  
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9.2. Comparison of morphological and probabilistic regime 

For each spectrum calculated in the morphology regime, we found a single 

value of pR that yielded a practically identical mobility spectrum in the probabilistic 

regime. Fig. 9.5(a) gives an example of a good coincidence of the spectra obtained in 

the two regimes. We see that the carrier mobility spectrum in a cubically cut sphere 

with ΣR = 70.4% of reflective walls is mimicked by the carrier mobility in spheres of 

the same diameter with a boundary reflection probability pR = 0.761. We discuss here 

the relation of the best fitting values of pR in the probabilistic regime to the values of 

the reflective surface portion ΣR in the morphological regime. Let us remind that the 

two simulation regimes were calculated for different volumes of the unit cell. The 

probabilistic regime uses a sphere of a given diameter D with independent pR 

whereas in the morphological regime, the reflective surface portion ΣR of the unit cell 

is connected to the ratio of the diameter D and the lattice constant a (cf. Fig. 9.2). 

The volume of the morphological unit cell with a given a/D ratio was calculated 

numerically. 

Fig. 9.5(b) shows the ratio of: (i) the reflective surface portion ΣR of the unit 

cell normalized to the unit cell volume VΣ in the morphological regime and (ii) the 

best fitting reflection probability normalized to the sphere volume VS = πD3/6. (We 

do not plot error bars of pR in Fig. 9.5(b) for clarity; they are comparable to the 

scatter of adjacent points of each data line. We cut the data where the relative 

uncertainty of pR exceeds 100%.)  

  

Fig. 9.5 (a) Carrier mobility spectra in spheres with D = 14.2 nm calculated 

in the morphological regime (a = 12.8 nm, ΣR = 0.704, black line) 

and in the probabilistic regime (pR = 0.761, red line). (b) Symbols: 

the ratio of reflective surface fraction of the unit cell per its volume 

to the boundary reflection probability of the sphere per its volume. 

The ratio naturally tends to 1 at a/D = 1 for all D/lfree ratios because isolated 

spheres have the same properties and sizes in both regimes. In small nanoparticles 

(D ≈ lfree, green and blue data), the ratio remains unitary within errors in the whole 

range. This means that the probability of reflection pR in the probabilistic regime can 
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be interpreted as the ratio of the reflective and the total surface of nanoparticles for 

D ≈ lfree. However, the plotted ratio decreases with increasing particle size (along the 

arrow). This means that large morphological unit cells with a certain reflective 

surface portion ΣR produce the same mobility spectra as probabilistic spheres with a 

notably larger value of boundary reflection probability pR > ΣR. The difference 

between pR and ΣR is small for high a/D ratio (almost completely reflective 

nanoparticles) and increases with decreasing a/D. We illustrate this at the point in 

triangle in Fig. 9.5(b): The carrier mobility in a unit cell with a diameter of 25 lfree 

and 6.0 % of surface being reflective (VΣ = 0.56 VS) is reproduced with the mobility 

of a carrier in a sphere with pR = 16.5 % ([ΣR/VΣ]/[pR/VS] = 0.64 in the graph). 

The nanoparticle boundary in the probabilistic regime can be understood as a 

spherical wall consisting of infinitesimally small surface elements — a portion pR of 

the surface elements is reflective and the other are permeable for the carrier, but the 

local distribution of the reflective and permeable surface elements on the wall is 

random. From the morphological point of view, the probabilistic boundary is 

equivalent to a more or less dense sieve — in contrast to solid reflective surfaces 

(green areas in Fig. 9.2) in the morphological unit cell. On the short range, the spatial 

non/arrangement of the reflective boundaries does not play a role for the resulting 

carrier mobility spectrum. On the long range (D >> lfree), a carrier is more effectively 

localized with a compact piece of a reflective interface of a certain cross-section than 

with a semi-permeable boundary with a corresponding reflection probability. The 

smaller is cross-section of the reflector, the higher is its relative reflection effectivity. 

Physically, the morphological approach can rather describe structures made 

of compact building blocks (nanocrystals, nanowires etc.) which are either in a good 

conductive contact or separated by well-insulating matrix or voids; the probabilistic 

approach can be more useful when describing nanoparticles separated by poorly 

conducting interfaces, e.g. amorphous matter between nanograins in a polycrystalline 

material.  

9.3. Conclusion 

We have found that the probabilistic regime of our Monte Carlo simulations 

provides mobility spectra that are essentially equivalent to the spectra in the 

morphological regime. The probabilistic regime thus remains a very useful and 

computationally more efficient tool for modelling of the carrier mobility in 

semiconductor nanosystems. We have found in Fig. 9.5(b) that for small 

nanoparticles (with size comparable to lfree), the boundary reflection probability can 

be interpreted as the morphological ratio of reflective and conductive boundaries 

between individual nanoparticles. For large nanoparticles, the equivalent boundary 

reflection probability is systematically higher than the reflective surface portion of a 

morphological unit cell and the difference increases with increasing connectivity 

between adjacent nanoparticles. In such cases, more attention must be paid to the 

morphological interpretation of the fitted value of boundary reflection probability.  
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10. Conclusion 

The THz frequency range offers spectral features that are related to the 

transport of electric charge on a nanometer length scale. In the introductory chapters 

we have reviewed the current state of Optical pump–THz probe spectroscopy in the 

field of semiconducting nanomaterials from both the experimental and theoretical 

point of view. In the original part of the work we have answered two important 

questions, which significantly help the understanding of the THz photoconductivity 

of nanostructures on a microscopic level: 

1. A deeper insight into the effective medium theory able to describe 

systematically the THz response of semiconductor nanostructures was 

missing. In our attempts we focused on nanomaterials containing a general 

combination of percolation pathways and isolated inclusions with the aim 

to develop a viable general description based on a minimum number of 

morphological parameters. The resulting VBD model is described and 

discussed in this thesis. We provide methodological instructions that profit 

from the understanding of the model in terms of the equivalent electric 

circuit and in terms of the Bergman approach to the effective medium. We 

realized that, for a thorough understanding of the experimental spectra, it 

is crucial to solve the wave equation for the propagation of THz wave in a 

nanostructured inhomogeneously optically excited semiconductor within 

the effective medium approximation. Analytical solutions of the wave 

equation in the context of the VBD model were then found and helped us 

to define a convenient methodology of Optical pump–THz probe 

experiments. The measurements with variable optical excitation fluence 

(preferentially by a few orders of magnitude) and their analysis within our 

theory are the key element for us in understanding of the microscopic 

nature of the response.  

2. Semiconducting nanomaterials often exhibit contradictory properties when 

investigated by different methods, e.g. optical manifestation of quantum 

confinement of charge carriers vs. long-range electrical conductivity. It is 

important to understand the morphology of the sample — without 

neglecting the tails of the size distribution of semiconducting elements — 

because the diverse properties of a nanomaterial may originate in 

nanoelements of very different sizes and of vastly different number. We 

observed bulk-like THz conductivity in a sample of Si nanocrystals whose 

great majority exhibited photoluminescence due to quantum confinement. 

On the one hand, the numerous luminescent nanocrystals exhibited a 

negligible THz photoconductivity compared to the dominating response of 

several large highly photoconductive nanocrystals that were not eliminated 

during the fabrication of the sample. On the other hand, these large 

conductive nanocrystals do not manifest themselves in the 

photoluminescence analysis. We expect that this type of behavior will be 
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found quite often in semiconducting nanomaterials — i.e. that the response 

in optical methods will be dominated by nanoelements from a different 

part of their size distribution than the THz photoconductivity response. 

Monte Carlo calculations of nanoscopic charge transport are a great help 

in comprehending the impact of the size of a nanoelement on its 

photoconductive response.  

THz photoconductivity spectra of nanoporous-Si-derived luminescent Si 

nanocrystals with a peak size of 2.8 nm were measured between 20 and 300 K. The 

spectra were interpreted within the VBD theory and the Monte Carlo calculation of 

carrier mobilities. This analysis revealed that the samples contain large (>60 nm) 

nanocrystals that are not detectable by the methods usually employed with 

nanomaterials partly due to their low concentration and partly due to their size — 

their dimensions are so large that they exhibit no quantum confinement. 

Nevertheless, these sparse large nanocrystals enable so high carrier mobilities that 

their photoconductive response completely dominates the THz photoconductive 

response at low carrier densities. The depolarization fields, which are usually seen as 

a complication in the response of composite materials, constituted a useful part of the 

experiment with variable excitation fluence — thanks to the coherent application of 

the VBD model — the response of the large nanocrystals was shifted above the 

investigated frequency range at increased excitation fluences and the conductivity 

spectrum of medium (~30 nm) nanocrystals was observed almost separately. 

We measured also room-temperature THz photoconductivity of superlattices 

of isolated Si nanocrystals with a significantly narrower size distribution than in the 

previous case. The experimental spectra were found to be in an excellent agreement 

with the theoretical spectra given by the VBD effective medium theory and Monte 

Carlo calculations of carrier mobility with input parameters provided by (non-THz) 

microscopic imaging methods. Two types of clusters of connected nanocrystals 

occurred in two samples with higher amounts of Si per layer. Additional fitting of the 

response of these samples with the same method yielded the characteristic cluster 

sizes and the probability of inter-NC transport. 

An in-depth analysis of the spatial and temporal behavior of carriers in 

heavily excited rutile monocrystal was performed and the general plasma diffusion 

model of interacting electrons and holes was formulated. Sets of THz 

photoconductivity spectra measured over a wide range of excitation fluences and 

pump–probe delays were successfully fitted with the global plasma diffusion model 

at low temperatures. It was found that electron–hole scattering plays an important 

role in charge transport at carrier densities above ~1019 cm−3. The values of the 

coefficients fo electron–hole scattering and recombination as well as the low-density 

scattering times and masses of the two polaron types were found at low temperatures. 

We have namely found that hole polarons play a role comparable to that of electron 

polarons in THz conductivity in high quality rutile. The heavier (12 me) of the two 

polaron types exhibits scattering times of several ps and thus dominates the DC 
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transport as opposed to the lighter polaron (7 me) that has scattering time of several 

hundreds of fs at low temperatures.  

At room temperature, we report a huge photoinduced transient contribution to 

the permittivity of 50 in a thin (~10 nm) photoexcited layer. This contribution is 

visible in the measured THz photoconductivity spectra of bulk rutile thanks to the 

fact that the carrier (polaron) mobility is decreased to 2 cm2V−1s−1 at room 

temperature. This transient permittivity is probably related to a change of the polaron 

internal degrees of freedom (ionization and intra-polaronic transitions) due to the 

screening of the lattice permittivity in a high density polaron plasma. 

By fitting of Monte Carlo carrier mobility spectra calculated in the 

probabilistic regime to spectra calculated in the morphological regime, we have 

found that the isotropic probability of inter-nanoparticle transport can be interpreted 

as the ratio of the carrier-permeable part of the surface of the nanoparticle to its total 

surface. However, this equality holds exactly only when the nanoparticle diameter is 

comparable to the mean free path of the carrier. Low values of the inter-nanoparticle 

transport probability in the case of large nanoparticles must be interpreted with 

caution. 
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13. List of Abbreviations 

Real and imaginary components of complex quantities are standardly denoted 

with single and double primes, respectively: X = X′ + iX″. The sign convention 

E(t) ∝ e−iωt, ε = ε′ + iε″ = +iσ/(ωε0) is used. 

13.1. Multi-letter abbreviations 

AFM atomic force microscope/y 

BBO β-barium borate 

CC Cole-Cole conductivity model (Section 3.1) 

CD Cole-Davidson conductivity model (Section 3.1) 

cw continuous-wave 

c-Si crystalline silicon 

DC direct current 

DS Drude-Smith conductivity model (Section 3.7) 

EFTEM energy-filtered transmission electron microscopy 

EMT effective medium theory 

FIR far-infrared 

Ln the principal value of the complex logarithm function 

LP localized plasmon conductivity model (3.5) 

MBE molecular-beam epitaxy 

MG Maxwell Garnett EMT 

NC nanocrystal 

NP nanoparticle 

NW nanowire 

OPTP optical pump–THz probe spectroscopy, spectrum, method (Section 2.3) 

OR optical rectification (p. 17) 

PM power meter 

QCL quantum cascade laser (p. 6) 

QD quantum dot 

TEM transmission electron microscopy 

TDS time-domain spectroscopy (Section 2.2) 

XPS X-ray photoelectron spectroscopy, spectrum 

13.2. Roman symbols and their derivatives 

The prefix “Δ” of transient quantities is disregarded in the alphabetical ordering of 

the list. Parentheses point to the introduction or definition of the symbol. 

a    in Chapter 8 — proportionality constant of electron–hole scattering rate (8.2) 

in Chapter 9 — lattice constant of a periodical arrangement of nanospheres  

elsewhere    sum of Fabry-Pérot reflections of the probe pulse field in the 

sample (5.3) 

aB Bohr radius of electron in the hydrogen-like potential of a polaron (8.4) 



 

 
 

13. List of Abbreviations 137 

A1,2 coefficients of the homogeneous solution of the wave equation (5.5) 

b proportionality constant of carrier–phonon scattering rate (8.2, 8.3) 

be,h b specifically for electrons, holes (8.9) 

bHv,Lt b for the heavier, lighter polaron type (Subsection 8.1.4) 

B in Chapter 8 — bimolecular recombination rate 

 elsewhere — morphological parameter of the VBD effective medium model 

c speed of light in vacuum, 2.997925×108 m/s 

cp carrier velocity persistence parameter in the DS approach (Section 3.7) 

Cp percolation factor of the photoconductive component in Bergman EMT 

d in Chapter 8 — characteristic thickness of carrier plasma 

elsewhere — (nano)particle diameter 

〈d〉
d

2 mean value of area-weighted NC diameters (Chapter 7) 

D in Chapter 9 — nanoparticle diameter 

 elsewhere — morphological parameter of the VBD effective medium model 

DA,e,h ambipolar, electron, hole, diffusion coefficient, respectively (8.6,8.7) 

DHv diffusion coefficient of the heavier polaron type (8.13) 
 

(THz) electric field: 

E — in the sample, averaged in the xy plane, E = Eprobe + ΔE 

ΔE — transient contribution to E induced by photoexcitation 

Einc — of the probe pulse incident on the sample (5.2) 

Eloc — local electric field inside a polarizable inclusion (3.12) 

Eprobe — of the probe pulse inside the sample 

Et — of the probe pulse transmitted through sample 

ΔEt — transient part of Et induced by photoexcitation 

ΔEt
max — maximum of the THz waveform in the time domain 

Et
ref — electric field transmitted through a reference sample (2.1) 

ΔEr — transient part of THz probe field reflected from the sample due to 

photoexcitation (5.7) 
 

Energy of electron in hydrogen-like potential of a polaron in rutile (Section 8.4): 

E1s on level 1s 

E2p on level 2p 

Eion ionization energy 
 

e elementary charge, 1.60219×10−19 C 

F in Section 3.3 — oscillator strength  

 elsewhere — 2-argument version of 2F1 (5.30) 

2F1  Gaussian hypergeometric function [100] 

Fn residuum in the discrete representation of the Bergman EMT (3.26) 

fEMT EMT function or functional (3.8) 

frep repetition rate of the pump (source) laser  

g, gext alternative expressions for the Bergman spectral distribution 

G(z) particular solution of the wave equation (5.5) 

ΔH transient part of THz magnetic field in the sample induced by photoexcitation 
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h,ħ Planck constant 6.6262×10−34 J∙s, reduced Planck constant h/2π 

j general summation index 

Δj transient current 

K shape factor of the photoconductive component of a composite  

Kbox the fraction of measured pump power that is incident on the probed area of 

the sample (Section 2.4) 

k wavenumber of the wave in a medium 

k0 wavenumber of the wave in vacuum 

kB Boltzmann constant 

L sample thickness 

Llayer thickness of the SiOx layer in a superlattice 

ldiff carrier diffusion length 

lfree carrier mean free path between collision in the bulk 

ma atomic mass of a chemical compound 

me electron rest mass 

m* carrier effective conductivity mass 

me,h* electron, hole polaron effective mass (8.8) 

mHv,Lt * effective mass of the heavier, lighter polaron type (Subsection 8.1.4) 

mDOS carrier density-of-states mass (8.3) 

N (photo)carrier density 

N0 N at the photoexcited surface 
mic

0N  N in semiconducting particles at the photoexcited surface 

Nav average excitation density ≈ 0.63αϕ (footnote 19 in [118]) 

Ne,h density of electrons, holes (Chapter 8) 

NS carrier sheet density (Subsection 8.3.1) 
 

Complex refractive index: 

n — of the sample (with or without photoexcitation) 

n1 — of the medium in front of the photoexcited layer 

n2 — of the medium behind the photoexcited layer 

ngroup group refractive index of an optical pulse in a non-linear medium 
 

P polarization of a medium (3.12, 3.13)  

Pinc pump light power incident on the probed area of the sample (Section 2.4) 

Pmeas pump light power measured by a power meter before the vacuum box 

(Section 2.4) 

p order number of carrier collisions in the DS approach (Section 3.7) 
 

Probability of the result of a charge carrier hitting the NP boundary in Monte Carlo 

simulations: 

pB — carrier backscattering off the NP boundary 

pF,d, pF,δ — carrier transport between adjacent NCs with diameter d,δ 

pR — carrier reflection from the NP boundary 

pS — isotropic scattering carrier at the boundary 

pT — scatterless carrier transport to adjacent NP (tunneling) 
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R power reflectivity of the sample front face for the pump light 

r radius of the sample holder aperture 

r1,2 amplitude reflection coefficient at the sample front, back surface (5.4) 

s volume filling fraction of the photoconductive component of a composite  

sarea areal filling fraction of Si precipitates in an annealed layer (Chapter 7) 

sd volume filling fraction of smaller nanocrystals (Chapter 7) 

sδ volume filling fraction of larger clusters (Chapter 7) 

t time delay between the peak of the probe pulse and the sampling pulse  

t′ time from the start of the motion of a carrier in a Monte Carlo 

simulation (3.28) 

tB characteristic time of bimolecular recombination (8.18) 

tp time delay between the pump pulse and the peak of the probe pulse 
 

Complex amplitude transmission coefficient: 

t1 — at the front surface of the sample (5.4) 

t2 — at the back surface of the sample (5.4) 

tsample — of the sample without photoexcitation (2.1) 

tref — of the reference (2.1) 
 

T (without argument) — thermodynamic temperature 
 

Complex field transmittance: 

T(ω) — of the sample (without photoexcitation, (2.1)) 

ΔT — transient part of T(ω) induced by photoexcitation (2.5) 

ΔTnorm — normalized transient transmittance, i.e. ΔT(ω) per single absorbed 

photon per elementary charge (2.10) 

perc

norm
ΔT  — ΔTnorm of a percolated sample (5.16) 

perc-non

norm
ΔT  — ΔTnorm of a non-percolated sample (5.35) 

linear
normΔT  — ΔTnorm of a non-percolated component in the linear (low-conductivity) 

regime (6.3) 
 

U source function of ΔE in the wave equation (2.3, 2.4) 

vi velocity vector coordinates (3.28) 

v amplitude of the representative contribution to the Bergman spectral 

distribution in the VBD approximation (4.12) 

v(l) Bergman spectral distribution 

V, Vp percolation strength of the photoconductive component in the Bergman and in 

the VBD effective medium theory 

Vd,δ percolation strength of NCs with diameter d, δ (Chapter 7) 

Vm percolation strength of the dielectric matrix in the Bergman EMT 

VS volume of a sphere 

VΣ unit cell volume in Monte Carlo simulations (Chapter 9) 

x oxygen-to-silicon content ratio in SiOx oxides 
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Z capacitive impedance spectrum of the non-percolated component in the VBD 

approximation (5.27) 

Z0 vacuum wave impedance = 1/(ε0∙c) 

z Cartesian coordinate along the probe pulse propagation, ⊥ to the sample 

surface 

13.3. Greek symbols and their derivatives 

The prefix “Δ” of transient quantities is disregarded in the alphabetical 

ordering of the list. Parentheses point to the introduction or definition of the symbol. 
 

α (effective) absorption coefficient of the pump light in the sample 

αmic absorption coefficient of the pump light in the photoconductive inclusions of 

a composite 

β Cole-Davidson exponent (3.3) 

γ damping rate of a driven harmonic oscillator (3.5) 

Γ the gamma function 

δ in Section 3.1 — Cole-Cole exponent (3.3) 

in Subsection 4.5.1 — parameter of the residual theorem (4.18) 

in Chapter 7 — fitted diameter of larger nanocrystal aggregates 
 

Complex permittivity: 

ε — (macroscopic) of a composite = effective permittivity 

Δε — the transient part of ε induced by photoexcitation 

ε0 — of vacuum, 8.854185×10−12 F/m 

ΔεDrude — permittivity contribution of photocarriers in the Drude model 

εm — (microscopic) of insulating parts (matrix) of a two-component composite  

εp — (microscopic) of photoconductive parts of a two-component composite  

Δεp — the transient part of εp induced by photoexcitation 

εpol   — dielectric strength of polaron ionization response (8.23) 
 

η proportionality constant between ω0 and ωp (3.6) 

θ relaxation time in the Debye conductivity model (3.7) 

ϑ carrier scattering angle in the DS approach (Section 3.7) 

κ auxiliary argument of the hypergeometric function (5.30) 

κ* complex conjugate of κ 

Λ depolarization factor of in the Bergman EMT (Subsection 3.4.3) 

λ wavelength, central wavelength of an ultrashort pulse 
 

Charge carrier mobility: 

μ — in general 

μd,δ — in NCs with diameter d, δ calculated by Monte Carlo method (Chapter 7) 

μDrude — according to the Drude model (3.1) 

μDrude-Smith — according to the Drude-Smith model (3.30) 

μe,h — of electron, hole polarons (8.8) 

μHv,Lt — of the heavier, lighter polaron type (Subsection 8.1.4) 
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μH — in the DC limit of the Dyre’s hopping model (Section 3.2) 

μij — calculated from Kubo formula (tensor, (3.28)) 
 

μ0 vacuum permeability (5.6) 

ν linear frequency 

ξ quantum yield of photogeneration of mobile carriers 

ξH,L fraction of photogenerated carriers in the high- and low-density region (8.12) 

ρ (mass) density of a material 

ΔΣ transient sheet conductivity (5.41) 

ΣR ratio of the reflective area of the boundary of a unit cell versus the total 

surface of the unit cell (Chapter 9) 
 

Complex conductivity: 

σ — macroscopic (effective) conductivity of a sample  

Δσ — transient part of σ induced by photoexcitation 

Δσav — averaged for all photocarriers across the excited region (8.1) 

Δσmic — microscopic transient photoconductivity of photoconductive parts of a 

two-component composite (Section 3.4) 
mic

0Δσ  — Δσmic  at the photoexcited surface (5.11) 

Δσperc — transient macroscopic (effective) conductivity of a percolated 

material/component (5.12) 

Δσnon-perc — transient macroscopic (effective) conductivity of a non-percolated 

material/component in the VBD approximation (5.24) 
 

τ0 scattering time of charge carriers in the low-density limit (8.2) 

τ0e,h scattering time of electrons, holes in the low-density limit (8.9) 

τ0Hv,Lt scattering time of the heavier, lighter polaron type in the low-density 

limit  (Subsection 8.1.4) 

τA scattering time of charge carriers on acoustic phonons (8.3) 

τav characteristic scattering time of carriers distributed in sample with a varying 

concentration (8.1) 

τDS characteristic time of the DS model (Section 3.7) 

τH scattering time of charge carriers in the high-density plasma region (8.12) 

τS scattering time of charge carriers in the Drude model (3.2) 

τmax maximal time of charge carrier hopping (Section 3.2) 

τmin minimal time of charge carrier hopping (Section 3.2) 
 

Pump photon fluence in a single excitation pulse:  

ϕ — transmitted through the front interface of the sample = the true excitation 

photon fluence 

ϕinc — incident on the sample front surface 
 

χ(2) second-order susceptibility tensor (2.12) 

Ω0 (central) frequency of an optical pulse 

ΔΩ bandwidth of an optical pulse 
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ω angular frequency — Fourier counterpart of time t. All spectra are plotted 

against linear frequency ω/2π. 

ω0 undamped resonance frequency of a harmonic oscillator (3.5) 

Δω0 frequency shift of phonon mode 

ωp on Page 11 — Fourier counterpart of pump–probe delay tp  

elsewhere — plasma frequency of charge carrier ensemble (3.6) 


