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Introduction 

 During the last decade, evolution of electronic and optoelectronic devices has been 

closely related to the progress in nanotechnology; in particular, semiconductor-based 

technology.  Precise control of the component properties is often required at practically all 

steps of the device manufacturing. Despite a considerable number of existing experimental 

techniques and theoretical models aimed to characterization of nanomaterial structure, there is 

still a lack of understanding of the material electronic and optoelectronic properties on ultrafast 

timescale at the microscopic level, which is where the charge motion may play a decisive role. 

In the case of bulk homogeneous semiconductors, the investigation of charge carriers 

transport inside a material is usually quite straightforward and does not require sophisticated 

experimental techniques and theoretical models. However, local properties of inhomogeneous 

materials and, in particular, of nanostructures might differ significantly from the apparent 

macroscopic ones, causing challenges in both experimental characterization and its theoretical 

interpretation. Detection of the electron transport in a single nanoparticle by means of the 

conventional DC electrical methods demands deposition of the electrical contacts on the 

nanometer scale, which is not an easy task; at the same time, these contacts may disturb the 

electron confinement and significantly influence its conductive response. On the other hand, 

results of DC measurements of long-range inter-nanoparticle transport in composite samples 

depend on the dielectric material connecting the nanoparticles. The optical (spectroscopic) 

methods enable contactless measurements, e.g., the sample is placed in the path of the 

electromagnetic radiation. However, analysis of the material spectral response is firmly limited 

by the corresponding frequency range: depending on the frequency-dependent skin effect and 

dimension of the studied sample, its characteristic dimensions can be sometimes considered as 

infinite for high frequencies, whereas, for the radiation wavelengths that are significantly larger 

than the dimensions of the structures, electromagnetic field may be treated as constant within 

a single nano-element. In both DC and optical measurements of the long-range charge 

transport, suitable dielectric mixing rules (effective medium theory) must be applied to retrieve 

the information of interest (which is basically the properties of the short-range transport) from 

the raw data. In order to perform such analysis, it is quite advantageous to have a broadband 

response available so as to select an appropriate effective medium model.  

 The local conductivity on the nanometer scale can be measured using conductive 

atomic force microscopy. Namely, the presence and absence of the percolation pathways 

through the sample thickness can be proved by this method [1]. However, it is difficult to apply 

this technique to some samples as for example layered nanocrystalline structures with 

insulating interlayers, which are extensively discussed in this manuscript. Based on the above, 

terahertz (THz) spectroscopy appears as a powerful tool for a contactless analysis of local 

features of the carrier motion in various ensembles of nanocrystalline networks. THz radiation, 

sensitive to the presence of the conduction band electrons, has been used to this purpose both 

in near-field and in far-field configurations. The former approach operates in a near-field 

scattering mode, which is ensured by an AFM tip acting as a local scatterer of the THz radiation 
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close to the probed nanostructure. It is possible to plot the time-dependent photoconductivity 

contrasts at the surface of a single nanocrystal or nanowire; however, in the current state-of-

the-art, the technique does not allow to evaluate quantitatively broadband local conductivity 

spectra. Nevertheless, it opens a new way of characterization of a single nanowire or a single 

molecule transistors and similar electronic devices. The latter (far-field) method enables one to 

measure spectra of the complex dielectric response function of the composite material, i.e. 

averaged over a macroscopic ensemble of nano-objects. This has clear feedback to the 

applications: ensembles of nano-objects are used in the majority of electronic applications and 

the cheap fabrication methods usually do not offer the possibility to achieve the uniformity in 

the nanocrystal sizes and shapes. The THz photoconductivity measurements then combine 

several advantages of conventional electrical and optical methods, namely (1) experiments are 

done without electrical contacts, (2) measurements are phase-sensitive, i.e., both real and 

imaginary part of the conductivity are determined simultaneously, (3) the time resolution of 

the spectra is better than 1 ps. 

 In the THz science and technology group at the Institute of Physics of the Czech 

Academy of Sciences we seek for highly reliable fabrication methods providing nanoelements 

with well-defined monodisperse properties and crystal structure required for a more efficient 

advancement of the research. While chemical routes are cheap and suitable for mass production 

of a great variety of nanostructures, they usually lead to a wide spread of physical properties 

of nanoparticles including their size, shape, orientation, electrical conductivity, and 

connectivity at interfaces. Thus, under such conditions, it is usually very difficult to gain in-

depth understanding of nanoscale conduction properties since some phenomena may be 

overlooked due to averaging of the response over the disordered ensemble  [1,2]. For better 

control of the nanocrystal size, we used samples prepared by a superlattice approach to form 

layered silicon nanocrystal networks [3]; these are studied in chapter 4. However, as it will be 

shown latter, even with this preparation approach a considerable distribution of the properties 

still exist [4] that hinders detailed understanding of fine effects in the charge carrier mobility. 

Therefore, still moving towards regular sample properties, we combined the molecular beam 

epitaxy technique with electron beam lithography for the preparation of uniform GaAs 

nanobars introduced in chapter 5. Unique properties of the sample including precise control of 

the nanostructure geometry and alignment allowed an in-depth understanding of the carrier 

motion within a single nanostructure providing an access to band bending phenomenon close 

to the nanobar surfaces [5]. 

 This work includes my original experimental results and also theoretical models 

developed or revised in our group; I applied these models to interpret the data.  The structure 

of the thesis is the following: in chapter 1 we describe relevant spectral range and its 

applications; theoretical models of the charge carrier transport are presented in chapter 2. 

Chapter 3 describes in details the experimental setups employed in this work. Our study of the 

photoinduced electron mobility in superlattices of silicon nanocrystal networks in the THz and 

ultra-broad THz – mid-infrared frequency ranges is presented in chapter 4. Chapter 5 is devoted 

to the investigation of the THz mobility of the photoexcited electrons in GaAs nanobars, where 

the charge motion was probed in both far- and near-field regimes. Finally, we summarize main 

results of the thesis in Conclusion.
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1. THz spectroscopy 

1.1. THz spectral range 

Traditionally, the THz spectral range is related to the frequency interval from 100 GHz 

to 3 THz. Figure 1 shows the THz spectral range in terms of various quantities and units 

(energy, temperature, wavelength, wavenumber), which are used in different contexts 

depending on the information of interest. The THz radiation has been applied to various fields 

of scientific investigations. As a vivid example, terahertz spectral range has received great 

interest in spectroscopy of the astronomical objects [6,7]. It is tied to the range of the black-

body thermal radiation at a temperature of tens of Kelvins. Let us note that the cosmic 

background radiation has a characteristic temperature of about 3 K and this leads to further 

applications of the THz radiation in cosmology. 

 

Figure 1. THz spectral range in different units representing frequency ν, photon energy Eph=hν, 

temperature T=Eph/kb, wavelength λ and wavenumber k. 

THz radiation is absorbed by soft vibrations and by librations or rotations of molecules 

in the polar solutions and in the gases. While this fact finds its use in the chemical analysis [8-

10], it limits some potential applications. As an example, THz radiation, which is non-invasive 

and sensitive to the difference between the cancerous and non-cancerous cells, can penetrate 

only a few millimeters of tissues and barely reflect back. Nevertheless, the investigations in 

this area are being intensively conducted by various scientific groups over the world [11-14].  

 Regarding the solid-state research field, there is a number of phenomena in 

semiconductor and dielectric materials that possess resonances in the given spectral range. The 

metals are opaque for the THz waves due to strong absorption by free electrons. On the other 

hand, application of THz radiation allows careful characterization of the charge motion in the 

photoexcited or doped semiconductors (here we speak essentially about the free carrier 

densities roughly of 1014 – 1019 cm-3) [15,16]. The THz photon enables an access to the 

tunneling [17,18] and scattering processes [19-21]; it is sensitive to excitons [22,23], and to 

either classical or quantum electron confinement in nanostructures [24,4]. It has been shown 
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that energy of the transient gap of some superconductors around their transition temperature 

corresponds to the THz frequency region [25-27]. The THz spectra are also quite important in 

the study of dielectrics since they feature low-frequency vibrational modes, which, in relation 

with structural phase transitions (e.g. in ferroelectric materials), are frequently called soft 

modes and are at the origin of structural instability [28,29]. As an aside, transparency of the 

most nonmetallic constructions for THz radiation has promoted a contactless non-invasive THz 

imaging in the investigations of the ancient arts [30] and in various security systems [31]. 

From the point of view of the physical phenomena used for the generation of coherent 

electromagnetic radiation, the terahertz range bridges the gap between two worlds: lying 

between microwaves and infrared frequencies it merges with the world of electronics from one 

side and with the optical one from the other (figure 1). Radio and microwave generation 

traditionally involves charge transport at a characteristic speed of electrons and consequently, 

achieving higher (THz) frequencies demand higher fields applied to smaller structures. Above 

100 GHz this approach is hindered by parasitic capacitance and material electrical breakdown. 

From the optical side, radiative transitions between energy levels are typically used; however, 

decreasing the frequency down to 1 THz leads to a significant cutback of radiation brightness. 

Furthermore, the terahertz spectral lines correspond to energy levels separated by several meV 

and, therefore, the THz laser operation is easily disturbed by thermal fluctuations at room 

temperature. 

Despite the described difficulties, many attempts have been made to fill this so called 

“terahertz gap”. First significant results were achieved due to an implementation of backward-

wave oscillators [32], which yield high intensity of coherent monochromatic THz waves. A 

qualitative step forward in the THz area was made in 1990s with the help of the ultrafast 

optoelectronics [33]. This led to the invention of the time-domain THz spectroscopy that 

provided the scientists with a high intensity pulsed coherent terahertz radiation and allowed a 

phase-sensitive “gated” detection technique. The time-domain THz spectroscopy is described 

in detail in the next section. Further techniques accessing the THz range became available after 

the year 2000; electron acceleration-based sources, such as synchrotron and free electron laser, 

are able to provide high intensity tunable THz radiation [34,35,36,37,38]. However, these 

beamlines are parts of large-scale facilities and can hardly provide an easy access to the 

experiment. The next approach that is worth to mention is a quantum cascade laser (QCL), 

which is based on the electron intersubband transition in multiple quantum well semiconductor 

heterostructures [39-41]. The QCL devices correspond to relatively small chips emitting 

narrow portion of the spectrum. However, several chips can be integrated in a single device to 

cover broader THz range. A major disadvantage of QCLs is the need of cryogenic temperatures 

for their operation, which makes them less suitable for applications.  

1.2. Time-domain spectroscopy 

Time-domain terahertz spectroscopy (TDS) is a technique based on the generation and 

detection of broad band THz pulses by means of femtosecond optical pulses. Interaction of the 

femtosecond optical pulse with the matter may result in a polarization or current surge 

producing the THz pulse via two approaches: nonlinear optics and photoconductive switching. 

The former one involves optical rectification [42] of the laser pulse inside a non-linear crystal 
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(ZnTe, GaP, InP, LiNbO3, etc.) [43,44]. In this case the bandwidth of the THz pulse is mainly 

defined by the spectral density and time profile of the optical pulse and by the properties of the 

crystal (condition of phase matching between the optical and THz waves, phonon energy, 

second order nonlinear susceptibility of the material etc.). The latter one is based on a 

generation of picosecond current pulse in a biased semiconductor [45-47]. The bias field can 

be applied through an antenna structure to optimize the THz emission. The current surge is 

triggered by a femtosecond laser pulse that generates free carriers in the semiconductor wafer. 

In order to achieve emission in the THz regime, a high electron mobility and a short carrier 

lifetime are required. Therefore, apart from the peculiar electrode architecture, production of 

the semiconductor components of the photoswitch involves specific fabrication techniques 

[48]. Some of the most frequently used materials are GaAs, InP or Si based semiconductors. 

Detection of the THz pulses in TDS is inherently based on the fundamentally same 

physical principles as used for the generation. An electric field of the freely propagating THz 

pulse is applied either to a non-linear crystal in order to induce (or change) its birefringence 

(linear electro-optic effect) or to a photoconductive switch in order to trigger a current pulse 

[49,50]. In both cases the measurable quantities are proportional to an instantaneous value of 

the THz electric field and depend on a simultaneous presence of the THz and optical pulses. 

Thus, by changing the time delay (figure 3) between the (picosecond) THz pulse and a 

(femtosecond) sampling optical pulse one directly measures the THz field evolution in time, 

so called wave form 𝐸(𝑡) (figure 2a). Such phase sensitive detection allows one to obtain 

complex spectra of the THz pulse 𝐸(𝜔) (figure 2b) via the Fourier transformation.  

 

Figure 2. (a) Free space THz waveform 𝐸(𝑡) ; (b) its complex spectrum 𝐸(𝜔) =

|𝐸(𝜔)| 𝑒−𝑖𝜙(𝜔). 

The THz radiation propagating in free space is focused onto the sample and onto a 

detector by far infrared lenses or (paraboloidal or ellipsoidal) metallic mirrors. The 

spectroscopic measurements of samples in steady state then typically involve a so-called 

reference measurement (i.e. an experiment without the sample); this allows one to get rid of 

the instrumental functions of the experimental setup. Let us denote the reference waveform as 

𝐸𝑟𝑒𝑓(𝜔). Then the real and imaginary parts of the material refractive index N can be retrieved 

from a complex transmission function 
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𝑇(𝜔) =
𝐸(𝜔)

𝐸𝑟𝑒𝑓(𝜔)
. 

(1.1) 

This approach has been sucesfully employed to characterize bulk [51,52,53] and thin films 

[54,55] materials. 

1.2.1. Optical pump – THz probe (OPTP) spectroscopy  

 In the OPTP method THz radiation probes optically activated processes in a 

semiconductor material; the objective of this approach is to characterize a photoinduced change 

of the complex conductivity ∆𝜎 of the sample [15]. This is obtained through a change of the 

THz waveform ∆𝐸(𝑡) due to the sample photoexcitation and requires introduction of an 

additional branch for the optical pumping beam (figure 3). Precise time synchronization 

between the THz and the optical pulses enables the time resolved measurements, i.e. ∆𝐸 is 

measured as a function of the pump-probe delay 𝑡𝑝. Together with a contactless nature of the 

approach, it makes this technique unique for the ultrafast conductivity investigation. 

Introduction of a negative delay of the pumping beam makes it possible to choose any particular 

time for the measurement of the THz field ∆𝐸(𝑡; 𝑡𝑝) with respect to the moment of excitation. 

A number of variable experimental parameters such as excitation wavelength, charge carrier 

density (via the pump pulse fluence) and sample temperature enables an access to 

complimentary information.  

 

Figure 3. Principal scheme of the OPTP-TDS experiment. 

 

 Apart from the waveform measurements, the time resolved approach allows 

characterization of the carriers dynamic. For this purpose, the time delay 𝑡𝑝 between the THz 

and the sampling pulses is adjusted to a maximum of the transient wave form ∆𝐸𝑚𝑎𝑥, whereas 

the scan of the pump-probe delay 𝑡𝑝 depicts the time evolution ∆𝐸𝑚𝑎𝑥(𝑡) of the carriers 

transport (figure 4). This evolution involves various processes such as carrier generation, 

recombination, scattering, confinement, etc. 
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Figure 4. An example of pump-probe scan of the carrier dynamics measured in a thin film of 

GaInAs at 1.2μm excitation wavelength. 

   

 In the case of relatively slow relaxation processes, i.e., when the signal decay is on the 

time scale of several ps or slower, ∆σ might be considered as constant on a few-ps scale [56]. 

Such consideration is used for all studied samples in this work. On the other hand, when carriers 

exhibit ultra-fast (essentially sub-ps) [57,58] dynamics, specific analysis of the data must be 

used for the measurement interpretation [59,60]. 

1.2.2. Multi-THz Time Domain spectroscopy 

 As it was mentioned earlier in Sec. 1.2, the bandwidth and intensity of the THz pulse 

in TDS-THz system are limited by the properties of the THz emitter and detector material, in 

particular, by the existence of polar phonons in solid crystals in the range ∼ 5 − 12 THz which 

strongly interact with THz waves. This can be overcome using the air (or a specific gas) as a 

medium for both generation and detection of the THz radiation. Indeed, very little dispersion 

of the air ensures convenient conditions for the optical-THz phase matching and the bandwidth 

of the THz pulse will thus be limited only by the bandwidth of the laser pulse. 

 Generation of the ultra-broadband THz pulses from the air plasma is based on a third-

order (𝜒(3)) non-linear interaction between strongly focused fundamental optical wave and its 

second harmonic creating a short plasma filament in the centrosymmetric air medium [61-65]. 

This mechanism is often referred as two-color laser mixing process or four-wave rectification 

(in analogy to the second order optical rectification in non-centrosymmetric crystals). In spite 

of the higher-order nonlinearity involved here, quite strong THz fields (up to ∼ 100  kV/cm) 

are typically achieved due to strong focusing.  

A scheme of the principal experimental setup is shown in figure 5; a focused laser beam 

is frequency doubled using nonlinear (BBO) crystal positioned between the lens and the focal 

point. The co-propagating fundamental beam and its second harmonic (SH) create a plasma 

filament generating linearly polarized THz pulse. 
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Figure 5. Scheme of the multi-THz TDS experiment with the optical-pump branch. 

Detection of the ultra-broadband THz pulses, often referred as air-biased coherent 

detection (ABCD), is based on the third-order optical nonlinearity of the air induced by the 

THz field.  The sampling and THz beams are focused to the same spot between needle 

electrodes. The field applied to the electrodes 𝐸𝑒𝑥𝑡 is parallel to the electric field of the THz 

beam 𝐸𝑇𝐻𝑧 and the voltage is switched between positive and negative values at a frequency 

synchronized with the laser repetition rate 𝑓𝐿 (we use typically 𝑓𝐿/10).  The process can be 

understood as electric-field-induced second harmonic generation of the sampling pulse in the 

air. The generated SH intensity is proportional to (𝐸𝑒𝑥𝑡 + 𝐸𝑇𝐻𝑧)2, the part of this intensity 

modulated at frequency 𝑓𝐿 is then 2𝐸𝑒𝑥𝑡𝐸𝑇𝐻𝑧 and this value (linear in 𝐸𝑇𝐻𝑧) is delivered by the 

lock-in detection. Figure  6 shows THz signal (in time and frequency ranges) generated using 

the Ti:sapphire ultrafast regenerative laser amplifier (Spitfire ACE) with pulse duration ~40 fs. 

The method enables TDS measurements up to 20 THz. 

In analogy to the OPTP-TDS technique described in 1.2.2, optical excitation of the 

sample can be introduced to the experiment enabling access to the complex photoinduced 

conductivity in the multi-THz range. 
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Figure 6. (a) Free space multi-THz waveform E(t); (b) its complex spectrum 𝐸(𝜔) =

|𝐸(𝜔)| 𝑒−𝑖𝜙(𝜔). 

1.2.3. Multi-THz –mid-Infrared pulsed spectroscopy 

 Spectral bandwidth of the THz pulses generated in the air is essentially defined 

by the bandwidth of the optical pulses used for the generation. Thus, using the same principles 

as for the standard multi-THz approach, further broadening of the THz pulse spectrum can be 

achieved by means of spectral broadening of the initial laser beam. As it was shown in [66, 

67], the compression of the laser pulse down to sub-20fs duration time gained the bandwidth 

of the signal above 100 THz. Coherent detection of such broadband THz signal is based on 

optical-THz sum-frequency generation (SFG) in 𝜒(2)-crystal using original optical pulses. This 

technique is not phase-sensitive, however, as well as above-described THz and multi-THz 

techniques, it enables optical-pump – mid-infrared probe (i.e., time-resolved) measurements of 

the samples. In comparison with the conventional FTIR spectroscopy, pulsed SFG approach 

thus provides both spectral and temporal resolution of the infrared signal. We refer to this 

technique as the Multi-THz – mid-infrared (IR) pulse spectroscopy and its time-resolved 

variant (optical pump – mid-infrared probe) will be abbreviated as OPMIP. 

1.2.4. Near-Field THz spectroscopy 

 Combination of the THz spectroscopy with the atomic force microscopic (AFM) 

technique enables THz measurements in the near-field regime (figure 7). AFM tip here acting 

as a scatterer of the THz pulses is oscillating at frequency 𝑓𝑇 in a close vicinity to the surface 

of the probed structure. The scattered signal modulated at 𝑛 × 𝑓𝑇 (i.e., the tip frequency and its 

higher harmonics) is detected using lock-in amplifier. Scanning AFM configuration makes it 

possible to perform THz mapping of the surface of the investigated material. Thus, TDS THz 

approach allows local measurements of the scattered THz waveform. Further development 

includes implementation of the pumping branch into the experiment, enabling the 

measurements of the local carrier dynamics and time-dependent conductivity contrasts of the 

surface of the investigated structure. However, complex nature of the scattering processes 

makes it very difficult to evaluate quantitatively the local conductivity spectra. 
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Figure 7. Scheme of the near-field THz experiment with the optical-pump branch.
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2. THz response of photoexcited nanomaterials 

 In this chapter we describe a general approach to evaluation of the response of optically 

excited semiconductor materials to the THz broadband radiation. For this purpose, we solve 

the wave equation inside photoexcited plane-parallel sample (section 2.1). The excitation is 

represented by a photoconductivity contribution ∆σ which reflects the motion of charges 

submitted to the THz field.  

Section 2.2 is devoted to the most frequently used approaches to model the 

photoconductivity ∆σ. This modelling has two aspects: analysis of microscopic conductivity 

(response function of charge carriers) and the effect of depolarization fields (playing an 

important role in any inhomogeneous material). We introduce here the Drude model, the 

hoping conductivity model and the phenomenological Drude-Smith model. After that, along 

with classical Monte-Carlo simulations of the carrier motion on the microscopic scale, a new 

quantum mechanical model of the electron mobility in the terahertz frequency range is 

introduced in order to describe the charge quantum confinement in nanoparticles. The localized 

plasmon model is introduced afterward. Much attention in this work is devoted to the effective 

medium theory (dielectric mixing rules), which provides a physical background for the 

localized plasmon phenomenon, and which allows to distinguish between the charge 

confinement phenomena and the effects of the depolarization fields. This has a primary 

importance for our study. 

Section 2.3 introduces the main results of the effective medium description into the 

wave equation solution by means of an effective ∆σ of the sample and provides ready-to-use 

formulas for the analysis of experimental transient transmittance and reflectance spectra. 

Finally, section 2.4 provides a summary of the results and a recipe how to proceed in 

analysis of experimental data. 

 2.1. Wave equation 

 Evolution of the electromagnetic field propagating inside an isotropic neutral (electric 

charge density 𝜌 = 0) medium can be described by the Maxwell’s equations (ME). We write 

here the ME in the frequency domain for the component 𝜔 (i.e., 𝑬𝑒−𝑖𝜔𝑡): 

∇ × 𝑬 = 𝑖𝜔𝑩 , ∇ ⋅ 𝑩 = 0, 
 

(2.1) 

∇ × 𝑯 = 𝒋 − 𝑖𝜔𝑫 , ∇ ⋅ 𝑫 = 0, 

 and the constitutive relations: 

𝑫 = 𝜀𝜀0𝑬,  

(2.2) 
𝑩 = 𝜇𝜇0𝑯, 

𝒋 = Δ𝜎𝑬,  



12  Chapter 2 

 

where 𝜀, 𝜀0  and 𝜇, 𝜇0 are the material and vacuum permittivity and permeability, respectively, 

𝒋 is the current density, 𝑬 and 𝑯 are the electric and magnetic fields, respectively, 𝑫 is the 

electric and 𝑩 is the magnetic induction. We consider non-magnetic media (𝜇 = 1) and also 

that any background conductivity of the sample (i.e., its part not related to optical excitation) 

is included in the complex permittivity 𝜀 through the equivalence 𝜀 = 𝑖𝜎/𝜀0𝜔. Δ𝜎 has the 

meaning of the photoinduced conductivity (due to the pump pulse) and the current 𝒋 is the 

related current driven by the field 𝑬. Maxwell’s equations result in the following expression 

for the electric field: 

∇ × (∇ × 𝐄) = 𝜀𝜀0𝜇𝜇0𝜔2𝑬 + 𝑖𝜇𝜇0𝜔𝒋
𝜕𝒋

𝜕𝑡
. (2.3) 

Considering ∇ × (∇ × 𝒂) = ∇ ∙ (∇ ∙ 𝒂) − (∇ ∙ ∇) ∙ 𝒂, and taking into account ∇ ⋅ 𝑬 = 0 

(isotropic medium is considered) we obtain the wave equation: 

𝛻𝟐𝑬 = −𝜀𝜀0𝜇𝜇0𝜔2𝑬 − 𝑖𝜇𝜇0𝜎𝜔𝑬. (2.4) 

We are looking for the solution of the equation 2.4 in a form of a plane wave: 

𝑬𝑒−𝑖(𝜔𝑡−𝒌⋅𝒓). (2.5) 

Thus, we can rewrite the expression for the wave equation as follows: 

𝜵𝟐𝑬 + 𝑘2𝑬 = −𝑖𝑘0𝑍0∆𝜎𝑬, (2.6) 

where the module of the wave vector is 𝑘2 = 𝜀𝜀0𝜇𝜇0𝜔2 ≡
𝜔2𝑁2

𝑐2 , 𝑘0 =
𝜔

𝑐
, and the vacuum wave 

impedance 𝑍0 = 𝜇0𝑐. 

 We further assume a propagation along z-axis and a linear polarization of the probing 

THz beam; then equation 2.6 becomes scalar. We denote by 𝐸 the THz field propagating in the 

sample in equilibrium (i.e., it obeys equation 2.6 without the right-hand-side) and by Δ𝐸 its 

change due to the photoexcitation (figure 8). Thus, the wave equation 2.6 for the transient 

terahertz field ∆𝐸 can be written as follows: 

𝑑2∆𝐸

𝑑𝑧2
+ 𝑘2∆𝐸 = −𝑖𝑘0𝑍0∆𝜎(𝐸 + ∆𝐸). (2.7) 

The term at the right-hand side stands for the transient polarization of the sample expressed in 

the form of the photoinduced current. In principle the photoconductivity Δ𝜎 and the transient 

field Δ𝐸 depend on frequency (𝜔), pump-probe delay (𝑡𝑝), coordinate 𝑧 and the pump-pulse 

fluence (or 𝑧-dependent photocarrier density). Throughout this work we do not explicitly 

denote these dependences in order to simplify the formulas. We write such a dependence just 

in cases when emphasis is needed. 
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 Since in our experiments the time evolution of photoexcitation is slow on the THz pulse 

timescale (quasi-steady-state approximation), we can describe the dynamics in terms of time-

dependent THz spectra: Δ𝜎(𝜔, 𝑡𝑝), Δ𝐸(𝜔, 𝑡𝑝). As it was mentioned before, the OPTP 

measurements allow changes of the pump-probe delay enabling probing of the sample 

photoexcitation dynamics. It should be noted that in a general analysis involving ultrafast (sub-

ps) dynamics, two frequency variables 𝜔 and 𝜔𝑝 related to the gated detection of the THz pulse 

(time t) and to pump-probe delay (𝑡𝑝) should be introduced and their mixing should be properly 

taken into account [59, 60].  

 The wave equation 2.7 is a non-linear partial differential equation (PDE), which can 

only be solved using numerical approach. However, its analytical solution, which often 

provides a better insight into the physics of the problem, is possible in the limit of the small 

signal ∆𝐸 ≪ 𝐸. Indeed, dropping ∆𝐸 term at the right-hand side leads to linearization of the 

PDE. Regarding the THz conductivity measurements of the semiconducting (nano-)materials, 

the low signal approximation is quite reasonable and may describe well a broad range of 

experimental conditions. Nevertheless, its validity must be carefully estimated for every 

particular measurement. Therefore, it is necessary to have both numerical and analytical model 

at hand. Depending on the experimental conditions we employ one or the other approach 

throughout this work. 

 2.1.1. Analytical solution of the wave equation 

 In the small signal limit (∆𝐸 ≪ 𝐸) the wave equation becomes a linear inhomogeneous 

second-order partial differential equation. Its general solution ∆𝐸 is defined as follows: 

∆𝐸 = 𝛿𝑒𝑖𝑘𝑧 + 𝛾𝑒−𝑖𝑘𝑧 +
𝑍0

2𝑛
[𝑒−𝑖𝑘𝑧 ∫ ∆𝜎𝐸𝑒𝑖𝑘𝑧

𝑧

0

𝑑𝑧 − 𝑒𝑖𝑘𝑧 ∫ ∆𝜎𝐸𝑒−𝑖𝑘𝑧

𝑧

0

𝑑𝑧], 

 

(2.8) 

where 𝛿 and 𝛾 are the arbitrary coefficients of the general solution (𝛿𝑒𝑖𝑘𝑧 + 𝛾𝑒−𝑖𝑘𝑧)  of the 

complementary equation. 

 Sample reflection and transmission of the THz field obey the standard Fresnel 

equations: 

𝑟1 =
𝑛 − 𝑛1

𝑛 + 𝑛1
,  𝑟2 =

𝑛 − 𝑛2

𝑛 + 𝑛2
, 

 

(2.9) 

𝑡1 =
2𝑛1

𝑛 + 𝑛1
, 

 
𝑡2 =

2𝑛

𝑛2 + 𝑛
. 

𝑡𝑖 and 𝑟𝑖 are the transmission and internal reflection coefficients at the input and output sample 

surfaces, respectively; 𝑛 and 𝑛𝑖 are the refractive indexes of the sample in equilibrium and of 

adjacent media (figure 8). Transient fields ∆𝐸,  ∆𝐸𝑟 and ∆𝐸𝑡 are transient fields induced by the 

photogenerated carriers (∆𝜎) inside the sample. 
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Figure 8. Scheme of the THz field propagation in the sample with thickness 𝐿 upon 

photoexcitation with conductivity ∆𝜎: 𝐸𝑖𝑛𝑐 is the incident field, 𝐸𝑟, 𝐸𝑡 and 𝐸 are the reflected 

field, transmitted field and field inside the sample, respectively. Similar notation is used for the 

transient fields Δ𝐸𝑟, Δ𝐸𝑡 and Δ𝐸. 

The 𝑧-dependence of the transient conductivity ∆𝜎 must be taken into account due to a 

possible strongly inhomogeneous distribution of the conduction band electrons along the 

sample, which depends on the sample optical properties and on the photoexcitation conditions. 

Let us define 𝑎 as a parameter that describes multiple internal reflections of the THz 

beam inside the sample (related to Airy function for Fabry-Pérot etalon): 

𝑎 = (1 − 𝑟1𝑟2𝑒2𝑖𝑘𝐿)
−1

 (2.10) 

Thus, the THz field inside the sample in its equilibrium state can be written as: 

𝐸 = 𝐸𝑖𝑛𝑐𝑡1𝑎[𝑒𝑖𝑘𝑧 + 𝑟2𝑒−𝑖𝑘(𝑧−2𝐿)]. (2.11) 

The relations among the transmitted and reflected fields are defined via the continuity 

conditions at the sample interfaces: 

∆𝐸𝑟 = ∆𝐸(𝑧 = 0),  ∆𝐸𝑡 = ∆𝐸(𝑧 = 𝐿), 
 

(2.12) 
∆𝐻𝑟 = ∆𝐻(𝑧 = 0),  ∆𝐻𝑡 = ∆𝐻(𝑧 = 𝐿). 

Putting the solution of the wave equation 2.8 into these boundary conditions we obtain 

solutions for the transient transmitted ∆𝐸𝑡 [68] and reflected ∆𝐸𝑟 [69] THz fields: 

∆𝐸𝑡 = −
𝑍0𝑡1𝑡2𝑎2

2𝑛
𝐸𝑖𝑛𝑐 𝑒𝑖𝑘𝐿 [(1 + 𝑟1𝑟2𝑒2𝑖𝑘𝐿) ∫ ∆𝜎d𝑧

𝐿

0

+ 𝑟1 ∫ ∆𝜎 𝑒2𝑖𝑘𝑧d𝑧

𝐿

0

+ 𝑟2𝑒2𝑖𝑘𝐿 ∫ ∆𝜎 𝑒−2𝑖𝑘𝑧d𝑧

𝐿

0

], 

 

(2.13) 

and 

𝐸𝑖𝑛𝑐 

𝐸𝑟 + ∆𝐸𝑟 𝐸+∆𝐸 

𝐸𝑡 + ∆𝐸𝑡 

𝑧 
𝐿 0 

∆𝜎 

𝑛  𝑛1  𝑛2  
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∆𝐸𝑟 = −
𝑍0𝑡1

2𝑎2

2𝑛1
𝐸𝑖𝑛𝑐 [2𝑟2𝑒2𝑖𝑘𝐿 ∫ ∆𝜎 𝑑𝑧 +

𝐿

0

∫ ∆𝜎 𝑒2𝑖𝑘𝑧𝑑𝑧

𝐿

0

+ (𝑟2𝑒2𝑖𝑘𝐿)
2

∫ ∆𝜎𝑒−2𝑖𝑘𝑧 𝑑𝑧

𝐿

0

]. 

 

(2.14) 

 

Both expressions consist of the same integrals describing the generation process of the 

transient wave ∆𝐸 under phase matched or non-phase matched regimes for the primary field 𝐸 

propagating inside the sample. At any place of the sample, the current Δ𝜎𝐸 generates a partial 

secondary THz wave Δ𝐸 in the forward or backward direction with respect to the direction of 

propagation of the wave E. The former case is phase-matched since both waves remain in phase 

and the secondary wave amplitude Δ𝐸 will linearly grow as a result of in-phase generation; the 

latter case is non-phase-matched.  

  

  

Figure 9. Schematic representation of the propagation of the primary E and transient THz Δ𝐸 

fields inside the sample (the directions of their wave vectors 𝑘𝐸 and 𝑘Δ𝐸 are indicated): (a) and 

(b) – phase matching conditions, for the co-propagating 𝐸 and ∆𝐸; (c) and (d) – non-phase 

matching regime, when the transient THz field is emitted in the backward direction with respect 

to the propagation of 𝐸. 

In particular, the first integral of both equations corresponds to the phase matched 

regime, when both fields co-propagate (either to the right or to the left as seen in figure 9a,b). 

Let us comment on this shortly. For example, the prefactor 2𝑟2𝑒2𝑖𝑘𝐿 of this integral in the 

transient reflected field ∆𝐸𝑟 shows that this wave must experience a back-side reflection (𝑟2), 

𝐸𝑖𝑛𝑐  

0  𝐿  

𝑧  

𝑘𝐸 

𝑘∆𝐸   
(a)  (b) 

(c) (d) 

0  𝐿  

𝑧  
𝑘𝐸 

𝑘∆𝐸   

𝑘𝐸 

𝑘∆𝐸   

𝑘𝐸 

𝑘∆𝐸   

0  𝐿  

𝑧  

0  𝐿  

𝑧  

𝐸𝑖𝑛𝑐  

𝐸𝑖𝑛𝑐  𝐸𝑖𝑛𝑐  
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a phase change 2𝑘𝐿 and that it is composed of 2 contributions (figure 9a and figure 9b). The 

second and the third integrals describe the non-phase matched generation as depicted in figure 

9c and figure 9d, respectively. The second integral in 3.14 represents direct backward 

generation of Δ𝐸 (figure 9c) while the third one (figure 9d) requires a back-side reflection of 

both E and Δ𝐸 (term 𝑟2
2) and a phase change in between 2𝑘𝐿 and 4𝑘𝐿. Similar reasoning can 

be made also for the transmitted wave ∆𝐸𝑡 to make this interpretation complete.   

In the experiment the THz field measured for the sample in the equilibrium state 

(without optical excitation) is used as the reference signal. Thus, transient transmission and 

transient reflection functions can be found as follows: 

∆𝑇 =
∆𝐸𝑡

𝐸𝑡
, 

 
∆𝑅 =

∆𝐸𝑟

𝐸𝑟
. 

 

(2.15) 

In the case of thin films, the general formulas 2.13 and 2.14 yield simple relations for 

the transient signals in terms of the sheet conductivity of the film. For example, for the transient 

transmission we obtain: 

∆𝑇 = −
𝑍0

𝑛1 + 𝑛2
∫ Δ𝜎(𝑧) 𝑑𝑧

𝐿

0

 

 

(2.16) 

 Unlike in the bulk homogeneous (semi-) conductor materials, in nanostructured 

samples (i.e., nanowires, quantum dots, polycrystals, etc.) with characteristic dimensions 

orders of magnitudes smaller than the wavelengths of the probing THz radiation, the 

characteristic distance of the electron transport may approach or exceed the nanocrystal size. 

Here we reason in terms of the diffusion and/or ballistic transport lengths that carriers can cover 

within one period of the probing radiation (~ ps). If these lengths exceed the nanocrystal size, 

it leads to a classical confinement of the charge carriers. If, moreover, the de Broglie 

wavelength is comparable to the mean free path of carriers a quantum confinement of carriers 

is expected. Both these conditions lead to a complicated material response requiring specific 

models for its interpretation.  

2.2. Photoconductivity models 

In this section we describe the carrier conductivity in terms of the microscopic mobility 𝜇(𝜔) 

𝜇(𝜔) =
𝜎(𝜔)

𝑒0𝑁𝑒
, 

 

(2.17) 

which can be understood as the carrier response function (conductivity per single unit charge). 

Here 𝑒0 is the elementary charge and 𝑁𝑒 is the conductive charge carrier density. 

2.2.1. Drude model 

The model was developed in the beginning of the 20th century to describe charge 

transport in metals [70,71]. It considers the conduction electrons inside material as a free 

electron gas and thus adapts the kinetic theory to it; the model considers collisions of the free 

electrons with heavy particles (lattice ions, impurities) as the only relaxation mechanism. Then, 

the transport of a charge carrier with the effective mass 𝑚𝑒𝑓𝑓 is characterized in terms of the 
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relaxation time 𝜏, i.e.  time interval between two instant scattering events. In the framework of 

this description, the equation of charge motion in a time dependent electric field provides the 

following expression for the frequency dependent charge mobility: 

𝜇𝐷𝑟(𝜔) =
𝑒0𝜏

𝑚𝑒𝑓𝑓

1

1 − 𝑖𝜔𝜏
 . 

 

(2.18) 

 An example of the Drude spectrum of free electrons in GaAs is presented in figure 10. 

The model has been extensively applied to describe THz response of charge carriers in bulk 

semiconductors [51, 72, 73,74]. At a given carrier concentration 𝑛 the Drude conductivity is 

given by the expression 

𝜎𝐷𝑟(𝜔) = 𝜀0𝜔𝑝
2

𝜏

1 − 𝑖𝜔𝜏
 , 

 

(2.19) 

where 𝜀0 is the vacuum permittivity and 𝜔𝑝 is called the plasma frequency. It is defined by the 

expression 

𝜔𝑝 = √
𝑁𝑒𝑒0

2

𝑚𝑒𝑓𝑓𝜀0
, 

 

(2.20) 

and determines a frequency limit for the light that can propagate through a material: radiation 

with a frequency 𝜔 < 𝜔𝑝 is reflected by the carrier plasma while for 𝜔 > (𝜔𝑝 +
1

𝜏
) the plasma 

becomes progressively transparent for the radiation.  

2.2.2. Hopping model 

 The hopping conductivity may dominate over the band-like conductivity in disordered 

materials. In this case, in analogy with the Eyring’s rate theory for ionic conductivity [75], 

conductivity can be well described by the charge hopping among localized states below the 

conduction energy band. Under an applied time-dependent electric field electrons might hop 

between two states by means quantum tunneling through an energy barrier. The Dyre’s random 

free-energy barrier approach [76] is an example of the model employed to characterize a real 

systems behavior (figure 10) [56]. It defines the hopping conductivity 

𝜇ℎ𝑜𝑝(𝜔) = 𝑖𝜔𝜇∞ [1 −
ln 𝜏𝑚𝑖𝑛 − ln 𝜏𝑚𝑎𝑥

ln(1 − 𝑖𝜔𝜏𝑚𝑖𝑛) − ln(1 − 𝑖𝜔𝜏𝑚𝑎𝑥)
]

ln 𝜏𝑚𝑎𝑥 − ln 𝜏𝑚𝑖𝑛

1 𝜏𝑚𝑖𝑛⁄ − 1 𝜏𝑚𝑎𝑥⁄
, 

 

(2.21) 

where the distribution of the relaxation times is limited by the 𝜏𝑚𝑖𝑛  and 𝜏𝑚𝑎𝑥 values and 𝜇∞  

is a high-frequency value of the mobility (i.e. a value at the saturation). 
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Figure 10 (a) calculated Drude mobility with parameters τs = 300 fs and meff =0.065 m0; (b) 

Dyre’s model of hopping conductivity with values τmin = 50 fs and τmax= 5 ps. 

 The frequency value at which the conductivity saturation starts usually lays above the 

THz region. The monotonic behavior of the Dyre’s conductivity within the relaxation times 

interval (𝜏𝑚𝑖𝑛,𝜏𝑚𝑎𝑥), as observed in figure 4(b), corresponds to a general assumption of the 

distribution of energy barriers with equal probability. 

2.2.3. Drude-Smith model 

 The classical Drude model (2.18) cannot be directly applied to nanomaterials where the 

conductivity peak is observed at non-zero frequency; indeed, such a behavior is a common 

feature of the carrier localization. Among different phenomenological attempts to describe the 

localized charge dynamics the most applicable modification was proposed by N. V. Smith in 

1968 [77]. Trying to describe unusual optical properties of mercury, Smith suggested that 

electron backscattering is strong enough in the material to reverse the direction of the electron 

current and proposed a relevant current-current autocorrelation function. The final expression 

for the complex conductivity is then written as 

𝜇(𝜔) = 𝜇0,𝐷𝑆

1

1 − 𝑖𝜔𝜏𝐷𝑆
[1 + ∑

𝑐𝑗

(1 − 𝑖𝜔𝜏𝐷𝑆)𝑗

∞

𝑗=1

], 

 

(2.22) 

where 𝜇0,𝐷𝑆 is a phenomenological mobility amplitude,  𝜏𝐷𝑆 is a Drude-Smith relaxation time 

and 𝑐𝑗 represents the part of an initial electron velocity that is preserved after 𝑗th collision. If 

we denote 𝜃 as an angle between the original electron velocity and its velocity after 𝑗 collisions, 

then 𝑐𝑗 corresponds to 𝑐𝑜𝑠𝜃. An isotropic scattering process yields 𝑐𝑗 = 0. Smith finally 

proposed to truncate the sum (2.22) and to consider only a single anisotropic scattering event 

[78] and he got the perfect fit of the experimental data for the mercury. This single scattering 

approximation is usually presented as the well-known formula for the Drude-Smith mobility 

𝜇𝐷𝑆(𝜔) = 𝜇0,𝐷𝑆  
1

1 − 𝑖𝜔𝜏𝐷𝑆
[1 +

𝑐1

1 − 𝑖𝜔𝜏𝐷𝑆
]. 

 

(2.23) 
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This model was extensively employed to interpret THz photoconductivity in various types of 

nanostructured materials [79-83]. The parameter 𝑐1 determines the degree of the charge 

localization in the spectral representation (figure 11): 𝑐1 = 0 corresponds to the classical Drude 

model (completely free charge carrier), whereas 𝑐1 = −1 means the complete localization.   

 

Figure 11 Real and imaginary parts of the Drude-Smith mobility at different values of 𝑐1  with 

parameter 𝜏𝐷𝑆 = 300 fs and 𝜇0,𝐷𝑆 = 1. 

 Although the model is able to fit many experimental spectra in the classical THz 

spectral range (0.2-2.5 THz) and has been extensively used by several groups, it remains 

phenomenological and the results of the fit should be treated as such. E.g., it does not allow to 

distinguish between the charge carrier response function and the effective medium effects 

(described later in this thesis), both of which contribute to the spectral shape of the 

conductivity. 

2.2.4. Semiclassical and Quantum calculations of the microscopic response function 

 In this chapter we describe two original approaches (semiclassical and quantum 

mechanical) introduced in our group and devoted to the quantitative evaluation of the localized 

carrier response by numerical calculations of the mobility 𝜇(𝜔). First, we deal with the carriers 

localized response related to the “classical” interaction of charges with the nanocrystal 

boundaries; indeed, the charge carrier transport in relatively large nanocrystals can be 

understood in the framework of the classical physics. However, a decrease of the nanocrystal 

size may result in a discretization and shift of electron energy levels leading to the so-called 

quantum confinement. 

 The first approach, described in detail in [84], is based on the Monte Carlo simulations 

of the classical thermal motion of free electrons inside a particle. The essential input parameters 

of the calculation are the density of carriers, shape and size of the nanocrystal, distribution 

function of the carrier velocity, carrier scattering time (electron mean free path) and the 

probabilities of electron transport to a neighboring nanocrystal and of its reflection and 

scattering on the nanocrystal boundary. Depending on the particular system and on the density 

of carriers (position of the Fermi level), either Maxwell-Boltzmann or Fermi-Dirac 

distributions can be applied. The spectrum of microscopic mobility is then defined via Kubo 

0 1 2 3

Frequency (THz)

1

0.5

0

R
e 


D

S
 (

cm
2
 V

-1
 s

-1
)

c1=0

-0.5

-1

0 1 2 3

Frequency (THz)

0.5

0.1

-0.3

Im
 

D
S
 (

cm
2
 V

-1
 s

-1
)



20  Chapter 2 

formula by using the velocity autocorrelation function. In the case of small carrier densities 

described by the Maxwell-Boltzmann distribution, we obtain 

𝜇𝑖𝑗(𝜔) = −
𝑒0

𝑘𝐵𝑇
∫〈𝜈𝑖(0)𝜈𝑗(𝑡′)〉𝑒𝑖𝜔𝑡′

d𝑡′, 
 

(2.24) 

where 

𝑖, 𝑗 = 𝑥, 𝑦, 𝑧. (2.25) 

𝜈𝑖 are components of the vector of carrier velocity at a given time 𝑡′, 𝑘𝐵 and 𝑇 are the 

Boltzmann constant and the carrier temperature, respectively.  The average value 〈𝜈𝑖(0)𝜈𝑗(𝑡′)〉 

is calculated over an ensemble of simulated electron trajectories. 

 Figure 12 shows the microscopic conductivity in isolated cube-shaped GaAs 

nanocrystals at room temperature for the carrier concentration of 1016 electrons per cm3. We 

observe that a decrease of the nanocrystal size (introduced as an input value of the simulations) 

leads to a transition from the Drude behavior to the localized response with the conductivity 

peak shifting to higher frequencies for smaller particles; in this case of isolated nanocrystals 

the DC mobility vanishes for particles of a finite diameter.  

As we have shown in [4], for nanoparticles smaller than a particular size (defined by 

the material and by experimental conditions) semiclassical Monte-Carlo calculations are not 

able to provide reasonable agreement with experimental results. Also, the Monte Carlo 

calculations are not able to explain simultaneously the response at room temperature and at 10 

K. The calculations overestimate the response compared to the experiment at low temperatures. 

This can be considered as a sign of the quantum nature of the charge confinement. Therefore, 

in order to evaluate the charge carrier mobility properly, the quantum mechanical approach 

must be applied. 

However, the quantum Kubo formula (shown e.g., as equation 25 in [16]), which is 

widely used for electronic systems excited at optical frequencies, cannot be applied to the THz 

range since it features non-zero DC conductivity even for completely isolated nanocrystals. It 

follows that the whole low-frequency part of the response (i.e., for 𝜔 ≲ 𝛾, where 𝛾 is the 

dephasing rate occurring typically in the THz or multi-THz spectral range) is not correctly 

predicted by the mentioned formula. 

 The drawback of the Kubo formula is overcome in an approach that was described in 

details in [85]. In a nutshell, the electron linear response to the probing (terahertz) electric field 

is described by two regimes: a coherent regime (electron is coherently excited by the THz field 

but no inelastic scattering event occurred, yet) and an incoherent regime (after the first inelastic 

scattering event). Unlike in bulk materials, the spatial distribution of the coherent electrons in 

nanostructures (i.e., in systems with broken translation symmetry) shifts with respect to the 

equilibrium distribution. The thermal equilibrium of the system is then achieved by the 
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diffusion (thermalization) current 𝑗𝑡ℎ which results from all inelastic scattering events of 

incoherent electrons leading to the equilibrium state. 

𝑗𝑡ℎ = 𝐷𝑑𝑖𝑓𝑓∇𝑛𝑡ℎ, 

where 𝐷𝑑𝑖𝑓𝑓 is the diffusion coefficient rigorously related to the material parameters through 

the Einstein’s relation and 𝑛𝑡ℎ is spatially inhomogeneous density of electrons. This 

thermalization current is not taken into account in the formula for the optical conductivity in 

[16]. Our model allows us to evaluate properly the carrier mobility function [85]: 

𝜇𝑄𝑀(𝜔) =
1

𝒱𝑁𝐶𝑁𝐸
∫ d𝑡 exp(−𝑖𝜔𝑡)

+∞

−∞

× [
1

𝑚𝑒𝑓𝑓
∑ 𝑝𝑘𝑙[𝜌𝐶(𝑡)]𝑙𝑘 + ∫ 𝑗𝑡ℎ(𝑡, 𝐫)d3𝐫

𝒱𝑁𝐶𝑘,𝑙

] , 

 

where 𝜌𝐶 is a density matrix component defining the coherent regime and 𝑘, 𝑙 are multi-indices 

denoting eigenstates (𝒱𝑁𝐶 is the nanocrystal volume, 𝑁 is the density of carriers, 𝐸 is a 

component of the probing electric field amplitude, 𝑝𝑘𝑙 denotes a component of the momentum 

operator). 

 

Figure 12 Quantum mechanical model (solid lines) and semiclassical Monte-Carlo calculations 

(dotted lines) of the conductivity of mutually isolated cube-shaped GaAs nanocrystals. T = 300 

K and electron density N = 1016 cm-3, bulk scattering time in GaAs: 270 fs (figure 2 from [85]). 
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 The comparison of the conductivity spectra calculated for different nanocrystal sizes 

by means of semiclassical Monte-Carlo simulations (dotted lines) and the quantum mechanical 

approach (solid lines) are presented in figure 12. The diffusion current is evaluated here from 

the diffusion equation for carriers where the diffusion coefficient is determined by the 

Einstein’s relation (𝐷 = 𝑘𝐵𝑇/(𝑚𝑒𝑓𝑓𝛾)). We observe an excellent agreement between the 

quantum and classical results for large nanocrystals; for a crystal size of 1024 nm the quantum 

and classical curves exactly coincide. If the nanocrystal size 𝑎 is decreased the classical model 

predicts a monotonous blueshift of the conductivity peak and no sharp spectral lines are 

observed.  

The quantum approach shows a qualitatively similar behavior down to sizes of about 

60 nm. However, below this size (which corresponds to the situation where the nanocrystal 

size is comparable to the mean free path of electrons inside nanocrystals) signatures of 

transitions between the quantum levels start to appear and the overall shape of the quantum 

conductivity differs significantly from the classical one. Clearly, the classical calculations fail 

for these sizes where the quantum interferences dominate over the carrier scattering.  

2.2.5. Localized plasmon and Effective medium theory 

2.2.5.1 Localized plasmon 

 An electric field applied to nanocrystals with free carriers (more precisely, with 

conduction band electrons or valence band holes) leads to separation of the positive and 

negative charges inside the material. In this case the motion of electrons and holes driven by 

the probing (THz) electric field is constrained by the nanocrystal boundary and the electrostatic 

force pulls charges back towards their original positions. This can be understood as an effective 

restoring force acting on the charge carriers and, consequently, their dispersive response can 

be described by the damped harmonic oscillator formula [86]: 

𝜎(𝜔) = −𝑖𝜔
𝐹

𝜔0
2 − 𝜔2 − 𝑖𝜔𝛾

 , (2.26) 

where 𝐹is the oscillator strength and 𝛾 is the damping rate. A transverse (localized plasmon) 

resonance occurs at the frequency 𝜔0 which is proportional to (and smaller than) the plasma 

frequency 𝜔𝑝 of the charges. This approach is called the localized plasmon (LP) model (figure 

13). It has been extensively employed to characterize the (THz) (photo-)conductivity of the 

materials consisting of conductive inclusions in insulating matrix. The ratio between the plasma 

and LP frequencies 𝜔𝑝/𝜔0 depends on the geometry of the conductive particles and on the 

dielectric properties of the materials. For high frequencies (𝜔 ≫ 𝜔0) LP model reduces to the 

Drude one. 

 In spite of its simplicity, interpretation of the conductivity spectra in terms of the LP 

model does not provide complete information about physical properties of the studied system. 

Indeed, along with the dielectric properties of the components, both magnitude of the carrier 

mobility and amplitude of the screening field collectively generated by the separated charges 

are entangled into the single parameter 𝐹. More explicit description of the system can be 

obtained via rigorous interpretation in terms of the depolarization fields. The related approach 
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is called effective medium approximation and it provides the mixing rules for the dielectric 

properties of the material compounds. 

 

Figure 13. Localized plasmon model of the conductivity: 𝐹 = 1/𝜀0, 𝜔0/2𝜋 = 1 THz and 

𝛾/2𝜋 = 2 THz. 

2.2.5.2 Effective medium approximation 

Nanostructured materials usually consist of several dielectric/semiconducting media. 

The response of a macroscopic composite system to the probing THz radiation can be described 

as a response of a homogeneous material with an effective permittivity εeff. Effective medium 

approximation (EMA) involves various models that allow one to find a correlation between 

this effective permittivity and the dielectric (or conductive) properties of each individual 

component. Usually, the system under investigation is made of (semi-)conducting (nanoscaled) 

inclusions dispersed in some insulating medium (referred to as the matrix). For a two-

component system let us denote 𝜀𝑚 and 𝜀𝑝 the permittivities of the matrix and of the inclusions, 

respectively. Then, the main objective of the EMA is to find the form of a function 

𝑓𝑒𝑓𝑓(𝜀𝑚, 𝜀𝑝, . . ), so that  

𝜀𝑒𝑓𝑓 = 𝑓𝑒𝑓𝑓(𝜀𝑚, 𝜀𝑝, . . ). (2.27) 

An important assumption of the effective medium approximation is that the size of the 

inclusions must be significantly smaller than the wavelength of the probing radiation (which is 

fulfilled for the THz probing of nanostructures). In this case, the electromagnetic field is 

approximated as homogeneous in each individual nanocrystal (inclusion). The separation of 

the positive and negative charges under the applied electric field produces depolarization fields 

inside the inclusions, which screen the field 𝐸 applied to the sample. Carriers inside the 

inclusions then move in response to the local field 𝐸𝑙𝑜𝑐and not in response to the applied field 

(𝐸𝑇𝐻𝑧in our experimental case). Effective medium theories then evaluate the relation between 

𝐸𝑇𝐻𝑧 and 𝐸𝑙𝑜𝑐 and thus the relation between the microscopic (local) and the measured effective 

dielectric properties of the composite.  

From the point of view of the field distribution in the composite material, it is fair to 

say that a system of an inclusion with the permittivity 𝜀1/𝜀2 in vacuum is equivalent to a system 

of an inclusion with the permittivity 𝜀1 in a matrix with a permittivity 𝜀2. We assume here an 
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isotropic case where all the quantities can be treated as scalars. In the following chapters we 

review the basic effective medium theories (EMTs) and describe the model that we use for 

evaluating the spectra of the THz photoconductivity. 

2.2.5.3. Maxwell-Garnett EMT model 

 One of the oldest effective medium theory is the Maxwell-Garnett model (MG) [87,88], 

which describes one component inclusions randomly dispersed in a matrix. An important 

assumption of the model is that the distance from one particle to another is much larger than 

the particle size. It corresponds to the case of non-percolated inclusions in a percolated matrix. 

The relation among the effective and local dielectric properties is defined using the so-called 

MG shape factor 𝐾 and the filling factor of the inclusions 𝑠 as follows: 

𝜀𝑒𝑓𝑓 = 𝜀𝑚

(𝜀𝑝(1 + 𝐾𝑠) + 𝜀𝑚𝐾(1 − 𝑠))

𝜀𝑝(1 − 𝑠) + 𝜀𝑚(𝐾 + 𝑠)
. 

(2.28) 

The parameter K reaches large values for the oblong structure when the field is parallel to its 

long dimension. MG model can be well applied to the composites with small values of s. This 

model is relatively simple and widely used to describe composites, where the component 1 is 

non-percolated. 

 Upon photoexcitation the permittivity of the inclusions changes due to the 

photoconductivity. The effective permittivity than changes in an analogous manner: 

𝜀𝑝 →  𝜀𝑝 +
𝑖∆𝜎𝑝

𝜔𝜀0
      =>       𝜀𝑒𝑓𝑓 →  𝜀𝑒𝑓𝑓 +

𝑖∆𝜎𝑒𝑓𝑓

𝜔𝜀0
.   

 

(2.29) 

Our aim is to find the relation between the effective photoconductivity ∆𝜎𝑒𝑓𝑓 and the local 

phoetoconductivity ∆𝜎𝑝. Let us make these substitutes in  2.28: 

 

−
𝑖∆𝜎𝑒𝑓𝑓

𝜔𝜀0
= 𝜀𝑚

𝜀𝑝(1 + 𝐾𝑠) + 𝜀𝑚𝐾(1 − 𝑠) +
𝑖∆𝜎𝑝

𝜔𝜀0
(1 + 𝐾𝑠)

𝜀𝑝(1 − 𝑠) + 𝜀𝑚(𝐾 + 𝑠) +
𝑖∆𝜎𝑝

𝜔𝜀0
(1 − 𝑠)

− 𝜀𝑒𝑓𝑓 , 

(2.30) 

which yields 

∆𝜎𝑒𝑓𝑓 = ∆𝜎𝑝

𝜀𝑚(1 + 𝐾𝑠) + 𝜀𝑒𝑓𝑓(1 − 𝑠)

𝜀𝑝(1 − 𝑠) + 𝜀𝑚(𝐾 + 𝑠) +
𝑖∆𝜎𝑝

𝜔𝜀0
(1 − 𝑠)

= ∆𝜎𝑝

𝐴

𝐵 +
𝑖∆𝜎𝑝

𝜔𝜀0

. (2.31) 

where we denote 𝐴 = 𝜀𝑚(1 + 𝐾𝑠)/(1 − 𝑠) + 𝜀𝑒𝑓𝑓 and 𝐵 = 𝜀𝑝 + 𝜀𝑚(𝐾 + 𝑠)/(1 − 𝑠). Thus, 

in the case of the Drude conductivity (equation 2.18) in the inclusions, the equation 2.31 leads 

to the following expression for the effective conductivity: 
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∆𝜎𝑒𝑓𝑓 = 𝑖𝜀0𝜔
𝐴𝜔𝑝

2

𝐵

1

1
𝐵 𝜔𝑝

2 − 𝜔2 − 𝑖𝜔 𝜏⁄
. (2.32) 

Note that this expression corresponds to the localized plasmon model (equation 2.26). The 

restoring force corresponds to the screening of the applied field while the carrier scattering 

time defines the damping of the system. The advantage of this approach, however, is that all 

the parameters are defined via the dielectric and geometrical properties of the system and the 

photocarrier density is explicitly included in the expression for the plasma frequency. equation 

(3.31) then predicts how the localized plasmon scales with the pump beam fluence.  

2.2.5.4. Bruggeman EMT model 

 Another EMT, which can be applied to the systems of two either percolated or non-

percolated components, is the Bruggeman model [89].  This approach considers both 

components as inclusions of a medium 1 (𝜀1) and a medium 2 (𝜀2) dispersed in a matrix of the 

effective medium (𝜀𝑒𝑓𝑓). In contrast to the MG model, such consideration treats the 

components 1 and 2 symmetrically and leads to the following expression for the effective 

permittivity: 

𝑠
𝜀1 − 𝜀𝑒𝑓𝑓

𝜀1 + 𝐾𝜀𝑒𝑓𝑓
+ (1 − 𝑠)

𝜀2 − 𝜀𝑒𝑓𝑓

𝜀2 + 𝐾𝜀𝑒𝑓𝑓
= 0. (2.33) 

The Bruggeman model is able to take into account the percolation thresholds of both 

components. The disadvantage of this approach is that the percolation thresholds are 

mathematically bond to some particular values of the filling fraction s for a given shape of 

inclusions. It excludes the possibility to tune the filling fraction corresponding to the threshold.  

2.2.5.5. Bergman EMT model 

 The two models described above can be found as specific cases of the most general 

Bergman EMT for two-component systems. Bergman theorem overcomes the limits of the 

Maxwell-Garnett and Bruggeman theories, being able to describe composites with complex 

percolation pathways and with variety of shapes of the inclusions by means percolation strength 

parameters 𝑉𝑚 and 𝑉𝑝 of the two components and by the so-called spectral function 𝑣(𝑁) [90]: 

𝜀𝑒𝑓𝑓 = 𝑉𝑚𝜀𝑚 + 𝑉𝑝𝜀𝑝 + ∫
𝑣(𝑁)𝜀𝑚𝜀𝑝

𝑁𝜀𝑝 + (1 − 𝑁)𝜀𝑚
d𝑁

1

0

. 
(2.34) 

𝑉𝑚and 𝑉𝑝 have the meanings of volume filling fractions of the percolated parts of the matrix 

and inclusions, respectively. The integral over a variable 𝑁 (0 < 𝑁 < 1) describes the 

contribution of the non-percolated inclusions of all possible shapes. The spectral function then 

has a meaning of the relative weight of various shapes of inclusions. Hence, the normalization 

conditions of the spectral function υ(N) and the filling fraction s with respect to the total volume 

of the sample must be fulfilled: 
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𝑉𝑚 + 𝑉𝑝 + ∫ 𝑣(𝑁)d𝑁

1

0

= 1, 
 

 

 

(2.35) 𝑉𝑝 + ∫(1 − 𝑁)𝑣(𝑁)d𝑁

1

0

= 𝑠, 

𝑉𝑚 + ∫ 𝑁𝑣(𝑁)d𝑁

1

0

= (1 − 𝑠) 

The spectral function 𝑣(𝑁) characterizes the density of the non-percolated inclusions with 

different shapes and does not depend on their dielectric properties. The parameter N is related 

to the shape factor of the inclusions. Indeed, if the permittivity 𝜀𝑝or 𝜀𝑚 is negative, then the 

denominator vanishes for a particular value of N, which, in fact, corresponds to a localized 

plasmon resonance condition for an inclusion characterized by N. The spectral function υ(N) 

then plays a role of an oscillator strength distribution for inclusions of various shapes. 

 Despite the ability of the Bergman theory to describe two-component materials with 

any complex morphology, the model in its general form is quite rarely employed to analyze 

experimental data. It is due to the fact that the correct form of the spectral function of real 

composites with a continuous distribution of the N factor is hard to obtain. An important 

approximation of the Bergman model, which can be applied to a large class of composites, is 

an assumption of a single dominant depolarization factor 𝑛(𝑣(𝑁) = 𝑣𝑖𝛿(𝑁 − 𝑛)), which 

yields 

𝜀𝑒𝑓𝑓 = 𝑉𝑚𝜀𝑚 + 𝑉𝑝𝜀𝑝 + 𝑣𝑖

𝜀𝑚𝜀𝑝

𝑛𝜀𝑝 + (1 − 𝑛)𝜀𝑚
. (2.36) 

The next chapter is devoted to the EMT approach based on this approximation. It was 

developed in our group and it is extensively used in this work for characterization of the 

photoinduced conductivity of the samples. 

2.2.6. VBD EMT model 

From the practical point of view, it is useful to have an EMT that is applicable to both 

non-percolated and percolated samples with complex morphology and that is able to describe 

complex percolation pathways. The model must also satisfy specific requirements related to an 

applied experimental technique. In particular, OPTP THz spectroscopy (1.2.1) demands the 

following properties of the model: 

• effective permittivity/conductivity dependence on the photoexcitation density must be 

carefully taken into account; 

• it should cover various experimental situation, i.e., both thin and thick samples with the 

different optical penetration depth; 

• transient THz signal should obey the wave equation (2.6); 

• the model must consider an in-depth profile of the photoexcitation ∆𝜎𝑒𝑓𝑓(𝑧). 
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Using the numerical approach, it was shown in [2] that for a broad geometrical variety 

of the structures the photoinduced conductivity can be well described by means of the Bergman 

EMT (section 2.2.5.5) in approximation of a dominant peak for one depolarization factor 𝑁𝑖 

(equation 2.36). In brief, finite element method for solving quasi-static Maxwell equations was 

employed to calculate numerically an electric field 𝐸 distribution over some given unit cell 

consisting of nanoparticles in an insulating matrix with external electric field applied in a 

particular direction. The calculations were performed for the nanoparticles forming structures 

of various geometry i.e., both regular (spherical) and irregular particles with a different number, 

shape and length of the percolation pathways (figure 14).  

 

Figure 14. Examples of the unit cells of simulated structures; white part corresponds to the 

dielectric matrix; black color illustrates particles (Selected from figure 1 in [2]). 

In terms of the effective medium, the electrostatic energy integrated over the volume of 

the unit cell for the calculated distribution of the electric field 𝑬(𝑥, 𝑦) should correspond to the 

energy of the associated effective medium described by 𝜀𝑒𝑓𝑓 and a homogeneous field obtained 

as an average over the unit cell. Thus, the following averaging over the volume of the unit cell 

𝑉 must hold: 

1

2𝑉
∬ 𝜀𝑚𝑖𝑐(𝑥, 𝑦)𝐸2(𝑥, 𝑦)d𝑥𝑑𝑦 =

1

2𝑉
𝜀𝑒𝑓𝑓 [∬ 𝐸(𝑥, 𝑦)d𝑥𝑑𝑦

 

𝑉

]

2 

𝑉

. 
(2.37) 

Depending on the value of the coordinates 𝑥 and 𝑦, 𝜀𝑚𝑖𝑐(𝑥, 𝑦) describes the microscopic 

permittivity of the particles 𝜀𝑝 or of the matrix 𝜀𝑚. The effective (macroscopic) permittivity is 

presented by the calculated parameter 𝜀𝑒𝑓𝑓 at the right-hand side. Photoexcitation of the 

nanoparticles was modeled by addition of the imaginary parameter 𝑖∆𝜀𝑚𝑖𝑐
′′  with a subsequent 

calculation of ∆𝜀𝑒𝑓𝑓 as a function of “photoexcitation” 𝑖∆𝜀𝑚𝑖𝑐
′′ . 
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Based on the above, a general EMT model for the photoexcited semiconductor-based 

nanostructures was proposed in our group by Ivan Rychetský, Hynek Němec and Petr Kužel 

[2,68] as a specific case of the Bergman model for a single dominant depolarization factor 

(equation 2.36). It has been shown that the photoinduced (transient) effective permittivity 

∆𝜀𝑒𝑓𝑓 can be defined by a simple expression as: 

∆𝜀𝑒𝑓𝑓 = 𝑉∆𝜀𝑚𝑖𝑐 +
𝐵∆𝜀𝑚𝑖𝑐

1 + 𝐷∆𝜀𝑚𝑖𝑐
 (2.38) 

and, taking into account 2.29, in terms of the conductivity as: 

∆𝜎𝑒𝑓𝑓 = 𝑉∆𝜎𝑚𝑖𝑐 +
𝐵∆𝜎𝑚𝑖𝑐

1 +
𝑖𝐷∆𝜎𝑚𝑖𝑐

𝜔𝜀0

. (2.39) 

These simple expressions constitute the relation between the effective (experimentally 

measured) and microscopic response of the sample via three parameters characterizing sample 

morphology: 𝑉stands for the percolation strength (from 2.36), 𝐵 and 𝐷 characterize the 

inductance and capacitance of the non-percolated part of the sample. It has been shown that 

this so-called VBD model is able to describe behavior of the numerically calculated function 

∆𝜀(𝑖∆𝜀𝑚𝑖𝑐
′′ ) for the majority of the simulated cases (different geometry of the structures). The 

function ∆𝜎𝑚𝑖𝑐 defines the transient contribution to the conductivity of the photoconductive 

(nano)inclusions due to optical excitation, respectively. 

Note the similarity of equation 2.39 with the Maxwell-Garnett expression 2.31.  For the 

samples with isolated inclusions and a single shape factor parameter 𝐾 the VBD model, in 

analogy with the Bergman theory, reduces to the Maxwell-Garnett model with the parameters 

𝑉, 𝐵 and 𝐷 defined as: 

𝑉 = 0, 
 

 

(2.40) 

𝐵 =
𝜀𝑚(1 + 𝑠𝐾) − 𝜀𝑒𝑓𝑓(1 − 𝑠)

𝜀𝑚(1 + 𝑠𝐾) − 𝜀𝑝(1 − 𝑠)
, 

𝐷 =
(1 − 𝑠)

𝜀𝑚(𝑠 + 𝐾) + 𝜀𝑝(1 − 𝑠)
. 

Note also that for very weak photoexcitation of the sample (small Δ𝜎𝑚𝑖𝑐) the D-term in 

the denominator of (2.39) can be negligible and, in this case, Δ𝜎𝑒𝑓𝑓 ∝ Δ𝜎𝑚𝑖𝑐. In other words, 

for sufficiently small photoexcitation the depolarization fields are very weak and the effective 

THz response of the sample approaches the microscopic response function of charge carriers; 

this is a very important point in our studies. 

 The VBD model can be interpreted in terms of the equivalent electric circuit. The model 

is discussed in [68,2] and it is based on the representation of conductive inclusions in the 

insulating matrix by the equivalent RС branches (figure 15): in the direction of the applied 

(static) field gaps between the inclusions are represented by the capacitor 𝐶𝑛𝑝(defined by the 

geometry and permittivity of the matrix), while 𝑅𝑛𝑝 and 𝑅𝑝 correspond to the resistance across 

the non-percolated and percolated conductive elements (related to the real part of microscopic 
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(photo)conductivity). The admittance of the circuit then corresponds to the effective 

(photo)conductivity ∆𝜎𝑒𝑓𝑓. 

 

Figure 15 Examples of two the simplest electric circuits that may represent structures (a) with 

and (b) without percolation (figure 3 in [2]). 

2.3. Solution of wave equation in nanomaterials 

 Solution of the wave equation 2.7 with the photoinduced conductivity ∆𝜎 defined via 

the VBD EMT model directly provides the relation between the experimentally measured THz 

signal and microscopic properties of nanomaterials, which is one of the main objectives of our 

work. Regarding the microscopic response, the microscopic conductivity ∆𝜎𝑚𝑖𝑐 is proportional 

to the microscopic mobility function 𝜇, which we define as a single carrier response function 

to the local electric field 𝐸𝑙𝑜𝑐. Also, ∆𝜎𝑚𝑖𝑐 is proportional to the number of free carriers 𝑁𝑒. In 

the case of photoexcited electrons, 𝑁𝑒 depends on the photoexcitation fluence 𝜙 and decays 

exponentially inside the sample along the direction of the optical beam propagation 𝑧 following 

the Lambert-Beer absorption law for the pump beam. Note that the dependence of 𝜇 on the 

carrier density does not affect general consideration of the EMT approach. An expression for 

the frequency dependent microscopic conductivity function is then, in most general 

experimental cases, given by the expression: 

∆𝜎𝑚𝑖𝑐 = 𝑒0𝜉𝜇 𝜙 𝛼𝑙𝑜𝑐𝑒−𝛼𝑧 = ∆𝜎0𝑒−𝛼𝑧, (2.41) 

where 𝜉 is a quantum yield of the mobile charge generation (how many photons generate one 

electron), 𝛼𝑙𝑜𝑐 is the optical absorption coefficient of semiconductor inclusions and 𝛼 is the 

effective optical absorption of the sample. The exponential term in 2.41 describes the optical 

excitation of the sample co-propagating with the transmitted THz probing beam.  

2.3.1. Transient Transmission function 

 The effective conductivity described by the VBD model 2.39 is defined as a linear 

combination of the terms corresponding to the percolated and non-percolated parts of the 

system. Therefore, it is convenient to present separately the corresponding solutions of the 

wave equation since these solutions are quite complex. The analytical approach described in 

the section 2.1.1 provided us with the solutions for the transient transmitted (∆𝐸𝑡) and reflected 

(∆𝐸𝑟) THz fields. Thus, defining the photoconductivity  ∆𝜎 in the equation 2.13 via 2.39 and 

2.41, the percolated (∆𝐸𝑃) and non-percolated (∆𝐸𝑁𝑃) parts of the transient transmission 

function (equation 2.15) can be calculated (equations 22 and 30 in [68]) as follows:  
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∆𝐸𝑡 
𝑃

𝐸𝑡
= −

𝑍0

2𝑛

∆𝜎0

𝛼
𝑎𝑉

× [(1 + 𝑟1𝑟2𝑒2𝑖𝑘𝐿)(1 − 𝑒−𝛼𝐿) + 𝑟1

1 − 𝑒2𝑖𝑘𝐿𝑒−𝛼𝐿

1 − 2𝑖𝑘 𝛼⁄

+ 𝑟2

𝑒2𝑖𝑘𝐿 − 𝑒−𝛼𝐿

1 + 2𝑖𝑘 𝛼⁄
], 

 

(2.42) 

 

∆𝐸𝑡 
𝑁𝑃

𝐸𝑡
= −

𝑍0

2𝑛

∆𝜎0

𝛼
𝑎𝐵

× [(1 + 𝑟1𝑟2𝑒2𝑖𝑘𝐿)
𝐿𝑛(1 + 𝑌0) − 𝐿𝑛(1 + 𝑌(𝐿))

𝑌0

+ 𝑟1{𝐹(1 − 2𝑖𝑘 𝛼⁄ , 𝑌0) − 𝑒2𝑖𝑘𝐿𝑒−𝛼𝐿𝐹(1 − 2𝑖𝑘 𝛼⁄ , 𝑌(𝐿) )}

+ 𝑟2{𝐹(1 + 2𝑖𝑘 𝛼⁄ , 𝑌0)𝑒2𝑖𝑘𝐿 − 𝑒−𝛼𝐿𝐹(1 + 2𝑖𝑘 𝛼⁄ , 𝑌(𝐿) )}], 

 

 

(2.43) 

where  

 𝑌(𝑧) = 𝑌0𝑒−𝛼𝑧 = 𝑖
𝐷

𝜔𝜀0
∆𝜎0 𝑒−𝛼𝑧 (2.44) 

and 𝐹 introduces the Gaussian hypergeometric function [91]: 

𝐹(𝜅, 𝑌) = 

𝐹2
 

1(1, 𝜅, 1 + 𝜅; −𝑌)

𝜅
. 

(2.45) 

Depending on the optical thickness of samples, general formulas (2.42) and (2.43) might be 

significantly simplified as it was shown in [68].  

 The macroscopic THz response of the materials depends on the photoexcitation fluence 

𝜙. Therefore, it has been shown [68, 2] that it is convenient to express experimental output of 

the OPTP measurements in the form of a so-called normalized transmission function: 

∆𝑇𝑛𝑜𝑟𝑚 = −
𝑛1 + 𝑛2

𝑍0

1

𝑒0𝜙

∆𝐸𝑡

𝐸𝑡
. 

(2.46) 

For percolated samples or for a sufficiently low density of the charge carriers in non-percolated 

samples this function has meaning of the microscopic mobility 𝜇. 

2.3.2. Transient Reflection function 

 Following the same considerations as in the previous section, the solution of the wave 

equation for the transient reflection function ∆𝑅 (2.15) for the case of the effective conductivity 

described by the VBD model was presented in [69], where, according to the experimental 

geometry, the exponential decay of the photoinduced conductivity was also described as in 

2.41 (copropagating pumping and THz beams). In the current work we would like to present 

the expression related to the THz reflectivity measurements of silicon nanocrystals 
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superlattices described in section 4. In that study the sample was optically excited from the 

backside, i.e. the photoexcitation beam co-propagates with the reflected probing THz beam. 

The corresponding decay of the microscopic photoconductivity function reads: 

∆𝜎𝑚𝑖𝑐 = 𝑒0𝜉𝜇 𝜙 𝛼𝑙𝑜𝑐𝑒−𝛼(𝐿−𝑧) = ∆𝜎0𝑒−𝛼(𝐿−𝑧), (2.47) 

where 𝐿 is the sample thickness. This leads to the following solution for the percolated ∆𝑅𝑃 

and non-percolated ∆𝑅𝑁𝑃 parts of the transient reflectivity function: 

∆𝐸𝑟
𝑃

𝐸𝑟
= −

𝑍0𝑡1
2𝑎

2𝑛1(𝑟2𝑒2𝑖𝑘𝐿 − 𝑟1)

∆𝜎0

𝛼
𝑉

× [
1

2𝑖𝑘 𝛼⁄ + 1
(𝑒2𝑖𝑘𝐿 − 𝑒−𝛼𝐿) + 2𝑟2𝑒2𝑖𝑘𝐿(1 − 𝑒−𝛼𝐿)

+
(𝑟2𝑒2𝑖𝑘𝐿)

2

−2𝑖𝑘 𝛼⁄ + 1
(𝑒−2𝑖𝑘𝐿 − 𝑒−𝛼𝐿)], 

 

 

(2.48) 

 

∆𝐸𝑟 
𝑁𝑃

𝐸𝑟
= −

𝑍0𝑡1
2𝑎 

2𝑛1(𝑟2𝑒2𝑖𝑘𝐿 − 𝑟1)

∆𝜎0

𝛼
𝐵 

× [2𝑟2𝑒2𝑖𝑘𝐿 (
𝐿𝑛(1 + 𝑌0)

𝑌0
−

𝐿𝑛(1 + 𝑌(𝐿))

𝑌0
 )

+ {𝑒2𝑖𝑘𝐿𝐹(1 + 2𝑖𝑘 𝛼⁄ , 𝑌0) − 𝑒−𝛼𝐿𝐹(1 + 2𝑖𝑘 𝛼⁄ , 𝑌(𝐿))}

+ (𝑟2𝑒2𝑖𝑘𝐿)
2

{𝑒−2𝑖𝑘𝐿𝐹(1 − 2𝑖𝑘 𝛼⁄ , 𝑌0)

− 𝑒−𝛼𝐿𝐹(1 − 2𝑖𝑘 𝛼⁄ , 𝑌(𝐿))}]. 

 

 

(2.49) 

2.4. Summary 

 Since chapter 3 is quite long, we provide here a short recapitulation of the main results 

and we propose a scheme (protocol) for the data measurement and analysis following these 

findings. We used this scheme for data acquisition and handling throughout this thesis.  

First, the transient data are acquired and we evaluate the experimental spectra Δ𝐸𝑡 𝐸𝑡⁄  

and Δ𝐸𝑟 𝐸𝑟⁄  for the transmission or reflection experiment, respectively. In the case of the 

transmission experiment in a thin film, the quantity Δ𝑇norm is evaluated using equation 2.46 

since this quantity was shown to be comparable to the mobility.  Importantly, Δ𝑇norm is 

measured for a broad range of pump fluences 𝜙 (carrier concentrations 𝑁𝑒), typically over 2 or 

3 orders of magnitude. As it has been pointed out above, the effective THz response of the 

sample approaches the microscopic response function for sufficiently small photocarrier 

concentrations. 

The interpretation starts with a suitable choice of the microscopic mobility model, 

equations 2.18–2.Error! Bookmark not defined.. In this work we use the Drude model of the 
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microscopic mobility (section 2.2.1) for the response associated to charge carriers moving 

freely, whereas either Monte-Carlo or Quantum calculations of the microscopic mobility 

(section 2.2.4) are employed in the case of the carrier confinement.  

The microscopic mobility is introduced into the right-hand-side of the wave equation 

through the VBD formula (equation 2.39); the corresponding small-signal (∆𝐸 ≪ 𝐸) analytical 

solutions of the wave equations have been presented as equations 2.42, 2.43 for the 

transmission experiment and 2.48, 2.49 for the reflection experiment. The theoretical spectra 

Δ𝐸𝑡 𝐸𝑡⁄  or Δ𝐸𝑟 𝐸𝑟⁄  are finally fitted to the experimental ones. Alternatively, in the cases where 

the small-signal condition cannot be achieved in the experiment over the whole spectral range, 

we calculate numerical solution of the wave equation (2.7) and this numerical solution is fit to 

the experimental data. 

 The described strategy allows us to evaluate carefully the charge transport within a 

sample and/or a single nanostructure. In addition, it enables an access to the parameters of the 

sample morphology such as the size of structures, their shape and mutual disposition. A deep 

understanding of the THz photoconductive response may be achieved by combination of 

several THz techniques (section 1.2) with electron and atomic force microscopy (section 3).
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3. Experimental setups 

 In our investigations we employed several THz systems based on the various THz 

generation and detection principles (section 1.2) and various laser sources. Since the majority 

of these systems is custom-built, we provide their detailed description and characteristics in 

this chapter. Apart from the THz experiments, some supporting experiments have been carried 

out using commercial devices: Fourier transform infrared spectrometer (FTIR) BRUKER 

IFS113v was used for the analysis of the mid-infrared response of Si nanocrystal superlattices 

reported in section 4; scanning electron microscope (SEM) FEI Quanta 3D FEG  and atomic 

force microscope (AFM) Asylum Research Cypher S were employed for the morphology 

characterization of the GaAs nanobars described in section 5; for optical microscopy of our 

samples we used optical polarization microscope Leica DM2700 M equipped with Leica 

DMC2900 camera. 

3.1. Setup for Optical Pump – THz probe experiment  

 A scheme of the experimental setup used for OPTP spectroscopy is shown in figure 16. 

A Ti:sapphire regenerative amplifier (Spitfire ACE, Spectra-Physics/Newport) is used as a 

laser source of the experiment with 1 mJ pulse energy, 5 kHz repetition rate, ~ 40 fs pulse 

length and central wavelength λ = 800 nm. The fundamental beam is split into three beams by 

means of 800 nm beam splitters: ~ 0.3 mJ pulses are used for THz generation (probing beam) 

and detection (sampling beam); the remaining part serves for the photoexcitation of the sample 

(pumping beam). 

 Generation of the THz pulses is performed via optical rectification of the probing beam 

pulses in a 1 mm thick nonlinear (110)-ZnTe crystal. The generated linearly polarized divergent 

THz beam is collected using elliptical aluminum mirror and focused onto the sample position. 

Then, by means of a second elliptical mirror, it is focused onto another 1 mm thick ZnTe crystal 

used as a sensor. The THz part of the experimental setup is enclosed in an aluminum vacuum 

chamber in order to avoid absorption of the THz radiation on water vapor. The chamber is 

evacuated to a pressure of about 1 mbar using a primary vacuum pump. The sample is attached 

to the front side of a metal holder with a circular aperture. It is positioned either directly inside 

the vacuum chamber or inside a continuous-flow optical cryostat (Oxford Optistat) introduced 

into the vacuum chamber for the measurements at the low temperature. 

 The sampling beam is sent to the sensor crystal collinearly with the THz beam by means 

of a THz transparent pellicle mirror. The birefringence of the non-linear crystal, induced by the 

THz pulses through the linear electro-optic effect, is proportional to the instantaneous value of 

the THz electric field. Thus, simultaneous presence of the THz and sampling pulses results in 

a polarization change of the sampling beam. Subsequently, the polarization of the optical pulses 

is transformed into the circular/elliptical one by means of a Babinet-Soleil compensator acting 

as a quarter-wave plate. The Wollaston prism splits the sampling beam into orthogonal linearly 

polarized components. The difference between the intensities (IP and IS) of these two 

components, measured by two photodiodes, is linearly proportional to the value of the THz 
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field inside the sensor crystal which was sampled by the optical pulse. Phase-sensitive 

synchronized detection is accomplished by utilizing a lock-in amplifier and an optical chopper 

introduced into the probing beam path. The signal-to-noise ratio is further increased by 

employing a gated integrator for the processing of the signal from the photodiodes. The time 

delay of the sampling pulse with respect to the THz pulse is controlled by a delay line with a 3 

fs resolution time. The basic characteristics of our OPTP THz setup are summed up in a table 

1. 

 

Figure 16. Scheme of the OPTP experimental setup. 

 Depending on the material, the photoexcitation of the sample may be performed using 

the photons at the fundamental wavelength (800 nm) as well as photons converted to higher 

harmonics. Either single or a sequence of two phase matched BBO crystals is introduced to 

generate the second or third harmonic, respectively. 

 The angle of incidence of the pumping beam on the sample plane is about 10 degrees. 

The beam is defocused via a CaF2 plano-concave lens in order to achieve nearly homogeneous 

excitation density of the sample measured area. The excitation power is controlled via variation 

of the neutral density filters and variable polarizing attenuator. The power of the pumping beam 

is measured with a power meter; in situ power measurements are quite complicated in the 

vacuum chamber conditions. Therefore, the pumping beam may be deflected to the power 

meter outside the chamber using the flipping mirror. However, due to the different path 

distances of the divergent beam and absorption by the employed windows, this approach 
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requires preliminary measurements of the proportionality coefficient between the beam power 

at the power meter position and at sample surface. The photon fluence incident on the front 

surface of the sample is then defined by the following expression: 

𝜙 = 𝑃𝑖𝑛𝑐/(
ℎ𝑐

𝜆   
𝑓𝑟𝑒𝑝𝜋𝑟2), 

(3.1) 

where 𝑃𝑖𝑛𝑐 is the average power of the beam incident on the sample surface, ℎ is the Plank 

constant, 𝑓𝑟𝑒𝑝 is the repetition rate and r is the radius of the sample holder aperture. 

 The scan range of a time delay line used for the excitation beam is 1000 ps with the 

time resolution of 3 fs. Modulation of the excitation beam (i.e. introducing the optical chopper 

in the beam path) allows direct measurement of the transient THz signal ∆𝐸 . 

Spectral range 

(THz) 

Spectral resolution 

(THz) 

Temperature range 

(K) 

Peak THz field 

(kV/cm) 

0.2 – 2.4 0.1 4 – 320 ∿ 5 

Table 1. Characteristics of the OPTP experimental setup. 

3.2. Setup for Optical Pump – Multi-THz probe experiment  

Our optical pump – multi-THz TDS setup is driven by the same laser source as the 

OPTP experiments described in the previous section. (Ti:sapphire regenerative amplifier 

Spitfire ACE, Spectra-Physics/Newport; 1 mJ pulse energy, 5 kHz repetition rate, ~ 40 fs pulse 

length, and the central wavelength λ = 800 nm). The custom-built spectrometer utilizes two-

color mixing in plasma and the ABCD detection scheme (section 1.2.2). 

The output of the femtosecond amplifier (about 400 J) is focused with a lens (f = 150 

mm) and this convergent beam passes through a frequency doubler (200-m-thick -BBO), a 

700-m-thick -BBO time plate (with fine orientation tuning in order to achieve a phase match 

of 800 and 400 nm waves at the common focal point) and a dual wavelength 800+400 nm half-

wave plate (DWHW). The generated horizontally polarized multi-THz beam is focused on the 

sample position using an ellipsoidal mirror. Subsequently, using a pair of parabolic mirrors, it 

is focused collinearly with another 800 nm beam (<100 J) to a spot between two 1-mm-thick 

electrodes with a gap of 1 mm between them. The electrodes are supplied with 1.5 kV bias 

pulses at 500 Hz synchronized with the laser pulses, which superimpose to the THz field. A 

generated second harmonic (400 nm) is sent into an avalanche photodiode and detected using 

a lock-in amplifier synchronized with the bias pulses. This provides a signal directly 

proportional to the THz field. The THz part of the experiment is enclosed into dry air 

atmosphere. The sample is attached to the front side of a metal holder with a circular aperture. 

The part of the fundamental beam used for the sample photoexcitation undergoes the 

power adjustments via neutral density filters and the variable polarizing attenuator. Its power 

is measured directly at the sample holder position. A sequence of the BBO crystals may be 

introduced into the beam path in order to use higher harmonics for optical excitation. The angle 

of pumping beam incidence on the sample plane is about 10 degrees. The time delay of the 
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400 nm 

band-pass 

filters 

optical beam is controlled by a delay line with the scan range of 660 ps and with the time 

resolution of 3 fs. 

 

Figure 17. Scheme of the optical pump – multi-THz TDS experimental setup. In the picture 

ITO is an indium–tin–oxide-coated glass. 

 

Spectral range 

(THz) 

Spectral resolution 

(THz) 

Temperature range 

(K) 

Peak THz field 

(kV/cm) 

1 – 20 0.1 300 ∿ 70 

Table 2. Characteristics of the optical pump – multi-THz experimental setup. Peak THz field 

at sample position is about 70 kV/cm, at the detection position (between the electrodes) it is 

120 kV/cm. 

3.3. Setup for Multi-THz –mid-Infrared pulsed experiment  

 In our investigations we used the experimental setup for the multi-THz – mid-infra-red 

pulsed spectroscopy shown on figure 18 (built in the group of prof. Dr. Hartmut Roskos in 

Goethe University, Frankfurt). The experimental system is based on the Ti:sapphire 

regenerative amplifier (Clark-MXR CPA-2101) with 1 mJ pulse energy, 1 kHz repetition rate, 

~ 150 fs pulse length and central wavelength λ = 775 nm. Laser pulses used for the THz 

generation (probing beam) undergo spectral broadening via a commercial hollow-core fiber 

compressor (Femtolasers KALEIDOSCOPE, containing Ar at 3.5 atm, length 1 m) followed 

by a sequence of negative-dispersion mirrors in order to obtain sub-20 fs duration. 

Subsequently, the obtained optical pulses are focused through the 150 μm thick -BBO crystal 
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in order to achieve coherent generation of broadband multi-THz pulses (15 – 120 THz) via 

two-color air plasma laser mixing process (section 1.2.2).  

A normal incidence reflection geometry for the THz probe pulse on the sample is used; 

the THz radiation reflected from the sample surface passes through a Si beam splitter and it is 

focused collinearly with a sampling pulses on a 0.5 mm thick (100)-oriented ZnTe crystal used 

for optical-THz sum-frequency generation (SFG). An SFG spectrogram is measured by a 

commercial spectrometer (Ocean Optics, QE65000). The THz part of the experiment is 

enclosed into dry air atmosphere. The sample is attached to the front side of a metal holder 

with a circular aperture. 

 

Figure 18. Scheme of the experimental setup for the multi-THz – mid-infra-red pulse 

spectroscopy. 

 The part of the fundamental beam used for the sample photoexcitation undergoes the 

power adjustments via neutral density filters. Its power is measured outside the enclose. 

Therefore, preliminary measurements/calculations of the coefficient of proportionality 

between the incident beam powers at the power meter position and sample surface are required. 

A sequence of BBO crystals may be introduced into the beam path in order to use higher 

harmonics for optical excitation. The pump pulses are controlled by the time delay line and 

delivered to the back face of the sample with a counterpropagating THz pulses. 
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3.4. THz Scanning Near-Field Optical microscope (THz-SNOM)  

 In our laboratory we use commercial THz scanning near-field microscope neaSNOM 

(NeaSpec) for the investigation of local conductivity. The system operates with broadband THz 

pulses (0.2 to 1.5 THz) scattered on a PtIr AFM tip (40 nm radius) oscillating at a particular 

frequency, roughly 50 − 100 kHz. The common setup for steady-state imaging involves THz 

generation and detection in InGaAs photoconductive antennas driven by femtosecond Er-

doped fiber laser (Menlo systems, central wavelength 1560 nm). We introduced an additional 

optical branch at 780 nm (second harmonic of the fundamental fiber laser output) serving for 

the photoexcitation of the sample using an SHG module (MenloSystems, 50 nJ pulse energy, 

100 MHz repetition rate, <100 fs pulse length). The basic scheme of the experiment is shown 

in figure 19. 

 

Figure 19. Scheme of the THz scanning near-field microscope neaSNOM (NeaSpec).
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4. THz photoconductivity in Si nanocrystals 

networks 

 Silicon nanocrystals (NCs) [92] possess properties that find applications in various 

fields including photovoltaics [93], optoelectronics [94], and biosensing [95]. Deep 

understanding of the charge carrier transport in NCs and NC networks, namely in correlation 

with technological steps during the material preparation (including post-growth treatment like 

passivation of interfaces), can further increase their application potential. 

 The Si NCs prepared by thermal decomposition of silicon rich SiOx layers have been 

extensively studied in the past by THz spectroscopic techniques. The THz conductivity spectra 

of thick layers (~0.2–1 μm; 0.2 ≤ x ≤ 1.4) containing randomly distributed Si NCs were 

investigated previously by other groups and the results were interpreted within the framework 

of phenomenological Drude-Smith model [80,96,97]. Note that those thick-layer samples were 

characterized by a broad size distribution and by a complex NCs networking in all three 

dimensions. A better control over the NC size and filling fraction is obtained in multilayers 

composed of ultra-thin SiOx/SiO2 bilayers where Si NCs are formed in the Si-rich layers by 

thermal decomposition of SiOx [98,99]; nevertheless, it has been shown by THz conductivity 

measurements [24] that even in this case non-negligible amount of NCs aggregate to larger 

clusters with electrical connectivity depending on the fabrication conditions. 

 In this chapter we study the charge carrier transport in Si NCs networks with various 

degrees of percolation prepared by thermal decomposition of SiOx/SiO2 bilayers. It turns out 

that the THz conductivity behavior at low temperatures (LTs) can be explained only by 

assuming the quantum behavior of electrons inside NCs. Indeed, quantum effects like 

discretization of energy levels and the corresponding appearance of resonances in the mid-

infrared spectra are expected in nanometer-sized NCs. For this reason, interpretation of the 

experimental data within the framework of classical theories without direct incorporation of 

quantum effects may be questionable. Therefore, the quantum model of NC conductivity in the 

THz spectral range [85] was introduced and used for the first time to interpret the experimental 

data. Our advanced analysis based on the EMT then allows us to determine microscopic 

parameters of the samples, namely the distribution of sizes of NCs that participate to the 

conductive response of SiOx layers. We show and justify that such conductivity-weighted 

distribution may differ from the size distribution obtained e.g. by standard analysis of 

transmission electron microscopy images. 

 Basically, spectroscopy in the standard THz range (up to 3 THz) is not sensitive to the 

transport of charge carriers in NCs with sizes comparable to the layer thicknesses (i.e. typically 

of 4–5 nm), which are supposed to be formed in the samples, too. Therefore, in this chapter I 

also introduce our ongoing investigation of the conductive response of the sample in broader 

frequency range using the multi-THz – mid-infrared pulsed spectroscopy method described in 

section 1.2.3. This technique provides us with a possibility to study the total contribution of the 

ensemble of nanocrystals with sizes down to ∼ 4 − 5 nm to the measured photoconductivity. 
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Namely, it enables accessing the conductivity resonances of confined photoexcited electrons 

in such small NCs occurring in mid-infrared range whereas the conventional THz spectroscopy 

can detect only weak tails of these resonances. 

 The structure of this chapter is the following. Section 4.1 provides detailed description 

of the sample preparation procedure and of their structure and morphology provided by 

transmission electron microscopy. An investigation of the photoconductive response of the 

NCs in the THz spectral range measured via OPTP method (section 1.2.1) is described in 

section 4.2. Here we keep the analysis and interpretation of the results on the level as it has 

been published in [4]; the conclusions are also drawn here within this framework. However, 

after that publication a significant theoretical and experimental progress has been achieved in 

our group. The theoretical progress and its impact on the THz results in Si NCs is presented in 

section 4.3, and, finally, section 4.4 treats the results obtained in an ultrabroadband THz –multi-

THz – mid-infrared spectral range. 

4.1. Samples: preparation and preliminary characterization 

 In this work we study a set of superlattices composed of 100 bilayers consisting of a 

4.5 nm thick layer, which contains Si NCs in SiO2 environment, and of a 4 nm thick isolating 

layer of SiO2 (figure 20). The samples were prepared via the superlattice approach [3] using 

nitrogen-free SiOx plasma enhanced chemical vapor deposition (PECVD) [100,101]. In a 

nutshell, PECVD technique was employed for deposition of a periodic SiOx/SiO2 structure on 

a fused silica substrate (figure 21a) with SiH4 and O2 used as precursor gases. Subsequently, 

the structure underwent a thermal annealing at 1100°C for 1 hour in pure N2 which induced 

phase separation between silicon and silicon dioxide in the silicon-rich layers and the 

crystallization of Si NCs (figure 21b). All samples were finally annealed at 500°C in a pure H2 

atmosphere to passivate the dangling bonds at the Si/SiO2 interfaces. 

 

Figure 20. Principal scheme of the investigated samples. 

Adjustment of the precursor gas flow ratio in the PECVD process allowed reaching a 

wide variety of the silicon oxide composition (we focused on samples with x = 0.7, 0.5, 0.3, 

and 0.0): the amount of Si excess in the initial SiOx layers controls the size of Si NCs as well 

as their volumetric filling factor 𝑠 within each layer. The sample with x = 0.0 corresponds to a 

polycrystalline silicon layer. 
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Figure 21. Scheme of the periodic structure: (a) SiOx/SiO2 superlattice prepared by PECVD; 

(b) silicon nanocrystals in SiO2 matrix produced by thermal decomposition of silicon rich SiOx 

layers. 

   

   

Figure 22. Plane-view EF-TEM images of samples with 6 different SiOx stoichiometries: (a) 

SiO1.0, (b) SiO0.9, (c) SiO0.7, (d) SiO0.5, (e) SiO0.3, (f) SiO0.0. The images are energy-filtered at 

17 eV (5 eV slit), with the white areas representing Si concentration (figure 1 from [101]). 

 Selected properties of the samples published previously or measured in this work are 

summarized in table 3. The size distribution of nanocrystals and the Si NCs filling factor in our 

samples were determined by plane-view energy-filtered transmission electron microscopy (EF-

TEM) [101]. The average size of nanocrystals in sample SiO0.7 as determined by EF-TEM is 
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5.0 ± 1.5 nm in relation with the nominal thickness of SiOx layers. EF-TEM images indicate 

that silicon in the samples SiO0.5, SiO0.3 and SiO0.0 is percolated and the average size of Si NCs 

is thus an undefined quantity from this point of view (figure 22). 

Sample x = 0.0 x = 0.3 x = 0.5 x = 0.7 Comment 

Si areal fill 

fraction sA (%) 
~100 ~100 63 38 from EF-TEM [101] 

Si volumetric 

fill fraction s 

(%) 

99 

- 

84 

- 

- 

42 

- 

25 

†from measured optical 

absorption 

s = 2/3 sA 

n of NC layers  

at 400 nm 
5.4 4.1 2.4 2.0 

*from effective medium 

calculations 

α at 400 nm  

(cm–1) 
8.6×104 3.7×104 0.72×104 0.35×104 

*from effective medium 

calculations 

α at 400 nm  

(cm–1) 
12×104 5.5×104 1.7×104 0.30×104 

from optical absorbance 

measurements (Fig.23) 

scoh (%) 54 22 14 1.2 

fit of THz data 

sinc (%) 44 29 3 < 0.1 

Kinc ≳ 20 2 2 - 

RT (cm2V-1s-1) 30 18 15 - 

LT (cm2V-1s-1) 10 10 6 - 

conductive NCs 

(%) 
~100 60 40 < 5 = (s

coh
+ s

inc
) / s 

Table 3. Summary of sample properties from the literature and from optical and THz 

measurements presented in this work. †The volumetric filling fraction s was calculated from 

the areal filling fraction ( s = 2 / 3 s
A

) for samples with x = 0.5, 0.7. For sample SiO0.3 the value 

was chosen in order to match the experimental and theoretical absorbance in figure 23. For 

SiO0.0 the value should be close to 100%: for s = 99% we obtain again a good match between 

the experimental and theoretical absorbance. *The procedure of calculation of effective 

refractive index n and absorption coefficient 𝛼 in the optical range was described in [24]; to 

this aim, the complex refractive index of pure Si at 400 nm was taken from [102]: 𝛼𝑆𝑖 = 

9.5 × 104 cm-1, 𝑛𝑆𝑖 = 5.55. 

On the other hand, we show in section 4.4 that the THz photoconductivity spectra of all 

samples strikingly depend on the pump fluence (i.e., on the photocarrier concentration). It has 

been shown and extensively discussed that such a finding is a fundamental signature of a 

significant contribution to the conductivity of inclusions that are not electrically percolated [24, 

2, 68, 103]. This apparent discrepancy between TEM and THz measurements will be 

thoroughly discussed in this study. At this point we just wish to stress the reason why we 
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systematically develop here a description in terms of the quantum confinement of photocarriers 

in isolated NCs. 

Optical absorbance at the pump wavelength is an important parameter for the analysis 

of transient THz spectra. In figure 23 we show the absorbance of our samples at 400 nm and 

we compare it with effective absorbance of the Si/SiO2 mixture calculated using Maxwell-

Garnett effective medium approximation (equation 2.28) and the transfer-matrix formalism for 

layered structures [104]. To this aim we used the intrinsic optical properties of silicon 

(absorption coefficient αSi = 9.5 × 104 cm-1, refractive index nSi = 5.55) [102] and of fused silica 

[105]; the following permittivity terms were substituted into 2.28: 

 
𝜀𝑝 = 𝜀𝑆𝑖(400 nm) = (𝑛𝑆𝑖 + 𝑖

𝜆

2𝜋
𝛼𝑆𝑖)

2

, 
  

 

(4.1)  𝜀𝑚 = 𝜀𝑆𝑖𝑂2(400 nm) = 2.15, 

 
𝜀 = 𝜀𝑒𝑓𝑓(400 nm) = (𝑛 + 𝑖

𝜆

2𝜋
𝛼𝑒𝑓𝑓)

2

. 

For the given sizes of NCs the effective medium approach can be safely applied in the optical 

range. There is a reasonable agreement between the experiment and the calculation, which 

corroborates the view that the samples are composed mainly of Si and SiO2 and they are free 

of extrinsic absorption. From this analysis we also conclude that the quantum yield 𝜉 of the 

photogeneration of mobile carriers is close to 1 in these samples. 

 

Figure 23: Calculated and measured optical absorbance of various Si NC samples at 400 nm 

defined as –ln(Is/Isub) where Is is the transmitted light intensity through the sample (including 

all internal reflections in the layered structure) and Isub is the transmitted intensity through the 

bare substrate. 
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4.2. THz Photoconductivity 

 Measurements of the transient THz photoconductivity spectra (optical pump – THz 

probe experiments) were performed using the experimental setup for time-resolved THz 

spectroscopy described in section 3.1. A part of the output laser beam was frequency doubled 

to 400 nm (3.1 eV) and subsequently used for the sample photoexcitation. Considering the 

energy gap of silicon (𝐸𝑔 = 1.12 𝑒𝑉 [106]), we assume that photocarriers in the nanocrystals 

are generated via single-photon absorption mechanism. Homogeneous excitation across the 

sample was achieved by defocusing of the beam to an area significantly larger than the 3-

millimeter diameter of the aperture of the metallic sample holder; the pump beam fluence was 

controlled over nearly three orders of magnitude using a combination of neutral density filters 

and a variable attenuator based on a thin film polarizer. The THz pulses impinged on the sample 

under normal incidence, thus probing the charge transport in the plane of the sample. The 

experiments were performed at 20 and 300 K. 

 

Figure 24. THz conductivity dynamics of photoexcited carriers in the samples SiO0.0, SiO0.3 

and SiO0.5. Dashed line at 10 ps shows the pump-probe delay at which THz photoconductivity 

spectra were measured. 

 Figure 24 shows the THz kinetics with the rise and decay of the transient THz signal 

after photoexcitation. After a small initial faster decrease of the signal, a slower decay on the 

timescale of ~150 ps at room temperature (RT) and of ~90 ps at LT is observed. We measured 

the photoconductivity spectra at a pump-probe delay of 10 ps (figure 24) where the signal 

decrease is already quite slow and the sample is in a quasi-steady state. This time delay is also 

significantly shorter than the excitation formation time [107]; for this reason, we do not 
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consider the electron-hole interaction in our analysis, and we interpret the results in the frame 

of conduction band carrier motion. 

 

Figure 25. Measured normalized transient transmission spectra for samples 0.0, 0.3, 0.5 and 

0.7 at room temperature and 20 K; pump–probe delay: 10 ps. 

 Our first attempt was to assess the confinement effect using semiclassical Monte-Carlo 
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entirely non-percolated samples were studied, and the model provided very nice quantitative 

agreement with the experiment at RT by using nominal sample parameters (i.e., without 

fitting.) However, this approach fails in a comparative analysis of the photoconductivity spectra 

of our Si NCs at room temperature and 20 K. On the one hand, the morphology of the sample 

does not change with temperature; therefore, the effective medium model, which is used to 

assess the depolarization fields effect, should be temperature independent. On the other hand, 

the semiclassical Monte-Carlo simulations predict quite dramatic changes in the microscopic 

conductivity and consequently in the THz transmission spectra: e.g., higher values of the 

microscopic mobility and a significant redshift of the conductivity peak of confined carriers 

have been previously predicted for band-like transport in microcrystalline silicon upon cooling 

[56]. However, such effects are not confirmed experimentally: in fact, the spectra measured at 

20 and 300 K do not differ much. 

 For this reason, we employed quantum mechanical calculations of the THz conductivity 

(section 2.2.4). At room temperature, the quantum model provides the same spectra as the 

semiclassical approach but the results significantly differ at low temperatures. Namely, the 

quantum calculations are able to reproduce the experimental photoconductivity spectra. 

4.2.1. Quantum Mobility Evaluation 

 Let me point out that the quantum mechanical model of THz mobility described in the 

section 2.2.4 was still under development during this study and that it was used for the first 

time for evaluation of the experimental results. In this first quantum mechanical model, an 

instantaneous charge carrier thermalization was implicitly considered after the first inelastic 

scattering event. In the language of section 2.2.4 this assumption corresponds to the limiting 

case of diffusion coefficient 𝐷𝑑𝑖𝑓𝑓 → ∞ in the formula 2.Error! Bookmark not defined. and 

leads to overestimation of the thermalization current 𝑗𝑡ℎ. 

In the calculations of quantum mechanical conductivity spectra we considered NCs in 

the form of rectangular boxes with dimensions ax × ay × az and an infinite confining potential. 

Assumption of the infinite depth of the potential well is best justified by comparing the electron 

band offset between Si and SiO2 (~3.1 eV) and the energy of electron states that contribute to 

the THz response (well below 0.5 eV). The choice of the particular shape of the confining 

potential allowed us to perform complex numerical calculations within a reasonable time: 

indeed, the shape of real NCs in the sample is irregular and we expect that the differences in 

the response of NCs of different shapes do not exceed the experimental error as long as their 

characteristic dimensions and symmetries are similar. We checked this assumption numerically 

by comparing the rectangular and spherical confining potentials. The dimension az is 

perpendicular to the layers and it is constrained by the sample geometry to values smaller than 

the nominal layer thickness of 4.5 nm. Consequently, to calculate spectra of NCs larger than 4 

nm, we assume that ax and ay can take any required values, while az is fixed to 4 nm. The 

calculations of eigenstates of unperturbed Hamiltonian take into account the anisotropy of the 

conduction band minima in the L-valey of silicon (effective masses: 𝑚1 = 𝑚2 =

0.19 𝑚0, 𝑚3 = 0.97 𝑚0; here 𝑚0 denotes the free electron mass). The position of the strongest 

resonance in the microscopic mobility spectra depends on the temperature and electron density 

in the NC since they determine which dipole transition between the energy levels becomes the 
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most pronounced. At low electron density (less than one electron per NC), the largest 

contribution comes from the transition from the ground to the first excited state, thus resulting 

in a resonance at frequency 3ℏ2𝜋2/2𝑚1𝑎𝑥
2 ≈ 240 meV (57 THz) for NC size ax = 5 nm and 

≈59 meV (14 THz) for ax = 10 nm. For ax = 20 nm the above formula yields the transition 

between the lowest levels at ≈15 meV (3.6 THz); however, this value is smaller than the 

thermal energy 𝑘𝐵𝑇 at room temperature and thus the mobility spectrum for such large NCs 

cannot be determined merely by the lowest resonance frequency value. 

The mean carrier concentration (108 cm−3) used in the calculations corresponds to less 

than one photoelectron per NC. In this case, the vast majority of NCs is either unexcited or 

occupied by a single electron, therefore the Pauli exclusion principle has a negligible influence 

and the thermal Fermi-Dirac distribution of electrons can be approximated by the Maxwell-

Boltzmann distribution function, as we verified for our particular system. In this regime, the 

mobility is independent of the carrier concentration. 

 

Figure 26. Examples of THz – mid-infrared mobility spectra calculated by the quantum 

mechanical approach for Si NC sizes ax × ay of 5 × 5, 10 × 10, and 20 × 20 nm2 (az = 4 nm); 

dephasing time 1/ = 60 fs. Full lines: real part, dashed lines: Imaginary part. 

In figure 26  we present examples of calculated microscopic mobility spectra in the THz 

– mid-infrared range. Clearly, we observe a dependence of the spectrum on the NC size. The 

main part of the signal (peaks corresponding to transitions between quantum energy levels) 

occurs in the mid-infrared frequency range for the NC sizes considered; the THz range contains 

essentially tails of these signals. Figure 27a shows the dependence of the real part of the 

calculated mobility on the NC size for three particular frequencies in the THz range, which is 

accessible by our experiment. From these plots we can conclude that the mobility values start 

to decrease significantly for NC sizes below 20 nm. 
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Figure 27. (a) Real part of quantum mechanical mobility in Si NCs as a function of the NC in-

plane size d (ax = ay = 𝑑, az = 4 nm) at 3 different frequencies at 20 K. (b) Real part of 

normalized transient transmission ∆Tnorm calculated from the data of the plot (a) with the help 

of equation (4.2) using typical parameters of our samples at two excitation fluences. (c) 

Weighted transient transmission 𝑑2 × ∆𝑇𝑛𝑜𝑟𝑚 in relative units (with respect to this quantity 

calculated for NCs with d = 50 nm); it represents the real part of the THz signal per single NC 

with the given size. 

4.2.2. Transient THz transmittance 

 Here we take into account the contribution of depolarization fields to the measured 

(effective) photoconductive sample response by using VBD EMT model (section 2.2.6). For a 

thin film sample containing both percolated and non-percolated photoconducting parts the 

expressions 2.42 and 2.43 for the transient transmitted function can be simplified, and ∆𝑇norm 

is related to the photoconductivity as follows [68]: 

∆𝑇norm
 (𝑑) = [𝑉(1 − 𝑒−𝛼𝐿) + 𝐵

ln(1 + 𝑌0(𝑑)) − ln(1 + 𝑌0(𝑑)𝑒−𝛼𝐿)

𝑌0(𝑑)
]

𝛼𝑙𝑜𝑐𝜉𝜇(𝑑)

𝛼
. (4.2) 
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The first term at the right-hand-side describes the percolated part (from equation 2.42) 

and the second term describes the non-percolated part (form equation 2.43). The variable 𝑑 in 

equation 4.2 denotes the dependence of this theoretical quantity on the dominant size of NCs 

through the confinement effects encoded into the microscopic mobility 𝜇. The meaning of all 

other symbols and quantities is explained in equations (2.41) and (2.44). Finally, in order to 

take into account the distribution of NC sizes in the sample, we define the weighting of the 

signals coming from various NCs by their volume [24, 103]: 

∆𝑇norm =
∫ ∆𝑇𝑛𝑜𝑟𝑚(𝑑) 

 𝑤(𝑑) d𝑑
𝑑2

𝑑1

∫ 𝑤(𝑑) d𝑑
𝑑2

𝑑1

, 
(4.3) 

where 𝑤(𝑑) is the volumic density of NCs with the size 𝑑. Equations 2.46 and 4.3 constitute 

the link between the measured and calculated quantities. 

Equation 4.3 is quite complex and it is expected that the distribution of NC sizes may 

influence significantly the shape of the measured THz spectra. In the following discussion we 

attempt to clarify the main trends in the variation of several important quantities with the NC 

size. In figures 27b and 27c, we demonstrate the sensitivity of the standard THz spectroscopy 

to the conductivity processes in variously sized Si NCs. Figure 27b shows the normalized 

transmission 𝑅𝑒(∆𝑇norm(𝑑)) calculated for the case when NCs with the given dimensions 

(ax = ay = 𝑑, az = 4 nm) have the same total volume in the sample independently of their size 

d. At low pump fluences (i.e., under conditions for which the depolarization fields are 

negligible) this quantity follows the behavior of the microscopic mobility 𝜇 plotted in figure 

27a. At high pump fluences (dashed lines in figure 27b), owing to the depolarization field 

effects, the drop in the normalized transmission observed for small NC dimensions (d < 20 nm) 

is less pronounced. It means that the range of a good experimental sensitivity is broadened and 

its lower end is shifted down to about 10 nm size (note that ∆𝑇norm is a quantity normalized by 

the pump fluence; the raw measured signal ∆𝐸𝑡/𝐸𝑡 will be appropriately up-scaled by the value 

of 𝜙 for high fluences). The imaginary parts (not shown in the figures) are negative but exhibit 

analogous decrease of the absolute value for decreasing nanoparticle size. In figure 27c, we 

plot the calculated product 𝑑2 × ∆𝑇norm(𝑑) as a function of NC size 𝑑 normalized with respect 

to 50-nm-sized NCs. This weighted transient transmission function compares the signal from 

samples with the same number of NCs with the given size. In other words, the plot represents 

(in relative units) the THz photoconductivity signal per single NC. A dramatic decrease of the 

signal with the NC size in our quasi-two-dimensional (2D) system (which is enhanced due to 

the proportionality to 𝑑2) is clearly observed. In standard disordered 3D nanostructures, the 

signal of individual NCs is proportional to 𝑑3 × ∆𝑇norm(𝑑), i.e., its decrease towards small 

NCs will be even faster. 

4.2.3. Fitting model 

The multilayer samples, where the NC size is imposed by the layer thickness to some 

extent, offer a priori a better control over the NC size than other 3D samples. However, it has 

been shown previously that the photoconductivity experiments detect also larger Si clusters in 
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these samples and, consequently, that a significant distribution of sizes does exist [24]. In this 

work we assume a continuous distribution of NC sizes following the log-normal law: 

𝑓𝐿𝑁 =
1

𝑑𝛿√2𝜋
𝑒

−
(ln 𝑑 𝑑0⁄ )2

2𝛿2 ,  𝑤(𝑑) = 𝑑2𝑓𝐿𝑁(𝑑), (4.4) 

where 𝑑 is the in-plane diameter of the NCs, 𝛿 and 𝑑0 define the width and the peak position 

of the distribution, respectively, and 𝑤 is the volumic density of NCs entering equation 4.3. 

In practice, mobility spectra of electrons for NC sizes between 𝑑1 = 4 nm and 𝑑2 = 

100 nm were calculated using quantum mechanical approach with a 1 nm step in order to create 

a database of spectra densely covering the investigated range; subsequently, the mobility data 

were interpolated to obtain quasi-continues series of data as required for the fitting with integral 

equation 4.3. The quasi-continuous database of 𝜇(𝜔), was prepared for 300 K and 20 K and 

for several dephasing times 1/𝛾 in the range 30–120 fs. ∆𝑇norm(𝑑) was evaluated using 

equation 4.2 with the values of absorption coefficient 𝛼 obtained from absorbance 

measurements (table 3) and assuming no percolation, 𝑉 = 0. The parameters 𝐵 and 𝐷 of the 

effective medium model are related to the sample morphology and they are defined by formulas 

2.40 with the shape factor 𝐾coh = 2 and a filling fraction denoted 𝑠coh. This term describes 

mostly coherent motion of electrons in NCs that dominantly contribute to the conductivity. 

In addition to the coherent term, we consider that an additive incoherent contribution 

might exist. This contribution would take into account the conductivity of possibly existing 

very large Si NCs and/or some percolation paths, which are predicted by TEM measurement 

in samples with x ≤ 0.5. The incoherent character of this term (dominated by the scattering or 

other mechanism hindering coherent long-range transport) is inferred from the shape of 

experimental spectra (see figure 28): (i) the real part of the conductivity in Si rich samples does 

not vanish at low frequencies, which implies the existence of a long-range conduction; (ii) for 

example, in polycrystalline Si layers with nearly micrometer-sized grains, the character of the 

coherent response would be Drude-like with a higher magnitude and a significantly decreasing 

real part with frequency [108], which is clearly not the case here. As the character of the motion 

of these charge carriers is unknown, we assume here the simplest case of constant value of the 

real part of the mobility 𝜇𝑅𝑇 for the room temperature and 𝜇𝐿𝑇 for the low temperature. These 

inclusions are characterized by a filling fraction 𝑠inc.  

It has been shown that NCs with diameter 𝑑 ≈ 4 nm and smaller do not contribute to 

the response in the THz range. Hence the filling factor 𝑠coh + 𝑠inc represents the part of Si NCs 

that can be detected by THz conductivity measurements. This sum can be smaller than the 

nominal value 𝑠 presented in table 3; consequently, 𝑠coh and 𝑠inc are used as fitting parameters. 

In total we have 6 fitting parameters for each sample: 𝑠coh, 𝑠inc, 𝜇𝑅𝑇, 𝜇𝐿𝑇, 𝛿 and 𝑑0, 

which should describe the complex spectra at both 300 K and 20 K and for a set of pump 

fluences spanning over nearly three orders of magnitude. We also tried to free the shape factor 

of inclusions participating to the incoherent contribution 𝐾inc, which, in the case of sample 

SiO0.0, significantly improves the fit when its value differs from 2. Consequently, we include 

also this possibility in our discussion. 
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4.2.4. Results and Discussion 

 The comparison between the experimental spectra and their global fits using the model 

described above (equation 4.3) can be seen in figure 28 for four samples (SiO0.0, SiO0.3, SiO0.5, 

and SiO0.7); the measured signal for sample SiO0.7 was very weak; therefore we were able to 

carry out experiments with the highest excitation fluence only. 

An increase of the signal amplitude with an increase of Si content (decrease of values 

x) is due to a better connectivity of NCs leading to a larger average size (clustering) of NCs. 

The larger size has a consequence in larger values of the quantum mobility in the THz range. 

Indeed, figure 28b shows the NC size distribution defined by equation 4.4, which follows from 

the fits. Clearly the distribution of conductive NCs shows a significant shift of its maximum 

towards smaller sizes when the Si content in the layers is decreased (from top to bottom of 

figure 28b). The other parameters provided by the fitting procedure are summarized in table 3.  

The THz spectra below 3 THz do not depend much on the dephasing factor 𝛾. Note that 

the dephasing time 1/𝛾 at room temperature in high quality Si single crystals reaches about 200 

fs [109], while in polycrystalline Si films it may decrease typically down to about 60 fs [108], 

or to  ~35 fs in the case of silicon-on-sapphire [80]. We verified that the spectra can be fitted 

with quite similar sets of parameters for the scattering times 1/𝛾 ranging between 50 and 120 

fs; however, for the scattering times of 30 fs or shorter the quality of the fit becomes 

significantly worse. This is in agreement with our hypothesis of essentially coherent 

contribution of confined charge carriers in Si clusters described by the quantum model of the 

mobility. 

 At first glance the comparison of EF-TEM images and size distributions (see [101]) 

with the size distributions inferred from THz spectra may seem problematic. However, we 

think that they both present valuable and complementary tools of analysis of the behavior of 

the nanostructures. The TEM images provide information regarding the shape and size of 

inclusions, which are statistically most frequently encountered in the sample. However, their 

electrical connectivity cannot be determined from TEM images, and the percolation or non-

percolation of the system is only inferred from a geometrical proximity of several inclusions. 

In contrast, the THz spectroscopy provides a statistical image of inclusions that carry the 

conductivity of the sample. On the one hand, very small inclusions feature a stronger 

confinement and a small volume per inclusion, which may both lead to a very low contribution 

to the conductivity of such NCs; on the other hand, the carrier transport in the parts, which are 

considered to be percolated in TEM images, may be hindered by defects or internal structure 

of these parts.  
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Figure 28. (a) Normalized transient transmission spectra for samples 0.0, 0.3, 0.5 and 0.7 at 

room temperature and 20 K; pump–probe delay: 10 ps. Symbols: experimental data, lines: 

global fits of the data by equation 4.3; pump fluences are indicated in the legend. (b) Size 

distributions of NCs participating to the conductivity as obtained from the fits of experimental 

spectra. 

0.5 1 1.5 2

40

0

-40

Re

Im

10 20

0.4

0.2

(b)

x = 0.0

0.5 1 1.5 2

40

0

-40

Re

Im

(a)

x = 0.0

0.5 1 1.5 2

10

0

-10

Re

Im

10 20

0.4

0.2

f L
N

 (
n

m
-1

)

x = 0.3

2.8

0.7

0.5 1 1.5 2

10

0

-10


T

n
o
rm

 (
cm

2
 V

-1
 s

-1
)

Re

Im

x = 0.3

280

150

0.5 1 1.5 2

Frequency (THz)

1

0

-1

-2

Re

Im

10 20

0.4

0.2

x = 0.5

12

7.8

0.5 1 1.5 2

Frequency (THz)

1

0

-1

-2

Re

Im

x = 0.5

47

28

T = 300 K T=20 K

0 0.5 1 1.5 2

Frequency (THz)

0

-0.02

Re

Im

0 0.5 1 1.5 2

Frequency (THz)

0

-0.02

-0.04

Re

Im

0 10 20 30

d (nm)

0.4

0.2

x = 0.7x = 0.7

670

500

Photon fluence 

(1012/cm2):



THz photoconductivity in Si nanocrystals networks 53 

The sample with x = 0.0 was reported to be percolated from the point of view of TEM 

[101]. However, at THz frequencies it behaves like a polycrystalline Si such that the electrons 

feel an average confinement on the order of 25 nm. This can be put into contrast with recent 

measurements of polycrystalline Si samples with the grain size of about micrometer, where the 

Drude-type response is clearly observed without any significant pump fluence dependence of 

the carrier mobility [108]. This means that in our current NC sample quite large energy barriers 

separate the crystal grains on 25 nm spatial scale and that the electrons cannot move freely 

among them. Note that in the related TEM image shown in figure 22f many contrasted objects 

with a typical size of the order of 25 nm can be really identified. The inclusion of the incoherent 

conductivity term in this sample systematically leads to large values of the shape factor (𝐾inc> 

20), which represent a percolation of the system or a sample morphology close to the 

percolation. This behavior could have been equivalently accounted for by a non-zero 

percolation strength term 𝑉. 

In samples with x = 0.3 and 0.5 the distribution of conductive NCs progressively shifts 

to lower values and also the volumetric filling fraction of the NCs participating to the THz 

conductivity drops to about 60–40%. The conductivity is essentially carried by NCs with the 

size distribution around 17 nm for x = 0.3 and around 7 nm for x = 0.5. There is still some non-

negligible proportion of large NCs, which may be close to conductive percolation. Note that 

the width of the size distribution of sample SiO0.3 is the largest, which means that in such a 

sample (nearly completely percolated from the point of view of TEM measurements) a rich 

variety of inclusion sizes and shapes can really develop. The size distribution becomes 

narrower again for x = 0.7, where the THz signal becomes quite weak as we approach the 

nominal size of NCs of 4.5 nm and crystals larger than 10 nm practically do not exist within 

the whole volume of the sample.  

As to the incoherent contribution to the conduction, which has been tentatively included 

in the fitting procedure to take into account better the experimental data in the lowest-frequency 

region; indeed, the fits without this additional contribution would overestimate the real part of 

the measured mobility. However, adding further parameters or particular models, able to 

describe the mentioned mobility decrease, would not lead to better understanding of underlying 

processes and, therefore, we did not attempt this procedure.  

4.2.5. Conclusion 

Our analysis was focused on samples with variable and technologically controlled 

content of silicon in quasi-two-dimensional layers.  

We show that a careful analysis, based on formulas rigorously derived from the wave 

equation for THz waves in inhomogeneous photoexcited media, can provide a detailed picture 

of the NC conductivity, which is complementary to a large extent to images obtained by TEM. 

In particular, we were able to show that a broad distribution of nanocrystal sizes exists in the 

sample and that the average size in this distribution varies with the Si content in the layers. 

Clustering of small NCs occurs in samples with higher Si content and such clusters contribute 

the most to the THz conductivity. 
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Sample SiO0.0 with the largest Si content is close to the percolation and the conductivity 

signal is driven by electrons in grains with a typical dimension of 25 nm; such objects are 

observed in TEM images. With decreasing content of Si, the size of NCs with the dominant 

contribution to the conductivity progressively decreases, and for a clearly non-percolated 

sample SiO0.7 the size of conducting NCs measured by THz spectroscopy becomes comparable 

to the thickness of SiOx layers. This also proves the good control of the nanocrystalline size for 

oxygen rich samples. 

4.3. Improvement of the quantum mobility data 

 In this section we improve and sharpen the fitting results presented above; this was 

enabled by the development of a consistent quantum mechanical theory of the THz 

conductivity as it has been described in section 2.2.4. In contrast to the calculations presented 

in the previous section and in [4] the thermalization current 𝑗𝑡ℎ introduced in equation 2.Error! 

Bookmark not defined. is properly taken into account in the mobility spectra presented in this 

section. In addition, the density of carriers 𝑛𝑒 used for these calculations (1016 cm-3) was chosen 

much closer to our experimental values compared to the previously used value (108 cm-3). 

Figure 29 depicts the mobility function calculated for the different NC sizes using the proper 

quantum model of the mobility in comparison with our former calculations shown in section 

4.2 and in figure 26. 

 

Figure 29. Examples of THz – mid-infrared mobility spectra calculated by the full quantum 

mechanical approach for Si NC sizes ax × ay of 5 × 5, 10 × 10, and 20 × 20 nm2 (az = 4 nm); 

dephasing time 1/ = 60 fs. Full lines: our first model used in Sec. 4.2, with 𝐷𝑑𝑖𝑓𝑓 → ∞ 

(equation 2.Error! Bookmark not defined.) and 𝑛𝑒 = 108 𝑐𝑚−3 ;  dashed lines: calculations 

with the properly introduced 𝑗𝑡ℎ (equation 2.Error! Bookmark not defined.) and 𝑛𝑒 =

1016 𝑐𝑚−3. The thermalization current 𝑗𝑡ℎ predominantly contributes in the classical THz 

spectral range. 
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Figure 30. (a) Normalized transient transmission spectra for samples 0.0, 0.3, 0.5 and 0.7 at 

room temperature and 20 K; pump–probe delay: 10 ps. Symbols: experimental data in the THz 

range (same data as in figure 28), lines: global fits of the data by equation 4.3 using full 

quantum calculations of the mobility with the properly introduced 𝑗𝑡ℎ (equation 2.Error! 

Bookmark not defined.) and 𝑛𝑒 = 1016 𝑐𝑚−3. (b) Red lines: Size distributions of NCs 

participating to the conductivity as obtained from the fits of experimental spectra; blue lines: 

show the results of modeling with our first quantum-mechanical model presented in Sec. 4.2; 

these distributions are also shown in figure 28. 
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 Interpretation of the THz response of the sample x = 0.0 is now reconsidered to some 

extent due to the contribution of the thermalization current  𝑗𝑡ℎ to the quantum mobility spectra. 

Namely, percolation of the NCs exhibiting the coherent character of conductivity (described 

by 𝑠coh) is being considered, i.e.  normalized transmission function ∆𝑇norm
  is defined using 

essentially the first term in equation 4.2 based on the expression 2.42, while previously merely 

non-percolated contribution was assumed. Such consideration may seem controversial at first 

glance: on the one hand, percolation implies that conduction band electron can move freely 

among the structures without feeling any confinement. On the other hand, the quantum model 

yields the localized response of the carriers in NCs of given sizes (figure 30b). However, the 

polycrystalline nature of the Si NC layer in this sample (𝑠total = 99 %) suggests low energy 

barriers between the individual NCs and, plausibly, presence of dead layers of NCs. Thus, 

proposed interpretation in terms of the percolated layer using EMT can be justified. This 

interpretation is also used and justified in the following chapter. In addition, this assumption is 

in agreement with the simplified model of the incoherent mobility contribution where low 

energy barriers hinder coherent long-range transport. 

The difference in the mobility spectra results in changes of the distribution function 

gained from the fitting of the THz photoconductivity spectra (figure 30). The final (corrected) 

values of the fitting parameters are summarized in table 4.  

Sample x = 0.0 x = 0.3 x = 0.5 x = 0.7 

scoh (%) 36 50 13 1.0 

sinc (%) 17 18 2 < 0.1 

Kcoh - 1.4 2 1.9 

Kinc <0.1 2 2 1.9 

RT (cm2V-1s-1) 570 30 38 - 

LT (cm2V-1s-1) 3500 - - - 

Table 4. Summary of sample properties from the fit of the THz spectra. 

4.4. Multi-THz – mid-Infrared Photoconductivity 

 Comparative studies of charge carrier transport involving both the THz and multi-THz 

– mid-infrared frequencies have been only rarely carried out [110]. The complex properties of 

our samples (including substrates) in this spectral range imply an overlap of several phenomena 

inevitably occurring at these probing frequencies: (1) phonons in the fused silica substrate, in 

interlayers and in the matrix separating Si NCs in Si-rich layers, (2) optical interference of the  

mid-infrared waves within the multilayer, (3) quantum confinement of the photo-carriers 

within NCs and (4) the effective medium properties of photoexcited nanostructured layers 

(manifesting themselves through the plasmon resonance). The issues (1) and (2) do not need to 

be considered at all in the standard THz range since they are negligible below ~ 3 THz. 

Mapping and analyzing the interplay of all the above-mentioned phenomena has not been 

systematically performed so far in the literature and, in this sense, we present here a pioneering 

work in the field of the ultra-broadband THz – mid-infrared spectroscopy. 
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4.4.1. Steady-state measurements 

Some of the sample properties contributing to the above-described phenomena can be 

determined independently in the ground state of the samples; this significantly reduces the 

number of free parameters for the final fitting of the pump-probe spectra. The aim of the 

following steady-state results discussed in this paragraph is thus to determine the microscopic 

and effective properties of the samples as much as possible prior to the interpretation of the 

pump-probe measurements. We start with an analysis of the ground state reflectivity spectra of 

the samples and of the bare substrate. These data yield parameters of phonons in SiO2 and also 

some essential parameters for the employed EMT calculations. 

The FTIR spectra of the bare substrate and of the samples measured using a standard 

FTIR spectrometer Bruker are shown in figure 31a and b, respectively. The bare substrate 

spectra in figure 31a are fit with a sum of 4 damped harmonic oscillators representing 

vibrational modes. These fits provide spectra of the complex refractive index nSiO2 of the 

substrate, figure 32a. 

 

Figure 31. The ground-state power reflectance spectra and their fits for the substrate (a) and 

samples (b). Note that with decreasing content of Si the sample spectra approach those of the 

bare substrate (this is apparent namely for the sample with x = 0.9). 

An appropriate carefully conceived model should be considered for the interpretation 

of the FTIR spectra of unexcited samples shown in figure. 31b. The samples consist of SiO2 

substrate, SiO2 isolating layers and layers with Si NCs in SiO2 environment (figure 20). The 

following items are considered: 

• Multilayer thickness. The optical thickness of individual layers is much smaller than the 

multi-THz wavelength, therefore the whole multilayer structure can be described as an 

effective homogeneous medium. On the other hand, the total optical thickness of the 

multilayer (~ units of micrometers) is not significantly smaller than the probing wavelength 

(3.5–30 μm); therefore, the Fabry-Pérot interferences within the multilayer should be 

carefully taken into account. In other words, while previously (in section 4.2) we used the 

nominal multilayer thickness of L = 850 nm for the analysis of THz data, here, at shorter 
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wavelengths, the interference effects clearly appear in the spectra and the thickness 

mismatch would lead to a wrong or unsuccessful fit. For this reason, in the fits of the steady-

state spectra, we finely tuned the total thickness L via adjustments of the bilayer thickness 

(increasing/decreasing of the thickness of isolating SiO2 interlayer and Si NC layer by a 

tiny amount). 

• SiO2 in interlayers. Due to the fabrication method and thin film character of the interlayers, 

various strains and structural and compositional variations may develop during the 

deposition process and high-temperature annealing. The phonon spectrum of fused silica 

interlayers thus can slightly differ from the spectrum of the substrate; we thus allowed to 

vary the parameters of the vibrational modes in the interlayers to some extent with respect 

to the substrate values (namely the damping of the modes by < 10 %, and the frequency of 

the modes by < 1%). The resulting refractive index of SiO2 in interlayers is denoted as 

𝑛SiO2
′ . 

• Layers with Si NCs and SiO2 matrix. The complex refractive index nSi-eff of individual Si-

rich layers in the ground state (which contain Si NCs and SiO2 matrix) is modeled by the 

MG EMT model (section 2.2.5.3). Here, we consider the refractive index of the NCs: nSi = 

3.41 (note that the spectrum of nSi near 18 THz can be slightly influenced by two-phonon 

processes [111,112] but we neglected this phenomenon in the current model). The FIR 

spectrum of the oxide, 𝑛SiO2
′′ , can be again modified compared to the one of the substrate 

due to the strains in thin films and due to structural and stoichiometric defects formed 

during the thermal decomposition. For the sample x = 0.0, nSi_eff is simply equal to nSi. For 

oxygen richer samples we used the MG formula with the filling fraction value 𝑠 as 

previously determined from the THz data and with the shape factor 𝐾𝑀𝐺  as a fitting 

parameter (indeed, the high-frequency FIR response depends quite significantly on 𝐾𝑀𝐺 , 

compared to the one in the standard THz range). 

• Effective refractive index of the multilayer. The multilayer structure is formed by plane 

parallel bilayers with refractive indices 𝑛SiO2
′  (for SiO2 interlayers) and nSi-eff (for layers 

containing Si NCs and SiO2 matrix). An effective medium plane parallel capacitor model 

is then appropriate for the evaluation of the effective refractive index of each bilayer, hence 

of the whole multilayer. 

 The fitting model of the steady state spectra features a large number of parameters, 

however, most of them is related to the SiO2 compound and they are determined by the peculiar 

features close to the vibration resonances. Note that it is not possible to carry out a successful 

fitting model without considering differences in the vibration spectra of various SiO2 

components. Besides these material constants, we use only 𝐿 (multilayer thickness) and 𝐾𝑀𝐺  

(shape factor in MG model of the Si NC layer) as free and independent parameters for each 

sample. The values of all these parameters were then kept unmodified for the fitting of the 

pump-probe spectra. 
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Figure 32. Dispersion of nSiO2 of the substrate and its change in the fused silica components of 

the samples. Note that SiO2 matrix surrounding Si NCs features essentially an additional 

broadening of the vibration modes. 

We measured also steady-state spectra of the samples by means of the multi-THz – 

mid-infrared pulsed spectroscopy technique using experimental setup described in section 3.3 

(without introducing the pump beam for the sample photoexcitation). We compared these 

results to the spectra measured with the FTIR spectrometer in order to check the performance 

and spectral resolution of the multi-THz – mid-infrared technique. A significant difference 

between the corresponding curves can be clearly observed in figure 33(a,b). This brought us to 

a conclusion that the spectrogram measured by the multi-THz – mid-infrared method has a 

worse spectral resolution, i.e., it is broadened by an instrumental function. Such a broadening 

needs to be considered for the analysis and fitting of the pump-probe spectra. 

By comparing both sets of the data we found that a Gaussian is a suitable instrumental 

spectral convolution function; its time-domain counterpart, fconv, is shown in the inset of figure 

33c and corresponds to a spectral broadening by 2.2 THz. Figure 33c shows the FTIR spectra 

after their convolution with the instrumental function; they are in a good agreement with the 

multi-THz measurements. We use this convolution function for any subsequent analysis of the 

pump-probe spectra: the spectra obtained by a theoretical calculation are transformed to the 

5

4

3

2

1

0

R
ef

ra
ct

iv
e 

In
d

ex

SiO2 components

Substrate

Interlayers

Matrix in Si NC

layers

x = 0.0Re

Im

0 25 50 75

Frequency (THz)

4

3

2

1

0

x = 0.3

0 25 50 75 100

x = 0.5

Substrate



60  Chapter 4 

time domain, multiplied by fconv and transformed back. Only after this convolution step they 

are compared (fitted) to the experimental ones. 

 

Figure 33. Spectra of the samples (x = 0.0, 0.3 and 0.5) and of SiO2 substrate in the ground 

state measured by (a) FTIR spectrometer Bruker and (b) multi-THz technique. Figure (c) shows 

the FTIR spectra from panel (a) convoluted with an ad hoc spectral instrumental function fconv. 

4.4.2. Pump-probe measurements 

 Multi-THz –mid-Infrared photoconductivity in the Si NC networks was measured using 

the experimental setup described in section 3.3. The samples were optically excited from the 

substrate side; the optical pump at 388 nm (second harmonic of the fundamental beam) 

propagated through the substrate before exciting the Si NC multilayer on the opposite side. The 

fluence density was controlled by a set of neutral density filters inserted into the beam at the 

fundamental frequency. The multi-THz probing was set up in a reflection geometry (reflection 

at the front side of the sample) under normal incidence. Measurements were done at room 

temperature. 

The measured transient spectra are shown in figure 34; the results are presented in the 

form of the transient power reflectance: 

|𝑅𝑒𝑥|2 =
|𝐸𝑟

𝑒𝑥/𝐸𝑖𝑛𝑐|2

|𝐸𝑟/𝐸𝑖𝑛𝑐|2
=

|𝐸𝑟
𝑒𝑥|2

|𝐸𝑟|2
, (4.5) 

where 𝐸𝑟
𝑒𝑥 = 𝐸𝑟 + ∆𝐸𝑟 is the reflected field on the photoexcited sample and 𝐸𝑖𝑛𝑐 is the 

incident field. Note that 𝑅𝑒𝑥 is not a differential quantity. 
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Figure 34. OPMIP reflectance spectra of the samples measured 10 ps after photoexcitation 

using 388 nm excitation wavelength. 

 It is quite hard to identify the conductivity resonance(s) by inspecting the experimental 

curves in figure 34 just by the eye. This is due to an interplay of the phenomena discussed 

above, namely due to an interaction with phonons in SiO2 and due to an interference on the 

multilayer. However, we can make a few qualified comments based on the knowledge of 

steady-state spectra and on some model calculations. Such discussion is presented in the next 

paragraph. 

4.4.3. Illustration using a simplified model system 

 Several model spectra are shown in figure 35; the left panel represents the steady-state 

power reflectance and the right panel shows the transient power reflectance. Here we consider 

sample 𝑥 = 0.0, a homogeneous photoexcitation (i.e., homogeneous photoconductivity of NC 

Si layers along z), and we apply several simplified models of the substrate and of the NC layer. 

The conductivity spectra were calculated using the quantum mechanical approach for two 

different NC sizes 𝑑 providing the resonances at significantly different frequencies (figure 

35h,l). 

 In panel (a) showing unexcited Si layer on top of non-dispersive substrate we observe 

merely Fabry-Pérot interferences on the Si layer. To interpret the spectrum in panel (e) we must 

keep in mind that the photoconductivity provides a negative contribution to the refractive index 

of Si [Im 𝜎 > 0 in panel (h)] thus making the period of spectral interferences larger. The 
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sequence of spectral maximum and minimum between 50 and 70 THz in panel (e) then 

corresponds to an effective shift of the interference minimum to the higher frequency. In 

general, a minimum in a steady-state spectrum can be shifted upon photoexcitation: a sequence 

maximum-minimum is then observed in the spectrum of |𝑅𝑒𝑥|2 in the case of a blue shift and 

a sequence minimum-maximum is observed in the case of a red shift. The low-frequency 

feature in panel (e) is a result of the charge carrier confinement. In panel (i) the interference 

minimum approximately coincides with the conductivity peak, which is at the origin of an 

increased reflectance near 60 THz; the side minima are due to an interplay of the interference 

pattern and the resonant dispersion. 

 The spectra in panels (b) and (c) contain the phonons of SiO2; namely influence of the 

substrate leads to a very sharp phonon features as observed in panel (c). The parts of the spectra 

of |𝑅𝑒𝑥|2 will then exhibit a large experimental error in the close vicinity of the sharp dips (i.e., 

the fits of the experimental data are not required to be very precise close to such sharp features). 

The panels (f) and (g) show sequences of maximum-minimum pairs which express a shift at 

the phonon (∼ 32 THz) and interference (∼ 87 THz)  features. Finally, the panels (j) and (k) 

demonstrate how deeply the reflectance spectra change when we insert small NCs into the Si 

layers. 

 From this brief analysis it follows that the particular form of the reflectance dispersion 

above the SiO2 phonons (> 32 THz) is very important for small NCs, while larger NCs will 

mainly influence the dispersion below the phonon modes or partly overlap with the phonon 

region. The phonon region is influenced by an interplay of the conductivity of both large and 

small NCs; however, this is a spectral region with larger experimental error. 
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Figure 35. Power reflectance spectra calculated for a homogeneous 740 nm thick layer (which 

simulates the Si-NC/SiO2 multilayer) on a substrate. (a-c) unexcited Si (steady-state spectra); 

(e-g,i-k) photoexcited Si NCs (transient but not differential spectra), where the conductivity 𝜎 

calculated using the quantum mechanical theory for NCs with size 𝑑 = 20 nm (panel h) is used 

for panels (e-g) and with size 𝑑 = 5 nm (panel l) is used for panels (i-k). Meaning of rows. 

First row (a,e,i): 740 nm thick Si layer (𝑛Si = 3.41 for unexcited Si) on a transparent non-

dispersive substrate (𝑛𝑠𝑢𝑏 = 1.95). Second row (b,f,j):  Effective medium approximation of an 

Si-NC/SiO2 multilayer on non-dispersive substrate; the refractive index of SiO2 interlayers is 

shown in (d). Third row (c,g,k): Same as previous but with SiO2 substrate. Dashed vertical lines 

indicate minima of the power reflectance. 
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4.4.4. Transient multi-THz – mid-infrared reflectance 

 In analogy with the previous THz investigations, we take into account the distribution 

of NC sizes in the samples using the integral: 

𝐸𝑟
𝑒𝑥 =

∫ 𝐸𝑟
𝑒𝑥(𝑑)𝑤(𝑑) d𝑑

𝑑2

𝑑1

∫ 𝑤(𝑑) d𝑑
𝑑2

𝑑1

, 

 

 (4.6) 

where we integrate over the variable 𝑑 which controls 𝐸𝑟
𝑒𝑥 through the carrier confinement 

encoded into the carrier mobility. Based on the experimental geometry, the field reflected on a 

photoexcited sample 𝐸𝑟
𝑒𝑥 can be calculated using equations 2.48 and 2.49. Alternatively, a full 

numerical approach can be employed to solve the wave equation 2.7. In practice, since we 

should ensure the validity of the calculation over ultrabroad spectral range, we applied the fully 

numerical approach. 

Now, the presence of the instrumental function in OPMIP measurements implies 

applying the convolution function 𝑓𝑐𝑜𝑛𝑣 separately to the calculated quantities |𝐸𝑟
𝑒𝑥/𝐸𝑖𝑛𝑐 |2 and 

|𝐸𝑟/𝐸𝑖𝑛𝑐|2 in order to be consistent with the experimental procedure. Finally, we obtain the 

sought theoretical value of the quantity |𝑅𝑒𝑥|2 from the convoluted spectra using equation 4.5. 

4.4.5. Fitting model 

 Again, we consider a continuous distribution of NC sizes described by the log-normal 

law (equation 4.4). However, since the spectra in the whole multi-THz range are available now, 

we expect that the photoconductive contribution of the NCs of nearly all sizes may be 

experimentally detected. Therefore, we consider here a sum of two log-normal distribution 

functions, i.e., for the small (𝑓𝐿𝑁
𝑠𝑚𝑎𝑙𝑙(𝑑)) and large (𝑓𝐿𝑁(𝑑)) nanocrystals. We relate the first 

one to sizes of single (electrically) isolated NCs whereas the second one corresponds to NCs 

conductively connected to clusters.  Thus, we define the volumic density of NCs as follows: 

𝑤(𝑑) =  𝑎 𝑑2𝑓𝐿𝑁
𝑠𝑚𝑎𝑙𝑙(𝑑) + 𝑏 𝑑2𝑓𝐿𝑁(𝑑), (4.7) 

where the coefficients 𝑎 and 𝑏 are related to the filling fractions of small and large NCs 𝑠𝑐𝑜ℎ
𝑠𝑚𝑎𝑙𝑙 

and 𝑠𝑐𝑜ℎ respectively through the volumes: 

  

𝑠𝑐𝑜ℎ
𝑠𝑚𝑎𝑙𝑙

𝑠𝑐𝑜ℎ
=

𝑎 ∫ 𝑑2𝑓𝐿𝑁
𝑠𝑚𝑎𝑙𝑙(𝑑) d𝑑

𝑑2

𝑑1

𝑏 ∫ 𝑑2𝑓𝐿𝑁(𝑑) d𝑑
𝑑2

𝑑1

. 
(4.8) 

The ratio of two integrals corresponds to a ratio of Si volumes related to the large and small 

NCs; the out-off-plane dimension (height) of the crystals is assumed to be fixed by the 

thickness of the layers. Thus, 𝑎/𝑏  can be understood as a proportion of the number of small 

NCs to the number of NC clusters. 

Following the same procedure as it was done in the THz investigation of NCs (section 

4.2.3),  the mobility data for NC sizes between 𝑑1 = 4 nm and 𝑑2 = 100 nm were interpolated 

to obtain quasi-continues series of data as required for the fitting with integral equation 4.6. 
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The quasi-continuous database of 𝜇(𝜔), was prepared using the quantum mechanical approach 

(section 2.2.4) for 300 K and the dephasing time 1/𝛾 = 60 fs. 

 As it was discussed in paragraph 4.4.1, the current investigation involving MIR 

frequencies is more sensitive to the thickness of the multilayers than previous investigation 

based on the classical THz spectroscopy. Therefore, EMT analysis of the steady-state 

measurements provides not only the refractive indices of the SiO2 components 𝑛SiO2
′ , 𝑛SiO2

′′  in 

the samples (figure 32) but also the average thickness of the Si rich and SiO2 layers. In addition, 

average value of the MG shape factor 𝐾𝑀𝐺  and Si total filling fraction 𝑠 in each sample were 

estimated quite carefully from the MIR steady-state spectra (in fact the importance of the shape 

factor becomes significant namely at higher frequencies). The relevant parameters obtained 

from the steady-state IR measurements are summarized in table 5. (Note that the values of 𝐾𝑀𝐺  

are very close to the values of 𝐾𝑐𝑜ℎ obtained from the THz experiment and shown in table 4). 

Sample x: 𝑠 𝐾𝑀𝐺  Averaged 

thickness of Si 

NCs layer (nm) 

Averaged 

thickness of 

SiO2 layer (nm) 

0.0 0.99 2 3.1 4.3 

0.3 0.84 1.5 4.05 4.0 

0.5 0.42 2.0 4.5 4.0 

Table 5. Samples parameters obtained by the fit of the steady-state IR measurements based on 

the MG and parallel capacitor EMT approach. 

All the parameters provided by the steady-state analysis of the samples were fixed 

during the subsequent fitting of the transient OPMIP data. In addition, the parameters 

corresponding to the incoherent component of the conductivity (𝜇𝑅𝑇 , 𝑠𝑖𝑛𝑐, 𝐾𝑖𝑛𝑐) were taken 

from the THz experiment (see table 4). Indeed, this part of the photoconductive response was 

described by the model of constant mobility; therefore, we consider its even contribution in the 

THz and multi-THz – mid-infrared ranges. Hence, we can also estimate the total volumetric 

filling fraction of the NCs exhibiting the coherent carrier motion as follows: 

𝑠𝑐𝑜ℎ
𝑡𝑜𝑡𝑎𝑙 = 𝑠 − 𝑠𝑖𝑛𝑐. (4.9) 

 As a result, analysis of the OPMIP spectra involves only two fitting parameters for each 

distribution function (i.e., 𝑑0, 𝛿, 𝑑0
𝑠𝑚𝑎𝑙𝑙 , 𝛿𝑠𝑚𝑎𝑙𝑙) and the ratio 𝑎/𝑏  introduced in equation 4.8. 

The parameters 𝐵 and 𝐷 of the effective medium model are related to the sample morphology 

and they are defined by formulas 2.40. 

 The optical parameters of pure silicon were taken from [113]: 𝛼𝑆𝑖
388𝑛𝑚 =

2 × 105 𝑐𝑚−1, 𝑛𝑆𝑖
388𝑛𝑚 = 6.06. We infer the effective absorption coefficient 𝛼 from the 

measured absorbance data shown in figure 23. This is an approximation since these 

measurements were performed down to 405 nm while our excitation wavelength in OPMIP 

experiments was 388 nm. We are aware that in this spectral range the change of the extinction 
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coefficient may be non-negligible. However, taking into account the experimental error in the 

pump pulse fluence measurements, this represents a good approximation in our view. 

4.4.6. Results and Discussion 

 The model expressed by equation 4.6 was used to fit the OPMIP experimental spectra, 

and the comparison of the model and experimental data for the samples x = 0.0 and x = 0.3 is 

shown in figure 36. The corresponding distribution functions are presented in figure 37 and the 

obtained values of the filling fractions 𝑠coh and 𝑠coh
𝑠𝑚𝑎𝑙𝑙 are given in table 6. 

  

 

Figure 36. OPMIP spectra of the samples with x = 0.0 and x = 0.3. Circles: experimental data, 

lines: fits of the data by equation 4.6. 

 There is a good agreement between the results of the THz and multi-THz – MIR 

investigations for the sample with x = 0.0. Indeed, the distribution functions 𝑓𝐿𝑁 describing 

large NCs obtained via THz and multi-THz – MIR experiments (black and red lines in figure 

37a) are comparable as well as values of the volumetric filling fraction 𝑠𝑐𝑜ℎ related to the large 

NCs (blue columns in table 6). A result for the coefficients 𝑎 and 𝑏 implies that there are about 

30 small (individual) NCs per each large one (NC aggregate) in the sample. 

 In the case of the sample with x = 0.3, we also have reasonable agreement of the 

functions 𝑓𝐿𝑁 extracted from the OPTP and OPMIP data (peak position of the black and red 

lines in figure 37b). However, the value of 𝑠𝑐𝑜ℎ evaluated from the multi-THz – mid-infrared 

measurements is considerably lower compared to the results of the THz investigation (10% 

compared to 50%) suggesting about 35 small NCs per each NC cluster. Thus, significant 

amount of the silicon volume forms small NCs described by 𝑓𝐿𝑁
𝑠𝑚𝑎𝑙𝑙  in this sample. This 

discrepancy may be explained by the decrease in the sensitivity of the experiment in the THz 

spectral range with the decrease of the NCs size in the sample (see figure 27) compared to the 

sample with x = 0.0. 
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Sample 
 

𝑎/𝑏 
𝑠𝑐𝑜ℎ

𝑡𝑜𝑡𝑎𝑙(%) 

(from OPTP) 

𝑠𝑐𝑜ℎ(%) 𝑠𝑐𝑜ℎ
𝑠𝑚𝑎𝑙𝑙(%) 

(from OPMIP) 
(from OPTP) (from OPMIP) 

x = 0.0 30 82 36 30 52 

x = 0.3 35 66 50 10 56 

Table 6. The volumetric filling fractions of the NCs with coherent motion of the electron 

carriers obtained from the fit of the OPTP and OPMIP experimental spectra.  

 

Figure 37. Size distribution of NCs for the samples with x = 0.0 and x = 0.3. Black lines: results 

of the current OPMIP study, red lines: results of the previous OPTP investigation (section 4.3). 

 According to the results for the samples with x = 0.0 and x = 0.3, the average size of 

the small NCs also slightly decreases with the decrease of silicon amount in SiOx layers. In 

spite of the relatively small change, compared to the shift of 𝑓𝐿𝑁 for the large structures, it may 

significantly influence the outcome of the study: indeed, following the quantum model, for 

such small NCs the conductivity resonance may shift even out of the range of OPMIP 

sensitivity in this case. Therefore, OPMIP spectra of the samples with higher values of x could 

hardly be fitted in the current state of the analysis. This seems surprising considering the results 

of the THz investigation (sections 4.2 and 4.3), where the employed model provided a 

reasonable fit of the conductivity spectra for the samples with, among others, x = 0.5 and x = 

0.7. However, unlike in the THz spectroscopy, the ultra-broad frequency range covers a number 

of overlapping phenomena discussed in this chapter. Therefore, since the OPMIP sensitivity 

significantly decreases for NCs smaller than 4 nm, a correct interpretation of the sample 

response becomes more difficult and would require more precise information about the 

geometry of NCs in order to evaluate properly the microscopic mobility. In the case of the THz 

spectroscopy, on the other hand, the reduced sensitivity may result in overestimation of some 

parameters while still providing reasonable agreement between experimental and calculated 

curves, as it is shown for the sample with x = 0.3, where the filling fraction 𝑠𝑐𝑜ℎ was found to 

be five times larger compared to the results of the OPMIP investigation. 
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4.5. Conclusion 

  We successfully applied our approach, based on the solution of the wave equation for 

the electromagnetic waves in the photoexcited media with mixed dielectric properties, to a 

photoconductive response of quasi-two-dimensional silicon NC networks in the THz – mid-

infrared spectral range. The THz quantum mobility model (section 2.2.4) including the drift-

diffusion current describes properly the charge carrier transport in the nanocrystals providing 

an opportunity to estimate electron confinement lengths in the samples: the concerted study by 

the time-resolved OPTP and OPMIP spectroscopies has shown that the samples indeed present 

the target 4-5 nm sized Si NCs (as suggested by TEM) but they also contain a non-negligible 

amount of larger NCs which may be interpreted as clusters of smaller nanocrystals merged 

during their growth. According to the OPMIP investigation, the proportion of individual NCs 

to clusters for the samples with x = 0.0 and x = 0.3 is approximately defined as thirty to one. 

The clusters dominate the THz photo-conductivity spectra. Their size decreases with 

decreasing amount of silicon in Si-rich SiOx layers; this correlates with a better NC size control 

technologically achieved for samples with smaller amount of Si. 

 We have shown that our comprehensive approach is a powerful tool that allows to 

disentangle and evaluate a number of phenomena primarily responsible for the measured 

response at given probing frequencies, in particular, phonons in the fused silica components of 

the samples, optical interference of the mid-infrared wave within the multilayer, quantum 

confinement of the photo-carriers within NCs and the localized plasmon resonance. 

Nevertheless, there is still a lack of in-depth understanding of the photocarrier properties 

related to the disordered structure of the samples. Namely, both THz and multi-THz – mid-

infrared study yield the picture of a percolated Si layer with a confined response of the 

photocarriers for the sample with the highest amount of silicon (x = 0.0) suggesting some kind 

of energy barriers among the ~20 nm-sized clusters of NCs. This makes the assumption of the 

infinite depth of the potential wall in the quantum mobility calculations not entirely justified. 

The barriers ought to depend on the conditions of NC interfaces and may also determine the 

contribution to the conductivity interpreted here as incoherent electron motion. However, any 

reasonable assessment of NC interface properties is hindered by the complex sample 

morphology. We are hardly able to describe the exact dispersion of SiO2 in both isolating layers 

and in NCs layers where it plays a role of the matrix in the effective medium approach. An 

observed significant modification of SiO2 spectra (figure 32), caused by the strains in thin films 

and by structural and stoichiometric defects, suggests also a significant modification of surface 

properties of the silicon nanocrystals. Moreover, the approximation of two continuous size 

distribution function is a rather rough estimation of the real NC size distribution in the samples. 

Thus, accurate evaluation of the NC band potentials defining charge carrier confinement is 

practically impossible.  

We were able to extract from the data valuable information about the samples’ 

conductive properties. This information, nevertheless, remains only limited. Therefore, even 

though the superlattice approach [3] using nitrogen-free PECVD [100,101] is an advanced 

technique for the nanocrystal size and quality control, it is not able to provide the size regularity 

required for the determination of the electron mobility in a single nanocrystal without 
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significant averaging effects. This conclusion inspired us to employ lithographic techniques of 

the sample preparation in order to apply our analytical approach to perfectly ordered regular 

nanostructures described in the following chapter.
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5. Charge transport in single-crystalline GaAs 

nanobars. 

 This chapter is devoted to our research of arrays of ultimate-quality single-crystalline 

GaAs nanobars prepared by electron-beam lithography in a molecular-beam-epitaxy-grown 

GaAs layer transferred onto an electrically insulating and optically and terahertz transparent 

sapphire substrate. Such a highly ordered structure constitutes a promising system for analysis 

of the carrier confinement and of the depolarization field effect in the THz frequency range. 

 Measurements of ultrafast terahertz photoconductivity at 300 and 20 K in an array of 

such aligned nanobars by time-resolved terahertz and multi-terahertz spectroscopy and by time-

resolved terahertz scanning near-field microscopy allowed an in-depth understanding of the 

nanoscale electron motion inside the nanobars. A detailed analysis was performed in terms of 

quantum mechanical calculations of the mobility of carriers and in terms of plasmonic 

resonance controlled by photocarrier density. Apart from the careful evaluation of sample 

morphological properties, our investigations reveal a band bending close to the nanobar 

surfaces and its prominent effects on the picosecond charge carrier dynamics, leading to an 

enhanced localization of electrons at longer times. We thus demonstrate that terahertz 

spectroscopy proves to become an important tool for the investigation of the role of 

nanostructure surfaces. 

 Indeed, band-bending strongly influences charge transport properties of 

semiconductors, and it stays at the origin of the functionality of many fundamental electronic 

components like diodes or transistors. The profile and extent of the band-bending are inherently 

controlled by the state of the semiconductor surface and its vicinity. Direct electronic probing 

of the band-bending profile and its impact on the charge transport is a great challenge, since 

attachment of probing electrodes inevitably modifies the properties of the semiconductor 

surface. Details of the band-bending are even more important in nanostructures since the 

surface to volume ratio increases with decreasing nanostructure size. 

 Section 5.1 gives details on the sample preparation procedure and sample 

morphological properties provided by microscopy techniques. Section 5.2 is devoted to the 

investigation of the THz photoconductive response of the structures combining several 

experimental approaches. The corresponding results were summarized and published in [5]. 

5.1. Sample 

Our aim was to fabricate and study a regular array of nanobars with well-defined 

material properties and morphology. We expected that in highly ordered samples and by 

performing experiments with variable temperature and variable pump power, one can 

disentangle the effects due to the localization of charges inside nanostructures and the 

depolarization effects due to spatial separation of charges in inhomogeneous samples. One of 

crucial requirements was imposed on the substrate properties: it should be free of background 

conductivity and photoconductivity. In other words, the substrate should be electrically 
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insulating (undoped) and also transparent for optical and THz radiation (no doping by 

photoexcitation). 

5.1.1. Failure of In0.53Ga0.47As on semiconductor substrate  

 Our initial attempt was to investigate the respective role of the depolarization fields and 

of the localization of carriers inside the In0.53Ga0.47As nanobars on high-resistivity InP 

substrate. In0.53Ga0.47As is a technologically important semiconductor with the energy bandgap 

of 𝐸𝑔 = 0.74 eV exhibiting low dark current and a high electron mobility at room temperature. 

InP was selected as substrate since In0.53Ga0.47As / InP is a commercially available structure 

and since its larger energy gap of 𝐸𝑔 = 1.34 eV should allow avoiding the photogeneration of 

free carriers inside the substrate. 400 nm thick film of In0.53Ga0.47As on InP substrate was 

purchased from MTI corporation (film grown by MOCVD). The nanostructures were prepared 

by etching of the In0.53Ga0.47As layer using electron beam lithography. The resulting structures 

consisted of regular trapezoidal nanobars with the following parameters of the cross section: 

height – 400 nm, bottom base – 550 nm, top base – 130 nm (figure 39). The fabrication protocol 

allowed us to prepare perfectly aligned structures covering an area 1.5×1.5 mm2. 

  

Figure 38. In0.53Ga0.47As structures on InP substrate. a) Scheme of the nanobars array. b) Sizes 

of nanobar cross section. c) SEM image of the structures. 

 We expected to measure THz response of non-percolated nanostructures photoexcited 

by near-infrared pulses at 1.27 μm wavelength. Indeed, with the corresponding photon energy 

of ~ 0.98 eV does not reach the width of the bandgap of InP. However, a number of experiments 

(at both 300 K and 20 K temperatures) revealed unavoidable photoexcitation of the substrate 

via two-photon absorption process leading to a strong electrical percolation among the 

nanobars. The measured transient THz spectra (figure 39) were thus dominated by a Drude 

response of electrons in the conduction band of InP. The increase of Δ𝑇norm with the incident 

photon fluence indicates a nonlinear (two-photon) absorption process. Note also in figure 39 

the large magnitude of the measured signal compared to the one obtained later with good 
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quality GaAs nanobarns (figure 45); this is a strong indication that the signal comes here 

essentially from the bulk part of the sample (InP substrate).  

 

Figure 39. Normalized transient transmission ∆𝑇norm of the In0.53Ga0.47As / InP sample 

measured 10 ps after photoexcitation at room temperature for THz polarization across the 

nanobars. 

5.1.2. GaAs structure transferred on sapphire substrate 

 Here we combined the growth of a homogeneous thin GaAs film by molecular beam 

epitaxy (MBE), its subsequent transfer onto sapphire substrate and, finally, its structuring by 

electron beam lithography. The physical properties of the nanoelements are inherited from the 

well-defined properties of the pristine film; its quality is evidenced by DC electron mobilities 

as high as ~105 cm2/Vs at low temperatures, see e.g. [114] where the data were reported for 

similar grown films. 

The crucial step for our study is a transfer of the as-grown GaAs layer onto sapphire 

substrate prior to the electron beam lithography. 

Figure 40 represents some important technological steps of the sample preparation. 

First, MBE technique was employed to deposit a series of layers on top of a (001) GaAs 

substrate in the following order: 100 nm thick GaAs buffer layer, 100 nm thick interlayer of 

AlAs and 700 nm thick layer of GaAs (the target sample layer). In this arrangement, however, 

the optical excitation beam would be absorbed not only in the sample GaAs layer, but also in 

the GaAs substrate where, in such a case, the photoconductivity signal would exceed the one 

expected in the nanobars. Indeed, the THz mobility of carriers in the homogeneous bulk is 

typically significantly higher than the one in nanostructures [84]. For this reason, the sample 
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layer was transferred onto a terahertz and optically transparent substrate, (0001)-oriented Al2O3 

wafer, where free carriers are not generated upon illumination by our laser pulses. The transfer 

procedure, which we followed, was previously described by E. Yablonovitch et al. [115]. The 

top GaAs layer was covered by a drop of wax (Apiezon W dissolved in trichloroethylene), 

which was subsequently air dried (figure 40a). Next, the AlAs interlayer accessible from the 

sides was etched in a solution of 10% hydrofluoric acid for 8 to 12 hours, thus disconnecting 

the wax-stabilized GaAs film from the GaAs substrate (figure 40b). Subsequently, the GaAs 

film was transferred onto the top of the Al2O3 substrate where it adhered due to van der Waals 

forces (figure 40c). The sample was then rinsed with trichloroethylene to remove the wax 

(figure 40d). In the final stage, an array of nanobars (covering an area of 3×3 mm2 on top of 

Al2O3) was made from the continuous GaAs film by means of electron-beam lithography 

(figure 40e). 

 
 

 
 

 

 

 
 
 

 

Figure 40: Schematic representation of the sample preparation procedure: (a) wax drop 

attached on top of the initial structure as deposited by MBE (700 nm GaAs / 100 nm AlAs / 

100 nm GaAs buffer / GaAs substrate); (b) etching of the AlAs interlayer and (c) transfer of 

the GaAs film on an optically transparent substrate; (d) washing out of the “cup” in 

trichloroethylene (TCE); (e) electron beam lithography of the GaAs film and formation of 

nanobars; (f) final dimensions and geometry of nanobars. 
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Figure 41. Images of investigated GaAs structures on sapphire substrate. (a,c) Optical 

microscope images: at smaller magnification (c), perfectly ordered nanobars appear as uniform 

areas whereas the areas with the slid and merged nanobars contain contrasted features. (b) near-

field image obtained by THz-SNOM: the yellow areas correspond to the gaps between the bars. 

(d,e) scanning electron microscope (SEM) images of perfectly ordered (d) and bunched (e) 

GaAs nanobars on the sapphire substrate. (f,g) AFM images of perfectly ordered (d) and 

bunched (e) GaAs nanobars on the sapphire substrate. 
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The final structure consisted of a series of 700 nm high, 450 nm wide and about 100 

m long nanobars attached to the sapphire substrate by van der Waals interactions; the gap 

between individual nanobars was 350 nm. These nanostructures formed 100×100 m2 squares 

and the whole 3×3 mm2 sample was paved by these squares with their spacing of about 1 m 

(see figure 40 summarizing the dimensions and figure 41 showing also SEM, AFM, SNOM 

and optical microscope images).  At some places the sample was very nicely ordered exhibiting 

the nominal periodicity of 800 nm (figure 41a,d,f ); however, at some places the contact 

between the nanobars and the substrate was worse and individual nanobars or groups of 

nanobars slid along the surface of the substrate forming wider and/or partially percolated 

structures (figure 41e,g). This was probably due to the tensions in the GaAs film built up during 

the transfer, which could significantly reduce the van der Waals adhesion to the substrate. 

  In the case of nanostructures, it is an advantage to have support by microscopy 

techniques for an investigation of carrier conductivity. In our study the optical microscopy of 

the sample can provide only overall information about sample morphology due to the specific 

dimensions of the structures, i.e., width of the individual nanobars is comparable to the 

wavelengths of the visible light. Therefore, the atomic force microscopy (AFM) was employed. 

However, precise measurements of the sample morphology via the AFM technique are 

prevented to the certain extent due to the relatively narrow and deep gaps between the structures 

with respect to the dimensions of the AFM tip. Despite of that, the measurements allowed us 

to verify the height and the period of the aligned nanobars as well as to determine the presence 

and character of the bunched structures. Regarding the electron microscopy, there are 

fundamental obstacles related to the non-percolated character of the nanostructures and 

insulating substrate in our sample. Therefore, the whole front side (top) of the sample was 

covered by a ~5 nm thick carbon layer in order to perform SEM measurements. Obviously, this 

procedure inevitably causes a dramatic change in the conductive properties of the whole sample 

making it completely percolated. Considering an irreversible character of this change, we 

performed SEM investigation of the sample at the final stage of our study, i.e., when all the 

THz conductivity experiments were finished. 

5.2. THz photoconductivity 

 We studied photoconductive response of the sample using both far- and near-field THz 

spectroscopy. In every case the photoexcitation of the sample was done at 800 nm wavelength 

that corresponds to a photon energy of about 1.55 eV. Considering the energy gap of GaAs 

(𝐸𝑔 =1.42 eV at room temperature [116] and 1.52 eV at 20 K [117]), the photocarriers in our 

structures are generated via single-photon absorption mechanism. Optical transmittance and 

reflectance of the sample upon photoexcitation was experimentally determined in order to 

evaluate the fluence of the pump pulse absorbed in the sample and the carrier concentration 

inside the nanobars. The grating-like form of the structure leads to diffraction and waveguiding 

effects in the optical range and to enhancement of the optical absorption that depends on 

orientation of the nanobars with respect to the polarization of the pumping beam. In particular, 

in the parallel configuration the value of an absorption coefficient of the sample at the chosen 

optical wavelength was determined as 2.7×106 m-1. We denote this coefficient as 𝛼𝑒𝑓𝑓 as it 

corresponds to effective absorption in the structured sample. The local absorption coefficient 
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(i.e., the one determining the concentration of carriers inside GaAs nanobars) can be calculated 

using GaAs filling factor 𝑠 as follows: 

 𝛼𝑙𝑜𝑐 =
𝛼𝑒𝑓𝑓

𝑠
. (5.1)  

From the microscopic images we can estimate 𝑠~0.55. Thus, the local absorption coefficient 

𝛼𝑙𝑜𝑐 = 4.9×106 m-1. Note that this value is more than three times higher than the bulk GaAs 

absorption coefficient (𝛼GaAs =1.4×106 m-1 [118]). 

 At the first stage, the THz photoconductivity was measured in a conventional OPTP 

experimental setup described in section 3.1. The pump beam at 800 nm was expanded by a 

diverging lens to ensure that the exposed part (2.5 mm in diameter) was photoexcited 

homogeneously. The pump-beam fluence was controlled over nearly three orders of magnitude 

using a combination of neutral density filters and a variable attenuator based on a thin film 

polarizer. Figure 42 shows the kinetics of the signal decay in the nanobars after photoexcitation 

at room temperature; the decay time is of 130 ps. The transient THz spectra were measured at 

20 and 300 K at a pump-probe delay of 10 ps; the spectra are presented in the form of the 

normalized transmission function Δ𝑇norm (equation 2.46) as a function of the frequency and 

carrier density. 

 

Figure 42. Dynamics of THz conductivity of photoexcited carriers in the GaAs nanobars 

measured at perpendicular arrangement of the bars with respect to the THz electric field vector. 

Dashed line corresponds to the pump-probe delay where the time-resolved THz spectra were 

subsequently measured. 

 It has been shown that in the case of a weak photoexcitation (∆𝐸 ≪ 𝐸) and of a thin 

film sample (sample thickness 𝐿 is much smaller than the probing wavelength) the solution of 

the wave equation 2.7 for the transient transmitted THz field (equation 2.16) is directly related 

to the sheet conductivity of the photoexcited film [68,103]: 
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∆𝑇norm =
1

𝑒0𝜙
∫ Δ𝜎(𝑧)𝑑𝑧

𝐿

0

. 
(5.2)  

In a spatially homogeneous film absorbing the entire excitation fluence, the right-hand side 

simplifies to the product of the quantum yield and mobility of photocarriers, i.e., it represents 

an average single-carrier response. 

5.2.1. THz electric field parallel to the nanobars 

 For a basic characterization of the samples we measured the THz mobility of 

photocarriers in the as-grown GaAs film (figure 43) and the THz mobility component parallel 

to the nanobars in the patterned sample (figure 44). In both cases the fitting procedure was 

based on the Drude model of the carrier mobility (equation 2.18) providing a good agreement 

between the experimental and calculated curves (figures 43 and 44). 

 

Figure 43. Normalized transient transmission ∆𝑇norm of the GaAs film (symbols: 

measurements 10 ps after photoexcitation; solid lines: fit of the data by the Drude model 

(equation 2.18)). 

One can observe quantitative agreement in evolution of the scattering time 𝜏 measured 

in the film and nanobars. Under weak photoexcitation conditions we found the DC mobility 
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value of 𝜇 ≈ 6.5 × 103 cm2V−1s−1 at room temperature (concentrations of photocarriers 𝑛𝑒 ≈

2 − 5 × 1015 cm−3)  and 𝜇 ≈ 5 × 104 cm2V−1s−1 at 20 K (concentration of photocarriers 

𝑛𝑒 ≈ 0.5 − 1 × 1015 cm−3) in both cases. We conclude that the films have a very good quality 

and that the transport properties are not deteriorated during all the manipulations related to the 

film transfer and pattering. In this respect, the resulting nanostructures are superior to many 

excellent advanced materials like InP nanowires grown by metalorganic vapor phase epitaxy 

on a patterned substrate where the growth process may considerably alter the material (e.g., 

introduce defects like stacking faults) [119,120]. 

 

 

Figure 44. Normalized transient transmission ∆𝑇norm of the GaAs nanobars oriented in parallel 

to the polarization of the probing THz field (symbols: measurements 10 ps after 

photoexcitation; solid lines: fit of the data by the Drude model (equation 2.18)). 

5.2.2. THz electric field perpendicular to the nanobars 

 All the subsequent far-field THz experiments were performed with the THz beam 

polarization (electric field vector) carefully adjusted perpendicular to the nanobars, i.e., the 

transport of charge carriers across the nanobars was probed. Figure 45 shows OPTP 

experimental spectra of the normalized transmission function ∆𝑇norm. 
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‘ 

Figure 45. Normalized transient transmission ∆𝑇norm of the GaAs nanobars oriented 

perpendicular to the polarization of the probing THz field (measurements 10 ps after 

photoexitation). 

The spectra feature a broad resonance peaking at a non-zero frequency; this is 

characteristic for the localized response of charge carriers. The observed blue-shift of the 

conductivity peak with increasing excitation power (i.e., carrier concentration) is a clear 

signature of the depolarization fields effect (localized plasmon resonance) [86]. Therefore, we 

perform our analysis of the sample photoconductive response in the framework of the effective 

medium theory, using our VBD EMT model (section 2.2.6) that allows accurate evaluation of 

this effect. For a homogeneous photoexcitation along 𝑧 of the nanostructured film, equation 

5.2 with an effective conductivity defined by VBD formula (2.39) yields 

  

∆𝑇norm(𝜔) = 𝛼𝑙𝑜𝑐𝐿 𝜇(𝜔) [𝑉 +
𝐵

1 + 𝑖𝐷
𝑒0𝑛𝑒

𝜀0𝜔 𝜇(𝜔)
], 

 

(5.3)  

where 𝑛𝑒 = 𝛼𝑙𝑜𝑐𝜙 is the carrier concentration inside the nanobar. In nanostructured samples 

the right-hand-side of equation 5.3 approaches the microscopic mobility (or, more precisely, 

𝛼𝑙𝑜𝑐𝐿 𝜇(𝑉 + 𝐵)) at very low pump fluences. At higher fluences, it reflects the depolarization 

fields of the inhomogeneous structure quantified by D. 
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 In partly disordered structures, which we encounter in the studied samples, a 

distribution of the D parameter representing the distribution of morphological properties needs 

to be considered. For this purpose, equation 5.3 can be generalized using the integral 

∆𝑇norm(𝜔) = 𝛼𝑙𝑜𝑐𝐿 𝜇(𝜔) [𝑉 + 𝐵 ∫
𝑓𝐺(𝐷)𝑑𝐷

1 + 𝑖𝐷
𝑒0𝑛𝑒

𝜀0𝜔 𝜇(𝜔)
], 

  

(5.4)  

where 𝑓𝐺(𝐷) is a suitably chosen distribution function (with normalization ∫ 𝑓𝐺(𝐷)𝑑𝐷 = 1). 

Indeed, the experimentally observed broadening of the conductivity peak and the decrease of 

its amplitude (figure 45) upon increase of the excitation photon fluence are attributed to the 

distribution of the 𝐷 parameter. This is demonstrated in figure 46 where we show model spectra 

calculated as a function of the pump fluence following equation 5.3 with a single value of 

parameter 𝐷 (figure 46a,c) and following equation (5.4) with a distribution of D values (figure 

46b,d). For simplicity, the spectra were calculated using a Drude mobility (equation 2.18 with 

τ = 250 𝑓𝑠) and a Gaussian distribution function 𝑓𝐺(𝐷) with the effective parameters related 

to our sample (fitting parameters in figure 48). 

 

Figure 46. Examples of calculated model spectra of ∆𝑇norm as a function of the carrier 

concentration. The spectra are based on (a,c) the VBD model (equation 5.3) with a single value 

of the parameter 𝐷. (b,d) a model with the Gaussian distribution of morphological properties 

(equation 5.4). For simplicity we assumed in this illustration that the microscopic mobility 

𝜇(𝜔) has the Drude behavior (equation 2.18).  
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5.2.2.1. Conductivity Peak at Weak Photoexcitation 

 It is important to emphasize that at 20 K, even at the lowest photoexcited carrier 

densities (𝜙 = 5 × 10−10 cm−2, 𝑛e = 2.5 × 1015 cm−3, cyan curve in figure 45b,d), the 

frequency of the measured conductivity peak does not vanish, i.e., we still observe a clear 

deviation from the Drude-like behavior. However, under the low excitation conditions (and for 

negligible background doping of the nanobars), the depolarization field effects acting through 

the D-term in Equation (5.3) should be very small or even vanishing [68]; in other words, we 

expect that these experimental data should approach the true microscopic response 𝜇(𝜔) of the 

photocarriers.  

 In the case of the background doping (significant steady-state concentration of carriers) 

of the nanobars the peak in the transient response could a signature of a plasmon formed due 

to the cumulative effect of photocarriers and background charge carriers leading to an effective 

blue shift of the peak in 𝜇(𝜔).[121] A discussion of the influence of strong background doping 

on the photoconductivity spectra was also carried out in the case of InP nanowires where an 

increased mean thermal velocity due to an elevated Fermi level was assumed to be responsible 

for an observed blue shift in the conductivity peak. [120]  However, we ruled out these 

possibilities via van der Pauw conductivity and Hall measurements of the unpatterned GaAs 

film: the room-temperature measurements on the verge of the DC-sensitivity revealed electron 

type of the background sheet conductivity (≈ 3 × 10−10 Ω−1) with a carrier density of 𝑛e
dark ≈

1010 cm−3, which is several orders of magnitude lower than the estimated density (≳

 1016 cm−3) required to shift the plasmonic resonance to the experimentally observed position. 

Furthermore, we observe just a very tiny shift of the resonance position (by 0.05 THz) 

between the spectra obtained for the two lowest excitation densities at 𝑇 = 20 K (magenta and 

cyan plots in figure 45b,d), while the experimental photocarrier density changes 5 times. This 

very weak dependence of Δ𝑇norm on the pump fluence further confirms that the D term in the 

denominator of Equation (5.3) is negligible.  

We thus conclusively attribute the behavior at very low pump fluence to the 

confinement of photocarriers inside the nanobars [84]: the observed spectra coincide (except 

for the amplitude scaling factor) with the microscopic mobility 𝜇(𝜔). 

5.2.2.2. Quantum Mobility Evaluation 

 In order to evaluate 𝜇(𝜔) in the equation 5.4 we employed quantum-mechanical 

approach described in section 2.2.4. In the initial calculations of the mobility, we considered 

an infinitely deep potential with a flat bottom as shown in figure 47a,b and with the nanobar 

width of 450 nm determined from the SEM images (figure 41d). However, this approach 

provides mobility spectra with the resonance at a significantly lower frequency than the 

observed one (figure 48b and inset of 48d).  

Our explanation of the observed phenomenon is based on an increased confinement of 

charge carriers due to the band bending at GaAs surface [122] which may originate from 

surface defects (trapped electrons, strain relaxation) related to the preparation procedure, and 

the surface states associated with the lattice truncation. It was also previously observed that the 
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band bending in GaAs films grown on GaAlAs layer or AlAs/GaAsAs superlattices may extend 

over a few hundreds of nanometers [114]. 

In our quantum mechanical model, we accounted for the enhanced confinement effect 

by considering an additional parabolic potential inside the nanobar (figure 47c,d).The potential 

shape is thus assumed in the form 𝑚∗𝜔0
2𝑥2/2, where the eigenfrequency 𝜔0 becomes an 

additional fitting parameter (𝑚∗ is the effective mass of electrons). 

 

Figure 47. Scheme of the potential across the nanobars (potential wells). (a,b) Potential well 

with a flat bottom: the effective localization length would be independent of the temperature. 

(c) Potential well with parabolic bottom at low temperature: band bending concentrates the 

charges in a volume smaller than the one given by the geometrical width; the response is 

controlled by the curvature of the potential rather than by the geometrical width of the nanobar. 

(d) Potential well with parabolic bottom at an elevated temperature: charges gain an extra 

(thermal) kinetic energy and their confinement is again mostly determined by the geometrical 

width of the nanobar. 

 It is interesting to note that the parabolic nature of the confinement has no visible 

influence on the calculated mobility spectra at 300 K (the curves in figure 48a are 

undistinguishable from each other). From the fitted value of the eigenfrequency of the potential 

𝜔0/2𝜋 ≈ 0.33 THz, we can evaluate the depth of the parabola, ∆ℰ = 𝑚∗𝜔0
2 𝑤2/8 ≈14 meV 

(𝑤 = 450 nm is the nanobar width). Since the electrons at room temperature have a higher 

kinetic energy (𝑘𝐵𝑇 = 26 meV), they can move over the full extent of the potential well and 

their motion is limited mainly by the physical size of the nanobar (figure 47d). At low 

temperature, the small thermal energy of electrons (𝑘𝐵𝑇 = 1.7 meV) prevents them from 

reaching the surface of the nanobar; instead, they rapidly thermalize into the center of the 

nanobar and their response is controlled by the corresponding potential curvature (figure 47c). 

The electrons at low temperature are thus localized on distances of about 160 nm, quite far 

from the surface. 
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 The real profile of the band bending likely differs from the very simple parabolic well. 

However, we verified that the peak frequency in the THz conductivity spectrum is controlled 

mainly by the extent of the region where the potential is smaller than approximately 𝑘𝐵𝑇 and 

the exact shape of the potential has a little influence on the shape of the spectrum. The 

localization length of 160 nm at low temperature is thus a reliable number insensitive to the 

model chosen, while the value for the depth ∆ℰ constitutes an order of magnitude estimate. 

5.2.2.3. Fitting Model 

 In order to account for the observed imperfections of the investigated sample, we 

assumed a Gaussian distribution of the  𝐷 factors, 

𝑓G(𝐷) =
1

𝛿 √2𝜋
exp (−

(𝐷 − 𝐷0)2

2𝛿2
), 

 

(5.5)  

where the parameters 𝛿 and 𝐷0 are the standard deviation and the mean of the distribution. The 

fitting model for ∆𝑇norm based on equation 5.4 is thus completed; the fitting strategy involves 

a simultaneous fit of complex ∆𝑇norm spectra measured at 20 and 300 K and at several 

excitation powers (11 complex curves in total). This allows us to keep the number of unknown 

(adjustable) parameters at the very minimum: two parameters represent the electron scattering 

times 𝜏 at 20 and 300 K, four parameters represent effective medium coefficients (V, B, D0, 

and 𝛿) and, in addition, we consider the potential eigenfrequency 𝜔0. 

Note that the room temperature spectra exhibit a small non-zero conductivity 

contribution at low frequencies (figure 48c), implying small contribution of the long-range 

carrier transport. Since the substrate is insulating, this can be explained only by a certain degree 

of electrical connectivity among the nanobars; such connections are in principle possible in 

more disordered areas of slid nanobars. At the same time, no sign of long-range transport was 

observed at 20 K (the photoconductivity drops to zero at low frequencies).  These phenomena 

are encoded in the (fitting) parameter V which expresses the fraction of the structure percolated 

or close to the percolation. Since, at low temperature, the low-frequency photoconductivity 

drops to zero, 𝑉 =  0 (no percolation is observed). Nevertheless, such a change of morphology 

with temperature is only minor, therefore the remaining effective medium parameters (𝐵, 𝛿, 

and 𝐷0) are supposed to be temperature independent. 

 The percolation considerations are fully consistent with the evaluation of quantum-

mechanical mobility in the previous section. At low temperatures, electrons are localized 

deeply inside the nanobars and therefore no long-range percolation may exist. At room 

temperature, due to the thermal excitation, electrons can fill some states at the nanobar surfaces, 

therefore their transport among nanobars may occur when the nanobars touch each other; this 

is represented by the non-zero 𝑉 parameter.  
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Figure 48. (a,b) Calculated microscopic mobility spectra 𝜇 of electrons in a flat and parabolic 

potential well. These spectra are undistinguishable in panel (a). (d–f) Normalized transient 

transmission ∆𝑇norm of the sample (symbols: measurements 10 ps after photoexitation; solid 

lines: calculations with the parabolic potential well. Inset: comparison of the fits of the lowest-

carrier-concentration real conductivity spectra at 20 K for the two potentials: dashed lines: flat 

potential, solid line: parabolic confinement potential. (g) Gaussian distribution of the parameter 

𝐷 obtained from the fit. Inset: comparison of the fits of the real photoconductivity spectra at 

lowest carrier concentrations at 20 K for the two considered potentials: dashed lines: flat 

potential, solid line: parabolic confinement potential. 
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 The fits of experimental data rely only on “global” parameters, which are independent 

of the pump fluence and the majority of them is also temperature independent. The fit values 

are summarized at the bottom of figure 48. The quality of the fits involving quantum 

calculations of the mobility in a parabolic potential well is excellent at 20 K and slightly worse 

but still quite reasonable at 300 K (figure 48). This difference may indicate that some additional 

thermally activated processes start to become effective at room temperature. We estimate that 

the error of the measured excitation fluence can reach 20%: this directly affects the amplitudes 

of individual spectra, but it can also lead to a shift in the peak positions (the peak position scales 

with √𝜙  for moderate and high excitation fluences, therefore its frequency may easily differ 

by 10%). Finally, the Gaussian distribution of the 𝐷 factor is likely to be just a rough 

approximation neglecting any fine details of the real structure. 

5.2.2.4. Multi-THz Spectra 

 In order to further support the picture obtained from the THz spectroscopy, we extended 

the spectral range up to 8 THz by using time-resolved multi-THz spectroscopy (section 3.2). 

In our sample the multi-THz spectral range is limited by the transparency window of the Al2O3 

substrate. The spectrum measured at 300 K and 10 ps after photoexcitation is shown in figure 

49 along with the theoretical one. The theoretical spectrum was calculated using the fit 

parameter values obtained from the THz spectra as discussed in the previous paragraph. No 

adjustable coefficient was used. One can see a very good agreement in the amplitude and peak 

position between the measured and calculated data. Here we are left with just a single excitation 

fluence since the signal-to-noise ratio as well as the long-term stability of the setup is 

considerably worse than in the case of the conventional THz spectroscopy (acquisition of the 

presented spectrum took up to 25 hours to reach a sufficient signal-to-noise ratio). 

 

Figure 49. Real and imaginary parts of the normalized transient transmission spectrum ∆𝑇norm 

in the multi-THz spectral range. Symbols: measured data, lines: spectrum calculated using the 

fitting parameters obtained from the conventional THz spectroscopy (no additional degree of 

freedom). 
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5.2.3. THz Near-Field Investigations 

 So far, we have been examining the response of electrons in the lateral direction, 

averaged over a large ensemble of nanobars; the observed band bending thus applies to the 

vertical nanobar walls. However, despite certain possible differences in the character of the 

vertical walls (produced by etching) and top surface (formed upon the molecular beam epitaxy 

growth), one would expect that the band-bending effect should exist also in the normal 

direction to the sample surface. Despite the lack of experimental techniques that can directly 

measure the shape of the band potential in our structures, the presence of the band-banding 

effect has been confirmed in this study by means of the local THz measurement on THz-SNOM 

(section 3.4).  

 The tip of the THz-SNOM (section 3.4) was positioned in the lateral direction above 

the center of a nanobar, the THz sampling pulse timing was set to detect the field at the main 

maximum of the THz waveform. Second harmonic of the fundamental fiber laser output served 

for the photoexcitation of the sample at 780 nm. The measured THz SNOM signal with the 

pump beam blocked was identified with the zero-signal level. Subsequently, the pump beam 

was unblocked, and the pump-probe delay was scanned yielding an evolution of the average 

near-field THz response to the photoexcitation. 

 The optical pump – near-field THz probe dynamics are shown in figure 50. Here the 

THz-SNOM tip is sensing photocarriers in a single nanobar and the output signals obtained 

from the lock-in detection at different harmonics of the fundamental tip tapping frequency 

(𝜔tip) represent the response of the carriers probed over different depths from the top surface 

of the nanobar. It is generally considered [123], and we show in more detail in the next section 

(5.2.3.1), that higher harmonics are more sensitive to the response in smaller depths. The 

kinetics in figure 50 thus indicate that carriers observed in a thinner layer close to the surface 

(sensed, e.g., by the 4th harmonic) disappear significantly faster than those detected in a thicker 

surface layer (through the signal of the 1st harmonic). Note also that there is no significant 

decay on the relevant time scale of the conductivity measured in far-field measurements, which 

represents the conductivity averaged over the entire thickness of the nanobar layer. This far-

field measurement proves that the total carrier population is practically conserved up to several 

tens of picoseconds. The near-field results can thus be explained only by an ultrafast escape of 

the carriers from the top surface towards deeper parts. We observe a progressive and 

monotonous decrease of the signal decay time when passing from the first up to fourth 

harmonic, which means that the very top layer depopulates more rapidly than slightly deeper 

layers. 

Analogous effect in the change of the speed of the pump-probe dynamics in InAs 

nanowires was observed by Eisele et al. in [124], where the probing depth was controlled via 

changes of the AFM tip tapping amplitude; the authors came to similar conclusions attributing 

the fast initial decay of the pump-induced resonance to formation of the depletion surface layer. 
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Figure 50. Dynamics of THz conductivity of photoexcited carriers observed at various 

harmonics of the tip vibration frequency in THz-SNOM. Symbols: experimental data, lines: 

fits by a single exponential function convoluted with a Gaussian instrumental response. The 

peak values of the bare exponential are normalized to unity. Dashed line: dynamics of the 

conductivity measured in the conventional far-field THz experiment. The fitted decay times as 

indicated in the legend.  

 We will now show that the observed decay times are compatible with the confinement 

due to the band bending deduced from the far-field measurements. Assuming the same 

parabolic potential Δℰ(𝑧) = 𝑚𝜔0
2(𝑧 − 𝐿 2⁄ )2/2, the corresponding acceleration of electrons at 

the top of the nanobar is 𝑎 = 𝜔0
2𝐿/2 where 𝐿 = 700 nm is the height of the nanobars and 𝑧 is 

the distance from the top of the nanobar. The distance travelled by the electron during the mean 

scattering time 𝜏 is then 𝑑 = 𝑎𝜏2/2 resulting in the mean travelling velocity ⟨𝑣⟩ = 𝑑/𝜏 =

𝜔0
2𝐿𝜏/4. For the scattering time 𝜏 = 260 fs and 𝜔0/2𝜋 = 0.33 THz deduced from the far-field 

experiments, we obtain ⟨𝑣⟩~200 nm ps−1. In the experiments, the smallest depth probed by 

the SNOM tip should be comparable to the tip diameter (~80 nm); combined with the decay 

time of 2.2 ps we arrive at a velocity ∼ 40 nm ps−1. This value itself is in a very good 

agreement with the theoretically estimated values (given the extreme simplicity of the model). 

Furthermore, we expect that the decay time of the 4th harmonic is still not the ultimately shortest 

one, and therefore the velocity is in reality higher than 40 nm ps−1. The SNOM measurements 

thus strongly support the hypothesis that band-bending plays a crucial role in the dynamics and 

response of electrons in nanostructures. 

5.2.3.1. Depth-dependence of the SNOM signal 

 This problem was deeply discussed within our group. Below, I provide a simple model 

proposed by H. Němec.  

We assume that the part of the collected signal 𝑆(𝑏, 𝑧) scattered due to the presence of 

the SNOM tip and coming from the depth z below the sample surface, depends on the surface-
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tip distance 𝑏 which is modulated at angular frequency ωtip, 𝑏 = 𝑏0 + Δ𝑏 sin ωtip𝑡 

(figure 51).This signal is thus described by the function 

𝑆(𝑏, 𝑧) = 𝑆(𝑏0 + Δ𝑏 sin ωtip𝑡 , 𝑧). (5.6)  

 

Figure 51. Scheme of the SNOM geometry. 

This function is periodic in time, therefore it can be expanded into the harmonic series 

𝑆(𝑧) = 𝑠0(𝑧) + ∑ 𝑠𝑘(𝑧)sin (𝑘ωtip𝑡)

∞

𝑘=1,3,5,…

+ ∑ 𝑠𝑘(𝑧) cos(𝑘ωtip𝑡) .

∞

𝑘=2,4,6,…

 

 

(5.7)  

It should be stressed that the expansion coefficients 𝑠𝑘 depend on the depth z from which the 

contribution to the signal originates. In fact, it is this dependence that is responsible for the 

different depth sensitivity of different collected harmonics. To quantify this behavior further, 

we evaluate the mean depth probed by the 𝑘-th harmonics expressed as 

〈𝑧〉𝑘 =
∫ 𝑧𝑠𝑘(𝑧)𝑑𝑧

∞

0

∫ 𝑠𝑘(𝑧)𝑑𝑧
∞

0

. 

 

(5.8)  

The tip acts roughly as a dipolar source; we will assume the simplest behavior, for which the 

near field decreases with the third power of the distance. The interaction function is then 

proportional to 

𝑆(𝑏, 𝑧) ∝
1

(𝑧 + 𝑏)3
. 

 

(5.9)  

With this particular function, we illustrate in figure 52a that the higher is the demodulation 

harmonic, the faster the signal 𝑠𝑘(𝑧) decays with the depth 𝑧. This validates the statement that 

higher harmonics are more sensitive to processes in shallower depths. This is also reflected in 

the mean probe depth, which, following equation 5.8, decreases with the order of the harmonic 

(figure 52b). Within the presented model, we observe that the mean probed depth is of the order 

of the minimum tip-sample distance, 𝑏0 − Δ𝑏. In practice, the tip is almost in contact with the 

sample and therefore the mean characteristic probed depth would be comparable rather with 

the tip radius. 
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Figure 52. (a) Depth dependence of the scattered signal collected at kth harmonic (curves are 

normalized to 1). (b) The mean probe depth 〈𝑧〉 normalized by the minimum tip-surface 

distance (𝑏0 − Δ𝑏) for a few lowest harmonics. 

For a more detailed understanding of this behavior on the analytical level, we expand 

(S1) into the Taylor series with respect to the variable 𝑏: 

𝑆(𝑏, 𝑧) = 𝑆(𝑏0, 𝑧) + ∑
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(5.10)  

Using the binomial theorem for the expansion of sine function, we can easily find the 

coefficients 𝑠𝑘(𝑧); for example, for the coefficients of the cosine expansion we obtain 

𝑠2𝑘(𝑧) = (−1)𝑘 ∑
Δ𝑏2𝑛

22𝑛−1(𝑛 − 𝑘)! (𝑛 + 𝑘)!
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(5.11)  

 This expression has several important implications. Firstly, the signal on the kth 

harmonics is controlled only by derivatives of the order of 2k and higher of the function S. This 

means that the higher is the detected harmonic, the subtler nuances of the particular form of 

the interaction function will control the detected signal. A more advanced debate will thus be 

needed in the future to link quantitatively the order of the harmonics and the characteristic 

probed depth of the sample. 

5.3. Conclusion 

 Photoconductivity in an array of high-quality single-crystalline GaAs nanobars was 

measured by time-resolved terahertz spectroscopy at 300 and 20 K. For both temperatures, the 

spectra are dominated by a plasmonic resonance which blue-shifts with the excitation fluence 

over the entire THz range, thus reflecting the non-percolated nature of the array of the nanobars. 

Quantum mechanical calculations revealed that at low temperature, electrons are localized on 

distances smaller than the geometrical size of the nanobars; this behavior was attributed to the 

band bending due to surface states. While band bending is smaller than the thermal electron 
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energy at room temperature and therefore it has no significant effect on the photoconductive 

response, it still leads to a depopulation of the top layer of the nanobars on the picosecond time 

scale as evidenced by scanning near-field terahertz microscopy. The presented results thus 

demonstrate that band bending may have a prominent effect on the charge transport: both on 

the response function and dynamics of electrons. Essential ingredients for revealing such 

effects and understanding them quantitatively are well defined nanostructures, comparative 

measurements at high and low temperatures and for a large range of carrier concentrations, and 

a support by near-field spectroscopic techniques.
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Conclusion 

The main theme of this work was an in-depth analysis of the electron confinement 

effects from ultrafast THz photoconductivity spectra of inhomogeneous nanostructured 

materials. Relevant physical properties of nanomaterials (such as size, shape and connectivity 

of nanocrystals or, e.g., the defect concentration) frequently exhibit a significant variation from 

nanocrystal to nanocrystal. This rises a significant challenge for detailed studies of local charge 

carrier properties: the interpretation based on microscopic models is often not straightforward. 

In order to probe the conductivity resonances in nanostructures of various shapes and sizes at 

controlled (and varied) carrier concentrations, I have performed a number of time-resolved 

THz experiments extended to far- and mid-infrared range (Multi-THz and Multi-THz – mid-

infrared pulsed spectroscopies described in chapter 3). In addition, near-field THz 

measurements were employed providing a valuable insight into local carrier properties. 

The VBD effective medium model (section 2.2.6) was chosen as the basis for 

disentangling the phenomena due to depolarization fields in photoexcited nanoparticles and 

due to carrier localization (i.e., single carrier mobility). There is no doubt that significant 

advances in evaluating the mobility of confined electrons were made due to development of 

the quantum model of the THz conductivity (section 2.2.4). The model has been successfully 

introduced to the analysis of my original experimental results; it complemented far-field and 

near-field experimental results to prove the enhanced confinement of electrons due to band 

bending in GaAs nanobars. 

The original part of this work consists of two investigations: 

1. THz photoconductivity in networks of Si nanocrystals in SiO2 matrix prepared 

by thermal decomposition in a superlattice geometry was studied at 300 and 20 

K. The sample preparation technique aims towards fine control of NC size in 

quasi-two-dimensional layers, which was confirmed by electron microscopy. 

However, THz measurements revealed the presence of relatively large 

photoconductive objects compared to the picture suggested by TEM images (~ 

4.5 nm). The result can be explained by clustering of the small NCs during 

crystallization process and such clusters dominantly contribute to the THz 

conductivity. A careful analysis of the measured spectra within the framework 

of the quantum electron confinement provided their size distribution that varies 

with Si content in the samples. 

Photoconductivity of the samples was subsequently probed via Multi-THz – 

mid-Infrared pulsed spectroscopy that confirmed a presence of the target 4-5 

nm sized NCs (which are more numerous in number but not necessarily in 

volume) besides larger aggregates observed by the THz measurements. Note 

that many spectral fingerprints (mobility of confined electrons, plasmon 

resonances, optical interferences in the multilayer, and phonons in various SiO2 

components) mix in the broad experimental frequency range and our advanced 

analysis allowed to identify them. We also determined the ratio between the 
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numbers of small and large nanocrystals providing complementary information 

to TEM images. We also showed that the distribution of nanocrystal sizes in the 

samples inevitably decreases the degree of accuracy of the electron mobility 

determination. 

2. THz photoconductivity in an array of ultimate-quality single crystalline GaAs 

nanobars was measured at 300 and 20 K. The structures were prepared via 

electron-beam lithography performed on a molecular-beam-epitaxy-grown 

GaAs layer transferred onto a sapphire substrate. A careful analysis of the THz 

spectra based on the quantum mechanical calculations revealed that at low 

temperature the electron confinement length is smaller than the physical 

dimension of the nanobars. We attribute the origin of this phenomenon to 

electronic states at the nanobar surface resulting in band bending. This has been 

supported by means of time-resolved scanning near-field terahertz microscopy 

that detected depopulation of the top layer of the nanostructures on the 

picosecond time scale. 

 An important conclusion of my original investigations is that although modern sample 

deposition techniques are able to provide certain control of nanostructure geometry, in some 

cases it may not be sufficient to resolve pertinent electronic properties of charge carriers in a 

single nanostructure. In order to quantitatively evaluate these properties with great accuracy, 

well defined nanostructures are really required. 

 We have proven that THz spectroscopy is a powerful tool for the contactless probing 

of the electron confinement in semiconductor nanostructures. Furthermore, I think that it is fair 

to say that our effective medium model combined with the cutting-edge quantum calculations 

represents a state-of-the-art analysis of charge carrier transport in inhomogeneous materials. 

 In regard to my personal contribution to this work, I would highlight the following:  

• Experimental measurements of all the original spectra presented in the study 

except optical absorbance measurements used in section 4.1 (figure 23). 

• Participation in all the microscopic measurements of the GaAs nanobars 

presented in section 5.1.2 (figure 41). 

• Calculation of the analytical solution of the wave equation for the transient 

reflection function ∆𝑅 in the general case of effective sample response 

(described by VBD model) and for the specific photoconductivity profile 

(section 2.3.2). 

• Fitting and interpretation of the experimental spectra using the VBD model 

developed in our group and generalizing the model by introducing integration 

over specific parameters. 

• Participation in the preparation of the GaAs sample, namely in transfer of the 

GaAs film onto the sapphire substrate.
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