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Introduction 

 Charge transport is a fundamental process required for the operation of electronic and 

photovoltaic devices. Many of the novel electronic high-tech components are based on 

nanostructured semiconductors. For example, the electrodes in Grätzel-type solar cells are 

made of percolated networks of metal oxide nanoparticles [1]. In such inhomogenous systems, 

however, the charge transport occurs on various time- and length-scales and it is strongly 

influenced, e.g., by nanoparticle boundaries or by the nature of the contacts between 

nanoparticles [2]. High demand on more efficient devices with completely new functionalities 

thus requires not only advances in the field of material fabrication, but also a development of 

theoretical models and experimental techniques, which bring the most complete information 

on the charge transport processes in semiconductor nanostructures. 

 The application potential of semiconductor nanostructures is closely related to the 

charge transport which includes also processes on the scales of several tens of nanometers. 

It has been shown, that the pertinent information on nanoscale charge transport is encoded 

in the terahertz (THz) spectral range (the frequencies from ~ 0.1 THz to ~ 3 THz) [2]. 

The measurements of THz (photo)conductivity spectra are thus highly desired. For this task, 

a suitable technique is the time-domain THz spectroscopy [3]-[5]. This non-contact method is 

based on pulsed THz radiation and usually employs phase-sensitive detection, i.e. it allows 

one to obtain both the real and imaginary part of complex conductivity spectra from a single 

measurement. Additionally, one can combine it with a synchronized optical photoexcitation. 

This modified method is then usually referred to as optical pump-THz probe spectroscopy. 

 Traditionally, the (optical pump-THz probe) time-domain THz spectroscopy utilizes 

broadband THz pulses generated by optical rectification in a nonlinear crystal or by 

a photoconductive switch. Fields generated in this way have amplitudes typically of at most 

a few kV/cm (e.g. ~ 5 kV/cm in our lab). In such a case, the THz response of most materials 

is still linear. In recent years, however, there has been a huge development in the area of 

table-top high-field THz sources, e.g. tilted-wavefront optical rectification in LiNbO3 

(traditional THz range) [6]-[8] or generation from air-based plasma (the multi-THz range, 

i.e. the frequencies up to ~ 30 THz) [9]-[13]. These sources can generate pulses with peak 

amplitudes up to 1 MV/cm [14]. There are also large-scale facilities such as free electron lasers 

producing narrowband pulses with high mean power [15]-[17]. It has been shown that such 

strong fields lead to nonlinear response of conductive carriers in bulk materials [18]-[24]. 

However, this field is very recent and the bulk THz nonlinearities are still not completely 

understood. It is then not surprising that there are almost no reports on THz nonlinearities in 

nanostructured systems [25],[26]. While the mechanisms of bulk nonlinearities should still be 

present in nanostructures, we also expect a completely new class of nonlinearities to emerge 

in isolated nanoobjects where the long-range charge transport is suppressed by potential 

barriers (i.e. charge confinement). These barriers create a strongly anharmonic binding 

potential and we thus anticipate a strong nonlinear response for high electric fields. These 

nonlinearities would then influence the THz and multi-THz conductivity of the nanostructures. 

The proper understanding of these effects could then facilitate development of new devices 
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including THz and multi-THz mixers or harmonic generators. The ongoing miniaturization of 

electronic devices also leads to higher electric field intensities inside the components; 

understanding of the charge transport in strong electric fields is thus important in this 

respect, too. 

 In the first part of this thesis, we introduce theoretical background required for the 

evaluation of both linear and nonlinear THz response of nanostructured systems. While the 

linear response is well described in the literature ([2] and references therein), the considered 

nonlinearities are completely unexplored and we thus have to entirely develop the 

corresponding theoretical framework. Chapter 1 introduces the phenomenological description 

of both the linear and nonlinear THz conductivity. For frequency mixing induced by broadband 

THz pulses, this is not straightforward due to multiple nonlinear interactions between  different 

spectral components. In Chapter 2, we describe Monte-Carlo calculations of the conductivity. 

These include the well-known calculations based on Kubo formalism [27] and also the newly 

developed non-perturbative approach applicable in the presence of strong and arbitrarily 

shaped electric field. We then review the topic of linear response of inhomogeneous media 

in Chapter 3. This includes an overview of linear effective medium theories relevant for our 

work and also a solution of linear wave equation in a photoconductive medium, which provides 

a link to signals measurable in the experiments. In Chapter 4, we then describe our treatment 

of nonlinear response of inhomegeneous media and we also solve the nonlinear wave equation 

to provide formulae for measurable nonlinear signals. 

 In the second part, we use the above theoretical approaches to analyze both the linear 

and nonlinear conductivity of charges confined in semiconductor nanostructures. In Chapter 5, 

we investigated the linear response of an electron gas confined in various model structures. 

We show that the conductivity spectra of non-degenerate electron gases can exhibit 

characteristic resonances linked to (quasi-)periodic trajectories. In isolated structures, these 

resonances couple with the plasmonic resonance and the character of this coupling depends 

on the dimensionality. In Chapter 6, we examine the nonlinear THz conductivity of electron 

gas confined in a 1D potential well. Namely, we demonstrate that the charge confinement 

in semiconductor nanostructures can lead to a highly efficient high harmonics generation. 

Chapter 7 then contains the most important results of this thesis. Here, we evaluate the 

measurable nonlinear signals for several model semiconductor nanostructures. We show that 

the strongest nonlinear signals are predicted for structures where the semiconductor 

nanostructure is surrounded by metallic environment concentrating the THz electric field. We 

also argue why the traditional THz range is more perspective for the observation of 

nonlinearities than the multi-THz one. 

 Chapter 8 then presents experimental results of the thesis. We studied a linear THz 

response of TiO2 nanotubes which are very promising for photovoltaic applications. We show 

that the THz photoconductivity of the nanotubes strongly depends on the fabrication process. 

Monte-Carlo calculations of the conductivity then reveal a strong influence of the internal 

structure of nanotube walls in some of the samples. 
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 Originally, the thesis was intended to be focused on the multi-THz spectroscopy of 

semiconductor nanostructures. The existing setup in our lab delivers pulses with peak 

amplitudes of ~ 120 kV/cm, which was thought to be intense enough to induce nonlinear 

response of confined carriers. Our extensive calculations, however, revealed that these 

nonlinearities in realistic nanostructures are weaker than those in the THz range. The thesis 

then focuses mainly on the theoretical analysis of the nonlinearities induced by various 

high-field THz and multi-THz sources in several model semiconductor nanostructures. 
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1. Response to electromagnetic terahertz radiation 

1.1 Linear response 

 Terahertz (THz) radiation strongly interacts with free charges in the matter. This 

interaction gives rise to an electric current, which in a linear material has the form of 

a convolution respecting the causality principle 

 




0

d)()()( tEtj , (1.1) 

where E(t – τ) is the applied time-varying THz electric field and σ(τ) is the linear conductivity 

of the material in the time-domain. Fourier transform allows us to express the current in the 

frequency-domain as a simple product 

 )()()(  Ej , (1.2) 

where ω is the angular frequency and the conductivity spectrum σ(ω) is generally complex. 

 In systems with a single dominant type of charge carriers, the charge transport 

properties are assessed by the mobility of carriers μ(ω), which can be viewed as the 

conductivity of a single unit charge 

 
Ne0

)(
)(


 , (1.3) 

where e0 is the elementary charge and N is the concentration of carriers. While the conductivity 

describes the electric current induced by the unit electric field (1.2), the mobility describes 

the induced drift velocity v(ω) of charges: 

 )()()(  Ev . (1.4) 

1.2 Nonlinear response 

 The electric current density j is expected to show nonlinear behavior for sufficiently 

strong electric fields E(t). Here, we introduce a phenomenological description of this nonlinear 

response. The most straightforward approach is the adaptation of the perturbation theory used 

in nonlinear optics [28]. We thus expand the components of the electric current density ji 

(i  {x,y,z}) into a series of individual nonlinear orders (α) proportional to the α-th power of 

the electric field 

 





1

)( )()( tjtj ii . (1.5) 

The lowest order nonlinear currents j(α)(t) are introduced as 
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where σ(α)(τ1,τ2,…,τα) is the α-th order nonlinear conductivity in the time-domain and the 

functional form reflects the causality principle. In the general case, the nonlinear conductivities 

are (α+1)-rank tensors )( klij , where i,j,…k,l  {x,y,z}. In this thesis, we will assume linearly 

polarized electric field and study the response in the direction of its polarization. In such case, 

the response is fully described just by the appropriate diagonal components
)( iiii . In the rest of 

the text, we will drop the indices for simplicity. 

 As an example, we treat in detail the third-order nonlinearity as other orders can be 

treated in a similar way. Using the spectral representation of E, we get 

 321

)i(-

321

)3(

321

)3( ddde),,()()()()( 321 



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







  
t

EEEtj , (1.7) 

where σ(α)(ω1,ω2,…,ωα) is generally complex. Transformation into the frequency-domain is 

straightforward and leads to 

 323232

)3(

3232

)3( dd),,()()()()(   





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EEEj . (1.8) 

We will now assume monochromatic field E(t) = E0cos(ω0t), which is a sum of delta functions 

in the frequency-domain 

 )]()([
2

1
)( 000  EE .  (1.9) 

 The substition into (1.8) then yields 
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The third-order nonlinear current density j(3) contains terms oscillating at two different 

frequencies – the fundamental one (ω0) and its third harmonic (3ω0). The underlying nonlinear 

process is thus a general four-wave mixing resulting in the frequency ω = ± ω0 ± ω0 ± ω0.  

 The eight individual coefficients σ(3) encoding the material properties are not 

independent due to the symmetry reasons [28]. Firstly, the electric fields and currents are real 

quantities, therefore their positive and negative frequency components are complex 

conjugates: σ(3)(∓ω0,∓ω0,∓ω0) = σ(3)*(±ω0,±ω0,±ω0). This reduces the number of independent 

coefficients to four. Moreover, the intrinsic permutation symmetry applies, which allows us to 

freely interchange the frequencies in the considered diagonal components of the conductivity 

tensor: σ(3)(−ω0,ω0,ω0) = σ(3)(ω0,−ω0,ω0) = σ(3)(ω0,ω0,−ω0). This leaves us with just two 

independent coefficients: σ(3)(ω0,ω0,ω0) and σ(3)(−ω0,ω0,ω0), which are responsible for the 

third-harmonics generation and the intensity-dependent refractive index, respectively. In the 

time-domain, the third-order nonlinear current j(3)(t) can be thus equivalently written as 

    tt
EEtj 00 i

000

)3(3

0

i3

000

)3(3

0

)3( e),,(Re
4

3
e),,(Re

4

1
)(


 . (1.11) 

Note that the α-th order nonlinear current j(α)(t) generally has components oscillating not only 

at α-th harmonic frequency αω0 but also at lower harmonic frequencies. It is useful to represent 

the total current (including nonlinear components of all orders) as a spectral decomposition 

into individual harmonic orders [m] 

 








 






0

i

0

][ 0e)(Re)(
m

tmm mjtj  , (1.12) 

where the m-th order harmonic current amplitude j[m](mω0) is generally complex. We 

emphasize the difference between the nonlinear (α) and the harmonic [m] orders. The nonlinear 

orders are directly associated with the α-th power of the electric field E
α
, and as pointed above, 

generally contain more spectral components oscillating at various harmonic frequencies. On 

the other hand, the harmonic orders [m] contain only one spectral component at the frequency 

mω0 while their relation to the electric field is more complex. 

 The spectral decomposition (1.12) is not commonly used in nonlinear optics where an 

intense laser light interacts with the matter. Since the distance between the resulting harmonic 

frequencies is higher than the widths of the corresponding spectral lines, the individual 

harmonic processes do not overlap in the frequency domain. Furthermore, the phase-matching 

condition ensures that one nonlinear process is typically much stronger than the others. In the 

nonlinear optics, it is thus usually sufficient to consider the single dominant nonlinear 

interaction and to neglect the others (e.g., optical rectification is ignored when 

second-harmonic generation is examined). In the THz range, however, the situation is 

different. THz spectroscopy commonly employs broadband pulses for which the central 

frequency and the spectral width are comparable to each other. Different harmonics of different 

parts of the input spectra may then produce the same resulting frequency. Furthemore, we 

typically focus on thin samples, where the phase-matching condition is insignificant. 
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The signal at a given frequency is then a result of nonlinear processes of various orders. Later, 

we will demonstrate that the nonlinear THz response is extremely strong and the perturbative 

expansion into the powers of E
α
 makes no longer sense. In such situation, we have to inevitably 

use the spectral decomposition (1.12). 

 We introduced two different representations of the nonlinear current – the perturbative 

description in the terms of powers of the electric field (1.5) and the spectral decomposition 

into the distinct harmonic components (1.12). Now, we investigate the relation between these 

two approaches. We will first illustrate the formalism for nonlinearities up to the third order. 

In the nonlinear order representation, the net electric current density j(t) then consists of the 

contributions from the first- to the third-order 
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 (1.13) 

In the harmonic order representation, the current consists of the components oscilatting at the 

harmonic frequencies from 0ω0 to 3ω0 

  ttt
jjjjtj 000 i3
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The comparison between (1.13) and (1.14) directly yields 
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Relations (1.15) summarize the equivalence of both descriptions for nonlinearities up to the 

third order and up to the third harmonic order. This scheme can be straightforwardly 

generalized to an arbitrary order and the harmonic current j[m](mω0) thus generally reads 

 




  0

)(
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][ )( ECmj
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m  , (1.16) 
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where the conductivities σ(α) are functions of appropriate frequencies (determined by the 

index m) and Cm,α are positive fractions. The coefficients Cm,α can be derived from the 

trigonometric power series and are summarized in Tab. 1.1. 

 We now describe the extraction of nonlinear conductivities σ(α) from the known 

harmonic current densities j[m](mω0). Since the odd- and even-order nonlinearities are 

described by mutually independent sets of equations ((1.16) and (Tab. 1.1)), we can treat each 

parity separately. As an example, we analyze a system with odd nonlinearities up to the fifth 

order. Then, we need to consider harmonic current densities jk

[m]
(mω0) for three different 

amplitudes of the electric field E0,k (k = 1,2,3). The set of equations connecting jk

[m]
(mω0) and 

σ(α) directly follows from (1.16) and reads 

 
Tab. 1.1. Table of coefficients Cm,α from the relation (1.16) between the harmonic 

amplitudes j[m](mω0) and the nonlinear diagonal conductivities σ(α). While constructing the 

equations for harmonic currents, the frequency dependence of σ(α) has to be carefully 

considered – the brackets below the coefficients schematically represent the signs of the 

frequency parameters, e.g. (−,+,+) represents the process −ω0 + ω0 + ω0 → ω0. Obviously, 

it makes sense to consider only harmonic orders m  α. Blank spaces represent zero values 

of Cm,α. 

 

Cm,α σ(1)E1 σ(2)E2 σ(3)E3 σ(4)E4 σ(5)E5 … σ(α = 2β)E2β σ(α = 2β+1)E2β+1 

j[0](0ω0)  2

1
 

(−,+) 
 8

3
 

(−,−,+,+) 
  














2

2

1
2

  

j[1](1ω0) 
1 

(+) 
 4

3
 

(−,+,+) 
 16

10
 

(−,−,+,+,+) 
  














12

4

1
 

j[2](2ω0)  2

1
 

(+,+) 
 8

4
 

(−,+,+,+) 
  












 1

2

2

1
12

  

j[3](3ω0)   4

1
 

(+,+,+) 
 16

5
 

(−,+,+,+,+) 
  












 1

12

4

1
 

j[4](4ω0)    8

1
 

(+,+,+,+) 
  












 2

2

2

1
12

  

j[5](5ω0)     16

1
 

(+,+,+,+,+) 
  












 2

12

4

1
 

…
          

j[m = 2n](2nω0)       











 n

2

2

1
12

  

j[m = 2n+1]((2n+1)ω0)        











 n

12

4

1
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Each of the above rows represents a set of linear equations and the nonlinear conductivities 

σ(α) are then easily found as their solution. In our case, the equation (1.17.2) represents the set 

of two equations for two variables σ(3)(ω0,ω0,ω0) and σ(5)(−ω0,ω0,ω0,ω0,ω0) 
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and the equation (1.17.1) leads to a set of three equations for three nonlinear conductivities 

σ(1)(ω0), σ
(3)(–ω0,ω0,ω0) and σ(5)(−ω0,ω0,ω0,ω0,ω0)  
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   (1.19) 

Equation (1.17.3) is then specific as it directly yields the the fifth-order conductivity 

σ(5)(ω0,ω0,ω0,ω0,ω0). 

 The sets of equations (1.18) and (1.19) have to be treated carefully since the system 

can easily become ill-conditioned. This is due to the necessity to consider electric fields from 

a rather narrow interval of amplitudes to avoid the presence of higher-harmonics. If these sets 

of equations were ill-conditioned, the solution would then extremely depend on the noise and 

systematic errors in the experiments or theoretical calculations1. We also note that this issue 

becomes more important with increasing highest order of nonlinearity. 

                                                 
1 The electric current density will be later calculated by a Monte-Carlo approach which inevitably provides noisy 

results. We thus have to be aware of the discussed issue. 
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 The above approach can be easily generalized to a system with nonlinearities up to the 

m-th order. The extraction of all nonlinear conductivities then requires the knowledge of 

j[m](mω0) for m different values of E0 and solving the m systems of sets of equations analogous 

to (1.18) and (1.19). This framework also applies for the even-order nonlinearities, since they 

obey equations similar to (1.17). 

 In the weakly nonlinear case where only a few lowest nonlinearities exist, the described 

approach provides a way to calculate the nonlinear conductivites σ(α) from the harmonic current 

densities j[m](mω0) spectra known for several values of the electric field, and thus the direct 

assessment of the material properties. In a strongly nonlinear case where many nonlinear 

orders exist, however, it is more convenient to interpret the results in the spectral representation 

of harmonic orders (instead of introducing photoconductivities σ(α)) as it captures the nature of 

both the nonlinear and spectral properties. 

 In the linear regime, we introduced the mobility of carriers μ(ω) (1.3) for the 

assessment of charge transport properties. Here, we analogically define nonlinear mobilities 

μ(α)(ω1,ω2,…,ωα) as 

 
Ne0

21

)(

21

)( ),.,(
),.,( 





 
 , (1.20) 

which do not depend on the carrier density N and are subject to the same symmetry 

considerations as σ(α). The equations derived in this section remain valid for the nonlinear 

mobility μ(α) as can be shown by the substitutions j(t)  v(t) and σ(α)  μ(α), where v(t) is the 

drift velocity of carriers. 
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2. Monte-Carlo calculations of conductivity 

 Monte-Carlo calculations are the main theoretical tool for the determination 

of conductivity of semiconductor nanostructures [27],[29]. Here, we first recall an approach 

based on Kubo formalism (Section 2.1) which is convenient for the calculations of linear 

conductivity [27]. In this method, the thermal motion of carriers is simulated and the response 

is calculated from thermal fluctuations in equilibrium without an applied driving field. This 

approach, however, cannot be extended to the case of nonlinear response under strong electric 

fields as the linear Kubo formalism is no longer valid. In Section 2.2, we thus develop 

non-perturbative Monte-Carlo calculations of a nonlinear THz conductivity which are based 

on the monitoring of the charge velocity which arises as a response to an input time-varying 

electric field. Such an approach has been recently applied also for the calculation of the linear 

response [29]. A drawback is that the spectra calculated by non-perturbative approach typically 

exhibit higher noise than those obtained by Kubo formalism. 

2.1 Linear response: Monte-Carlo calculations based on Kubo formalism 

 The basis for the calculations of linear conductivity is the Kubo formula for the 

mobility tensor [30],[31] 

 








 

















 

)(

),()0,(ed

)(

iω

0

0
EF

tvv
E

F
t

e

kj

EE

t

jk , (2.1) 

where e0 is the elementary charge, F is the statistical distribution function and the summation 

takes place over all states α, and vj(α,t) are the time-dependent components of thermal carrier 

velocity in the state α. In the simulations, however, we consider just trajectories of selected 

states. We account for this by introducing initial state probabilities pj which follow the 

distribution (−𝜕F/𝜕E). The Kubo formula (2.1) is then transformed to 

 

  


























 





)(
),()0( ed)( iω

0

0
EF

E

F

vtvvpte
EE

j

jjj

t

jk , (2.2) 

The normalization factor  can be simplified to 

 




EEGEF d)()(

1
, (2.3) 

where G(E) is a density of states. For Maxwell-Boltzmann statistics,  is always 1/kBT (kB is 

Boltzmann constant and T is temperature). For Fermi-Dirac statistics with Fermi energy EF 
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and a D-dimensional space,  = D/(2EF) when kBT ≪ EF. Equation (2.2) can be written in a 

more compact form as [27] 

 tetvvef ft

kjjk d)()0()( i2

0

0





 , (2.4) 

where vj(0)vk(t) is the velocity autocorrelation function and the averaging takes place over 

the ensemble of carriers. 

 In this work, we use the calculations which were originally introduced in [27]. In these, 

we consider a thermal classical motion of non-interacting charges confined to a nanoobject. 

During their movement, the carriers undergo random scattering with a mean scattering time τs, 

which represents the scattering in the bulk material. Each of these events causes randomization 

of the charge velocity according to the selected distribution (e.g. Maxwell-Boltzmann or 

Fermi-Dirac statistics). We have several choices for describing the interaction of charges with 

nanoobject boundaries. In this work, we assume that the carriers are either randomly 

backscattered or reflected elastically and specularly (only one of these regimes is always 

assumed in particular calculations). In this way, the trajectory and the time evolution of 

velocity the )(tv


 is simulated for each carrier in the ensemble. The charge mobility spectrum 

is then calculated using the Kubo formula (2.4). 

2.2 Non-perturbative Monte-Carlo calculations in the presence of the 

electric field 

 We assume, that the motion of carriers is classical and it obeys the Newton's equations  

 )(
1

)(
d

)(d
)(

d

)(d 0 rV
m

tE
m

e

t

tv
tv

t

tr 




 , (2.5) 

where 𝑟 = (x,y,z) is the charge position, v


 = (vx,vy,vz) is the charge velocity, )(tE


 = [Ex(t),0,0] 

is spatially homogeneous local time-varying electric field linearly polarized in the x-direction, 

)(rV


is the local potential, e0 is elementary charge, m is carrier effective mass and t is time. 

The velocity directly yields the electric current density )()( 0 tvNetj


  (N is the concentration 

of carriers), which can be expanded into the nonlinear (1.5) and harmonic (1.12) series. This 

allows the calculation of harmonic σ[m] and nonlinear σ(α) conductivities and the corresponding 

mobilities μ[m] and μ(α), respectively, which are introduced in Section 1.2. 

 Here, we focus on an ensemble of non-interacting carriers enclosed in an infinitely 

deep potential well. At the start of the simulation, the carrier position and velocity is randomly 

generated with respect to the statistical distribution and the local potential )(rV


. The carriers 

then move classicaly inside the well according to the Eq. (2.5). During their movement, the 

carriers undergo random isotropic scattering with mean time τs, which corresponds to the 

scattering in the bulk material. As a result of this event, no velocity component is conserved 

and the carriers acquire a random new velocity according to the equilibrium statistical 
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distribution (i.e. not affected by the electric field). This is a considerable simplification as we 

do not account for the influence of the electric field on the statistical distribution. Individual 

scattering events are independent. When the carriers reach the well boundary, they are reflected 

elastically and specularly (although other interactions can be implemented as well [27]). 

 For each carrier in the ensemble, its trajectory and time evolution of the velocity v(t) is 

recorded. In the end, we calculate statistical average over the ensemble and we obtain mean 

carrier trajectory and time evolution of mean (drift) velocity v(t), and thus the mean (drift) 

electric current j(t) In equilibrium (without the electric field), only thermal motion is present 

and the drift current j(t) vanishes. 

 The drift electric current j(t) constitutes the main output of this non-perturbative 

approach. In particular, a response to an arbitrary temporal profile of the electric field can be 

calculated. For monochromatic electric field (1.9), analysis similar to the one presented in 

Section 1.2 is possible as the calculated stationary current density directly represents a single 

spectral component from (1.12). In this case, the conductive properties are further assessed by 

the nonlinear mobilities of carriers μ(α)(ω) (1.20). This entire approach is in contrast with the 

Kubo formalism-based calculations, where the carrier thermal velocity (i.e. without the electric 

field) autocorrelation function is tracked, and the mobility spectrum is then obtained using the 

formula (2.1). 
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3. Wave propagation in linear media 

 Semiconductor nanostructures are inherently inhomogeneous systems with potentially 

complicated morphologies. This has fundamental implications for THz spectroscopy as the 

incident THz electric field Einc creates a complex spatial distribution of local electric fields 

inside the nanostructure. Any measured data then contain information on both the local 

conductivity and the structure morphology and it is necessary to carefully disentangle them. 

For nanoparticles of subwavelength sizes, there are two views of this problem. Here, we focus 

on the description based on effective medium theory. The other way is to consider charge 

separation inside the nanostructures and describe the response in terms of localized plasmonic 

resonances [32],[33]. 

 In the effective medium approach, we replace the spatial distribution of local electric 

fields by a single effective value Eeff which is a volume average of the local electric field 

(Fig. 3.1). The dielectric sample properties are then characterized by an effective permittivity 

εeff (or an effective photoconductivity Δσeff in the photoexcited case). This approach is valid 

for characteristic nanoparticle dimensions much smaller than the wavelength of the radiation, 

which is safely satisfied in the THz range. In this section, we first provide an overview 

of selected linear effective medium theories for two-component systems and we also discuss 

the spatial distribution of the local electric fields (Section 3.1). Then, we recall the solution of 

the wave equation from [34] which allows to link the measured THz spectra with microscopic 

dielectric properties of the nanostructures and also with their morphology (Section 3.2). Later 

in Section 4, we generalize some of these results to the case of nonlinear response.  

 We note that the results shown here do not depend on a particular mechanism of 

conductivity. Later in Section 5, we illustrate how the effective medium theory affects the 

response linked to a particular model of the conductivity. 

 
Fig. 3.1. The scheme of electric fields and permittivities in an inhomogeneous sample. The 

incident electric field Einc creates a complex distribution of electric fields across the 

structure (a). It is necessary to distinguish the mean electric field Ep inside the 

photoconductive parts and the mean electric field inside the matrix Eh. Using an appropriate 

effective medium theory (EMT), this spatial distribution is replaced with a single effective 

field Eeff and the structure is treated as a homogeneous material with effective 

permittivity εeff (b). ET is the field transmitted through the sample in equilibrium, εp and εh 

are the permittivities of the inclusions and the matrix, respectively. 

n1 ns z 0 L 

1 2 Sample 

ET Einc 

n2 

Ep, εp 

Ep, εp 

 

Ep, εp 

 

Eh, εh 

a) 

n1 ns z 0 L 

1 2 Sample 

ET Einc 

n2 

Eeff, εeff 

b) 

EMT 
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3.1 Linear effective medium theories 

3.1.1 Bergman spectral representation and VBD model 

 In this part, we consider general two-component systems of arbitrary morphologies 

(e.g. any component may or may not be percolated). The effective properties are then the most 

generally described using the Bergman spectral representation [35]. Within this framework, 

the effective permittivity of non-photoexcited structure can be written as [36] 

  




1

0 hp

ph

pphheff d
)1(

)(
L

LL

Lv
VV , (3.1) 

where εp and εh are the permittivities of the constituents, Vh and Vp are their percolation 

strengths in the direction of the probing field, v(L) is a spectral function and L is a 

depolarization factor. The integral in (3.1) represents the contribution of non-percolated 

clusters. Each such cluster is characterized with a depolarization factor L and its influence on 

the effective response is weighted by the spectral function v(L). 

 We now consider that the p-component is formed by a photoconductive material (while 

the h-component remains insulating). Upon photoexcitation, the permittivity εp changes to 

 





0

p

pp i , (3.2.1) 

where Δσp is the photoconductivity of the p-component. The effective permittivity thus 

changes to 

 ,i
0

eff
effeff




  (3.2.2) 

where Δσeff is the effective photoconductivity of the entire structure. 

 For a known structure morphology, we can unambiguously determine the spectral 

function v(L) and the percolation strengths Vp and Vh using e.g. finite-element numerical 

calculations [37] (analytic solutions are known only for a few specific systems [38]-[41]). For 

photoexcited systems, a significant simplification is possible. In Ref. [37], it was shown for a 

large variety of structures that a single depolarization factor L0 often dominates in the spectral 

function, i.e. v(L) = v0δ(L − L0). The effective photoconductivity Δσeff then reads [37] 

 ,

i1
0

p

p

peff









D

B
V  (3.3) 

where we denote V = Vp and the coefficients B and D read 
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

LL

L
D  (3.4.2) 

 Equation (3.3) constitutes the foundation of the VBD model which describes the 

effective response of two-component systems with various levels of percolation [37]. Structure 

morphology is fully represented by three coefficients V, B and D (which are real constants for 

non-dispersive real εp and εh). The coefficients V and B represent the weights of percolated and 

non-percolated parts, respectively, and D is directly linked to the dominant depolarization 

factor. In non-percolated structures, V = 0. In percolated systems, however, V is non-zero and 

usually is much higher than the B coefficient (see e.g. Tab. 8.2). 

 We now briefly discuss the dependence of Δσeff on the carrier concentration N (as 

Δσp = Ne0μ according to (1.3)) in non-percolated systems (i.e. V = 0). For low enough N, the 

D-term in the denominator of (3.3) can be neglected (typically, D ~ 10-2 [34],[42]) and thus 

Δσeff ≈ BΔσp. The effective photoconductivity Δσeff is then directly proportional to the local 

photoconductivity Δσp and the proportionality constant is determined just by the sample 

morphology. In the limit of high N, the D-term becomes dominant and Δσeff no longer depends 

on Δσp. Instead, it becomes purely imaginary and directly proportional to the frequency. In the 

intermediate regime, Δσeff depends on Δσp (and thus on N) in a more complicated way. We 

demonstrate this for Δσp with resonant behavior in Sections 5.2.2 and 7.2.1 (Fig. 7.5): 

a plasmonic resonance emerges in Δσeff and blueshifts with increasing N [32],[33]. 

 The VBD model describes two-component systems of quite various morphologies 

where one component is photoconductive. However, the determination of the morphologic 

parameters V, B and D requires to employ a time-consuming finite-element calculations [37]. 

For certain systems, it is then more practical to apply less general effective medium theories. 

In the following sections, we consider two such approaches – the Maxwell-Garnett theory 

(Section 3.1.2) and the brick-wall model (Section 3.1.3).  

3.1.2 Maxwell-Garnett effective medium theory 

 Maxwell-Garnett effective medium theory [43]-[45] is rather simple but at the same 

time one of the most used homogenization approaches. It correctly describes systems formed 

by non-percolated inclusions which are sparsely dispersed in a matrix (i.e. low volume filling 

factor s is required). The effective permittivity εeff of the nanostructure then satisfies 
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hp
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K
s

K
, (3.5) 

where εp and εh are the permittivities of the inclusions and the matrix, respectively, K is the 

factor related to the shape of the inclusions (K = 2 for spheres, K = 1 for long cylinders with 
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axis perpendicular to the electric field) and s is their volume filling factor. From the above 

relation, it stems 

 
hp

hp

heff
)()1(

)1()1(






Kss

sKsK
. (3.6) 

 In the photoexcited case (i.e. photoconductivity of inclusions Δσp ≠ 0), substitution 

of (3.2) into the above relations yields the effective photoconductivity Δσeff  
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The above relation is a specific case of the VBD model (3.3) for V = 0. Indeed, the 

Maxwell-Garnett theory is a special case of the Bergman spectral representation (spectral 

function dominated by a single peak at L = (1 − s)/3 for spherical inclusions) [39]. The above 

relation thus also describes the build-up and blueshift of the plasmonic resonance with 

increasing Δσp. 

3.1.3 Brick-wall model 

 We consider a geometry from Fig. 3.2(a) where a periodic structure consists of 

alternating photoconductive (permittivity εp in the ground state, permittivity εp + iΔσp/(ωε0) 

upon photoexcitation) and nonconductive (permittivity εh) blocks with widths dh and dp 

(dh, dp ≪ λ, where λ is the wavelength of the THz field). The incident electric field Einc is 

polarized perpendicularly to the block boundaries. In the quasi-static approximation, we 

describe the structure by an equivalent electric circuit formed by two capacitors with 

capacitances Cp and Ch connected in series (Fig. 3.2(b)) [46]. These capacitors are linked to 

the photoconductive and nonconductive blocks. This serial connection can be then replaced 

with a single capacitor with capacitance C which satisfies 
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From the above relation, we then straightforwardly find the effective permittivity of the 

structure (without photoexcitation) 
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 In the photoexcited case (Δσp ≠ 0), the above relation remains valid if we apply the 

substitutions (3.2). The effective photoconductivity of the entire structure then reads 
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Comparison with (3.3) reveals that the above brick-wall model is also described within the 

VBD framework (for V = 0) from Section 3.1.1. Therefore, similar qualitative behavior is 

expected (e.g. the build-up and blueshift of the plasmonic resonance with increasing Δσp). If 

we introduce the filling factor of the photoconductive material  s = dp/(dp + dh), we can rewrite 

(3.10) as 
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Fig. 3.2. Scheme of the geometry considered for the brick-wall model of effective 

medium (a). The sample is formed by periodically alternating photoconducting (orange; 

photoconductivity Δσp) and nonconductive (gray) blocks with equilibrium permittivites εp 

and εh, respectively. The incident electric field Einc is linearly polarized in the x-direction. 

In the considered geometry, the structure is equivalent to an electric cicuit consisting of 

two capacitors (with capacitances Cp and Ch) connected in series (b). The connected 

capacitors can be then replaced a single capacitor with capacitance C which is linked to the 

effective response of the structure (c). 
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which is formally equivalent to the formula (3.7) for K = 0. For this reason, we will further 

formally describe the brick-wall model within the Maxwell-Garnett effective medium 

approach (for shape factor K = 0 and arbitrary filling factor s). 

3.1.4 Distribution of local electric fields in inhomogeneous structures 

 Here, we discuss the distribution of electric fields in inhomogeneous structures. While 

this is not required for the analysis of the linear THz photoconductivity of nanostructures, we 

will use it later to describe the nonlinear systems (Section 4) where the response is 

field-dependent. For the sake of simplicity, we focus just on two-component systems with 

geometries described within the Maxwell-Garnett effective medium theory or the brick-wall 

model. 

 In the first step, we discuss the distribution of electric fields in the sample 

in equilibrium. Here, it is necessary to distinguish the electric field Eh in the insulating matrix 

and the electric field Ep inside the photoconductive parts (Fig. 3.1(a)). In the effective medium 

theory, we replace this spatial distribution with a single effective field Eeff which is a volume 

average of the local electric field (Fig. 3.1(b)). In the linear case, Ep is directly proportional 

to Eeff 

 )()( effp  QEE , (3.12) 

where we introduced the proportionality term Q called the equilibrium field-enhancement 

factor. For Maxwell-Garnett theory, Q reads 
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For K = 0, the above relation yields the field-enhancement factor for the brick-wall model (as 

we discussed in Section 3.1.3). 

 In the photoexcited case, the local field Ep remains directly proportional to the effective 

field Eeff according to (3.12) but the proportionality term changes to Qexc. Substitution 

of (3.2.1) into the field enhancement factor Q (3.13) then yields 
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 In terms of the field-enhancement factors (3.13) and (3.14), we can rewrite the effective 

photoconductivity Δσeff as  

 pexceff  sQQ . (3.15) 
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3.2 Solution of the wave equation in inhomogeneous photoexcited media 

 In this part, we describe propagation of THz electric fields through a heterogeneous 

sample with effective response described by the VBD model (3.3) (which comprises also the 

Maxwell-Garnett theory and the brick-wall model). Since raw experimental results directly 

reflect just the effective response, our aim is to find the relations which provide link with the 

microscopic properties (i.e. local photoconductivity Δσp and morphology). Our description is 

motivated by the optical pump-THz probe experiments which allow to measure low 

differential signal between the photoexcited and the equilibrium states of the sample. These 

experiments offer higher sensitivity than the steady-state measurements [47]. We assume, that 

there are no free charges in the equilibrium state which is satisfied for most undoped 

semiconductors. In such case, the carriers are generated solely by the photoexcitation. Here, 

we focus just on the linear response and summarize the thorough analysis from Ref. [34]. 

In appendix A, we provide description for a sample with non-zero conductivity in the 

equilibrium state. In Section 4, we then generalize some of these results to the case of weak 

nonlinearities. 

 We consider the waves irradiating and leaving a parallel-plane slab (Fig. 3.3). With 

respect to the optical pump-THz probe experiments, we decompose the THz electric field in 

the sample as 

 EEE  s , (3.16) 

where Es is the field propagating through the sample in the equilibrium and ΔE is the transient 

field induced in the photoexcited sample. The incident wave Einc produces interferences inside 

the slab; the equilibrium field Es can be then written as a superposition of forward- and 

back-propagating waves 

 

Fig. 3.3. The scheme of the electric fields a photoexcited sample.  Einc is the incident electric 

field while ER, ET and Es are reflected from, transmitted through and in the sample in 

equilibrium state (i.e. without photoexcitation). Einc and Es are linked by the Fresnel 

coefficient t1 (3.19).  ΔE is the transient field in the photoexcited sample. ΔER and ΔET are 

the transient fields leaving the sample input and output surface, respectively. All electric 

fields are linearly polarized. 

n1 ns z 0 L 

1 2 Sample 

 

Einc 

n2 

ER + ΔER ET + ΔET 

Es + ΔE 
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  ))2(iexp()iexp()( 21incs LzkrkzatEzE  ⁡, (3.17) 

where k = kvacns is the wave vector in the sample (kvac is the wave vector in the vacuum), z is 

the spatial coordinate perpendicular to the sample surface, L is the sample thickness and the 

coefficient a (which describes multiple internal reflections of the THz wave in the sample) 

reads 

   1

21 )i2exp(1
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 kLrra ⁡. (3.18) 

The coefficients rj and tj in the above equations are the reflection and transmission Fresnel 

coefficients at the input (j =1) and output (j = 2) sample surfaces 
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where nj are the refractive indexes of superstrate (j = 1) or substrate (j = 2) and ns is the 

refractive index of the sample. 

 The transient field ΔE obeys a wave equation 
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where kvac is the wave vector in the vacuum, Z0 is the vacuum impedance, Δσeff(ω,z) is the 

effective photoconductivity and j(z) is the photo-induced electric current density. In the limit 

of small signal (i.e. ΔE ≪ Es, which is usually satisfied in experiments with nanostructures), 

E ≈ Es and (3.20) thus becomes linear differential equation with constant coefficients and 

a right-hand side term. Its general solution then can be written as 

 )()iexp()iexp()( zGkzkzzE  , (3.21) 

where γ and δ are the coefficients of the solution of homogeneous equation and G(z) is a 

particular solution of (3.20). The corresponding magnetic field then stems from Maxwell's 

equations and reads 
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 We now wish to find the equilibrium ET and transient ΔET fields which leave the output 

sample surface and are thus detectable in experiments (Fig. 3.3). Using the Fresnel coefficients 

(3.19) and summing up the interferences, we find 

 .)iexp()( inc21T EkLattE   (3.23) 
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Regarding the transient field ΔET, we have to consider the appropriate boundary 

conditions – i.e. the continuity of transient electric ΔE and magnetic fields ΔH on sample 

surfaces. These conditions then yield the following set of equations [48] 
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where ΔER is the field leaving the input sample surface (this field would be measured in 

experiments utilizing a reflection geometry). Solution of the above set of equations for a given 

depth-profile of conductivity then gives the sought transient field ΔET. 

 In the experiments, we have to consider also the wave propagation behind the sample 

and the detector response which distort the measured signal. In the frequency-domain, the 

detected signals thus read [49] 

 )()()()()()()()( TTTT  ESES PDPD , (3.25) 

where P (ω) is the response functions describing the propagation behind the sample (i.e. in the 

free space or through the focusing optics [50], [51]) and D (ω) describes the detector 

response [52], [53] (Fig. 4.2). The most common output of optical pump-THz probe 

experiments is the transient transmission ΔT/T which is the ratio of measured transient ΔST 

and equilibrium ST signal 

 
)(

)(

)(

)(

T

T

T

T













E

E

S

S

T

T
. (3.26) 

It is the characteristics of the linear response that this approach eliminates the influence of 

instrumental functions and ΔT/T thus directly describes the sample properties [49]. 

In Ref. [34], a normalized transient transmission ΔTnorm was defined 
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where ϕ is the photoexcitation fluence (in photons per unit area). In a bulk material, ΔTnorm is 

equal to the quantum yield-mobility product [34],[37] 

 ),()(norm T  (3.28) 

where the quantum yield of mobile carriers ξ captures that not all photoexcited carriers 

necessarily contribute to the conductivity [42],[54].  

 In inhomogeneous systems, Δσeff follows the VBD model (3.3) where the local 

photoconductivity Δσp(ω,z) is directly proportional to the concentration N(z) of mobile carriers 

in the photoexcited parts and to their mobility μ(ω) according to (1.3). For linear absorption, 

the depth profile of N follows the Lambert-Beer's law N(z) = ϕαp exp(−αeff z). Because of the 
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sample inhomogeneity, we have to carefully distinguish between the local absorption 

coefficient αp (which describes absorption just in the photoconductive material) and the 

effective absorption coefficient αeff (which describes the pump attenuation in the 

nanostructured sample and we can find using suitable effective medium theory). The depth 

profile of local photoconductivity Δσp(ω,z) thus reads 

 ),exp()()exp()(),( eff0peffpp zezz   (3.29) 

where Δσp(ω) is the local photoconductivity close to the sample surface. We note that we 

neglect a possible dependence of the charge mobility μ(ω) on N (which may appear e.g. due to 

interactions between carriers for higher N [55]). 

 For Δσeff following the VBD model (3.3), the source term in the wave equation (3.20) 

consists of two additive terms which separately describe the contributions from the percolated 

and non-percolated parts. The linearity of the wave equation (3.20) then allows us to treat both 

terms separately. A detailed solution for the percolated case ΔT
P
norm (i.e. the source term 

consisting just of the V-term from (3.3)) is described in [48]. The solution for non-percolated 

case ΔT
N
norm (i.e. only the B-term is considered in (3.3)) was discussed in [56]. Here, we provide 

just a summary of these results from Ref. [34]. If a structure consists of both the percolated 

and non-percolated parts, the resulting solution is then ΔTnorm = ΔT
P
norm + ΔT

N
norm. 

3.2.1 Percolated term 

 Substition of the V-term from (3.3) into the wave equation (3.20) in the small signal 

limit transforms the wave equation into 
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where Es(z) is given by (3.17). The solution of the above equation with boundary conditions 

from Fig. 3.3 then leads to the following expression for ΔT
P
norm [34] 
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 (3.31) 

ΔT
P
norm thus does not depend on the photoexcitation fluence ϕ (i.e. on the concentration of 

photoexcited mobile carriers) in systems with percolation. 

 We now examine the simplifications of (3.31) which can be applied for real 

samples [34]. In practice, usually k ≪ αeff (i.e. optical absorption occurs on a shorter length 

scale than the THz wavelength). Otherwise, there would be almost no absorption in a sample 

with realistic thickness and thus no measurable signal due to photoexcitation. In the limit of a 

thin sample (i.e. kL ≪ 1) exp(ikL) → 1 and (3.31) thus simplifies to 
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In the case of strong optical absorption (αeffL ≫ 1), the entire excitation power is absorbed in 

the sample (exp(−αeffL) → 0) and thus 
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For a weakly absorbing sample (αeffL ≪ 1), the Taylor expansion leads to 
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 For thick enough samples (kL ≫ 1), there is no temporal overlap between the pulse 

directly passing through the sample and the echoes originating from multiple internal 

reflections. In such case, we apply the so-called temporal windowing – we consider just the 

directly transmitted pulse in the data analysis and discard the signal due to echoes [58]. In the 

discussed theory, this means to neglect all terms containing the propagator exp(2ikL) 

representing internal reflections in the sample. ΔT
P
norm given by (3.31) then simplifies to 
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For weak optical absorption (αeff ≪ k), the above equation further simplifies to 
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In the case of strong absorption (αeff ≫ k), the simplified relation reads 
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 For percolated structures, the normalized transient transmission ΔT
P
norm is thus always 

directly proportional to the mobility of carriers μ(ω). In the limits of strong and weak 

absorption, the proportionality factor is rather simple as it depends only on the disperion of the 

refractive indices. Outside these limits, the measured spectrum is strongly modulated 

by a complicated envelope function which contains information e.g. on the Fabry-Pérot 

interferences inside a thick enough sample (the a-term and the term in the square brackets 

in (3.31)). In such case, a careful analysis is required to distinguish the corresponding 

resonances from those of microscopic origin (compare e.g. Fabry-Pérot [42] and excitonic [57] 

resonances in layers of percolated TiO2 nanotubes, Section 8.4.2). 
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3.2.2 Non-percolated term 

 Substitution of the B-term from (3.3) into the wave equation (3.20) in the small signal 

limit leads to 
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The above equation was solved analytically in [56] and its solution was found to be in terms 

of principal value of complex logarithm Ln and Gaussian hypergeometric function 2F1 [59] 

which is a function of four complex arguments. For convenience, we introduce the following 

notation 
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The normalized transient transmission ΔT
N
norm can be then written as [34] 
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where 
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 General relation (3.40) simplifies significantly for low photoexcitation fluences ϕ. 

In the limit ϕ → 0, Y0 also approaches 0 according to (3.41). In such case, both Ln(1+Y0)/Y0 

and 2F1 are approximately 1 and (3.40) then takes form of the general formula for percolated 

samples (3.31) (we just replace morphology coeffcient V with B). For a weak photoexcitation, 

the non-percolated samples thus behave in same way as percolated structures – i.e. ΔTnorm does 

not depend on ϕ and is directly proportional to the yield-mobility product ξμ(ω). This also 

provides a recipe to distinguish both cases experimentally as non-percolated structures exhibit 

very different behavior for stronger photoexcitations. 

 We now examine the practically important case k ≪ αeff. If this condition is satisfied, 

the hypergeometric function (3.39) simplifies considerably 
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The normalized transient transmission ΔT
N
norm given by (3.40) then reduces to [34] 
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In the limit of a thin sample (kL ≪ 1), the above equation further simplifies to 
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For strongly absorbing sample (αeffL ≫ 1, Y(L) ≪ 1), we obtain 
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In a case of weak absorption (kL ≪ αeffL ≪ 1), ΔTnorm reads 
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 In the limit of weak absorption (kL ≪ αeffL ≪ 1), we later investigate the nonlinear 

response of semiconductor nanostructures (Sections 4 and 7). For this reason, we now provide 

also the corresponding relation for the transient transmission ΔT/T (which is directly measured 

in optical pump-THz probe experiments). In a general case, ΔT/T is linked to the effective 

transient sheet conductivity ΔΣeff as [37] 
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where ΔΣeff is generally the integral of effective photoconductivity over the sample thickness  
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For the considered weak absorption, we can neglect the depth-profile of Δσeff and thus 
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The transient transmission ΔT/T is thus directly proportional to the effective photoconductivity 

Δσeff of the sample.  

 We note that (3.49) is valid just in the limit of a small signal. Above this limit, the 

transient transmission follows the Tinkham formula [114],[115] 
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which ensures that the transient signal ΔT cannot be larger than the reference T. It is obvious 

that for small values of the transient sheet conductivity ΔσeffL, (3.50) yields the same results 

as (3.49). 
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4. Wave propagation in nonlinear media 

 In Section 3, we described the linear THz response of two-component semiconductor 

nanostructures of arbitrary morphology. Namely, we linked the charge mobility in 

photoconducting constituents with transient transmission measurable in optical pump-THz 

probe experiments. Here, we generalize some of these results to the case of nonlinear THz 

response: for simplicity, we describe just the limit of a thin weakly absorbing sample. At the 

local level, we assess the nonlinearities by the non-perturbative MonteCarlo calculations with 

electric field E which yield a functional of the mean electric current density j[E]. The main 

aim of this section is then to establish the relation between the nonlinear response characterized 

by j[E] and the transient fields or transmittances measurable in experiments. As previously, 

we will assume that there are no free charge carriers in the equilibrium state and they are 

generated solely by the photoexcitation (this is satisfied for most undoped semiconductors). 

 We first study the propagation of fields through a thin homogeneous photoconductive 

film in the presence of the nonlinear electric current density j[E] (Section 4.1). We namely 

solve the nonlinear wave equation in the limit of a weak signal and link j[E] with the signals 

measurable in experiments. In Section 4.2, we then develop a treatment of two-component 

inhomogeneous nanostructures exhibiting nonlinear response. This task is more complicated 

than in the linear case as the nonlinear response is field-dependent and it is thus necessary to 

carefully consider the distribution of local fields across the nanostructures. In particular, we 

expand upon the existing nonlinear effective medium theories [60]-[64] to derive a relation 

between the effective and local nonlinear photoconductivities (we consider only simple 

geometries which can be described by the Maxwell-Garnett theory or by the brick-wall model). 

Synthesis of these results with the solution of the nonlinear wave equation from Section 4.1 

then allows us to provide formulae linking the local nonlinear photoconductivities with 

transient signals measurable in experiments. Finally, we derive an important general relation 

between the effective and local nonlinear electric current density (Section 4.3). This allows us 

to directly link the results of non-perturbative Monte-Carlo calculations with transient fields 

measurable in experiments which is of fundamental importance for our study of nonlinear THz 

response of semiconductor nanostructures in Section 7. 

4.1 Homogeneous thin films 

 We start our investigation with a homogeneous photoconductive slab (Fig. 4.1). 

The THz electric field E inside the slab obeys the wave equation 
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where z is the spatial coordinate perpendicular to the slab surface, ε is the linear permittivity 

of the slab without photoexcitation, ε0 and μ0 are the permittivity and the permeability of the 

vacuum, respectively, and j is the electric current density of free charges and has both linear 

and nonlinear contributions. It is generally a functional of the electric field (j[E]). As in 

Section 3 (Eq. (3.16)), we express the THz electric field inside the slab as  
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 EEE  s , (4.2) 

where Es is the field propagating through the slab in the equilibrium, and ΔE is the transient 

field induced in the photoexcited slab. These fields give rise to electric current density 

jexc[Es + ΔE] in the photoexcited slab. The wave equations for the field propagating in 

a non-excited sample and for the transient field thus take the form 
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Here, we focus on the limit of weak signals (ΔE ≪ Es), which can be easily satisified in the 

experiments by using a weak photoexcitation. In this limit, we can consider that the transient 

field is too weak to affect the nonlinearities, i.e. jexc[Es + ΔE] = jexc[Es]. This assumption 

neglects the depletion of the transient field due to the frequency mixing. The absorption of the 

fields in the sample remains encoded in the imaginary part of the refractive index. 

 The limit of the weak nonlinear signal linearizes (4.3.2) and for a monochromatic field 

Es(t) = Es,0cos(ω0t), it is possible to split the right-hand side into separate harmonic 

components 
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Fig. 4.1. The scheme of the fields and currents in a photoexcited homogeneous slab. The 

THz electric field Es propagating through the slab in the equilibrium gives rise to the 

harmonic electric currents j[m][Es] in the photoexcited sample. These currents generate 

transient nonlinear electric fields ΔEm, which then transform into transient fields ΔE
R
m and 

ΔE
T
m  surging at sample surfaces and radiating into surroudning media 1 and 2, respectively. 

Einc is the incident electric field, which transforms into the field Es inside the slab. ER and 

ET are the fields reflected from and transmitted through the sample in the equilibrium, 

respectively. All electric fields are linearly polarized. 
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The harmonic current densities j[m](Es) give rise to transient fields ΔEm, which oscillate at 

harmonic frequencies mω0. The net transient electric field in the slab is then a superposition 

of all harmonic orders 

 )( 0

1

 




mEE
m

m . (4.5) 

Since we neglect the depletion of the electric field Es due to the frequency mixing, the 

following set of independent wave equations for individual harmonic orders stems directly 

from (4.3.2) 

  )(i
d

d
s

][

0vac

2

2

2

EjZmkEk
z

E m

mm
m 


, (4.6) 

where km = mkvacn(mω0) are the wave vectors of transient fields in the slab and Z0 is the vacuum 

impedance. Equations (4.6) describe the propagation of transient electric fields ΔEm generated 

by the harmonic currents j[m](Es) – this is represented by the source terms on their right-hand 

sides. For m = 1, this equation describes the linear response (3.20), which is solved 

in Section 3.2. Here, we develop the solution for transient fields oscillating at higher harmonic 

frequencies.  

 The harmonic transient fields inside the sample can be simply expressed as 
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where γm and δm are the coefficients of the solution of homogeneous equation and the term Sm 

is a particular solution of the equation (4.6). The first and second term of (4.7) represent 

the waves propagating through the sample forwards and backwards, respectively. The transient 

electric fields ΔE
R
m and ΔE

T
m leaving the rear and front sample surfaces, respectively, can be 

found by applying the appropriate boundary conditions – the continuity of transient electric 

ΔEm and magnetic ΔHm  fields must be satisfied on the sample surfaces. There are no waves 

coming towards the sample and thus the amplitudes of the waves transmitted and reflected 

(in and from a non-magnetic material) given by (4.8) simplify to 
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where n1 and n2 are the refraction indexes of the media 1 and 2 surrounding the sample, 

respectively, at the frequency of the transient wave ΔEm. 

 From now on, we will be focusing solely on the thin-film limit (L → 0). We thus work 

in the limit kL ≪ αeffL ≪ 1 from Section 3.2, where αeff is the effective optical absorption 
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coefficient (introduced in (3.29)). Substitution of (4.7)-(4.9) into the field continuity condition 

yields the following set of equations 

 z = 0: z = L: 
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where ns is the THz refraction index of the sample. The solution of (4.10) is 
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This relation forms the basic link between the transient fields ΔE
R
m and ΔE

T
m leaving the 

homogeneous slab (and thus in principle accessible in the experiments) and the microscopic 

nonlinear current densitites j[m](Es), which are determined by the non-perturbative 

Monte-Carlo calculations.  

 In the transmission geometry, the direct experimental output in the linear regime is 

the transient transmission ΔT/T (3.26). Here, we introduce analogical quantities ΔE
T
m/ET for 

homogeneous systems with the described nonlinear behavior. For known incident THz electric 

field Einc, the reflected ER and transmitted ET fields and the field Es inside the slab (Fig. 4.1) 

are found by matching boundary conditions analogous to the ones used above. In the 

thin-sample limit, we find 
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i.e. Fresnel equations for an interface between media 1 and 2 (separated by an infinitely thin 

sample layer).  After substituting (1.16) into (4.11) and using (4.12), we get (for the lowest 

three harmonics) 
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where β is a natural number. The above equations are valid for waves just leaving the output 

surface of the sample.  

 In experiments, it is necessary to consider also the influence of the beam propagation 

behind the sample and the detector response, which may distort the measured signal. These are 

accounted for by the instrumental functions P (ω) and D (ω) introduced in Eq. (3.25). Here, we 

have to consider a different frequency dependence of the fields ET and ΔE
T
m. In the 

frequency-domain, the detected signals ST and ΔS
T

m
 thus read (Fig. 4.2) [49] 
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In the linear regime, the response functions are evaluated at identical frequencies and the linear 

transient transmission ΔT/T thus directly describes the sample properties. In the nonlinear 



 

33 

 

regime, the response functions do not have the same frequency argument, therefore their 

elimination is not entirely possible. The substitution of (4.14) into (4.13) yields 
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Regarding the first-order response, P (ω) and D (ω) are evaluated at the same frequency for 

both ST and ΔS
T

1
, therefore they cancel out and ΔS

T

1
/ST contains information just on the sample 

properties. For the response of higher orders, however, the appropriate instrumental functions 

do not cancel each other out due to different frequency dependence and remain present in the 

form of the fraction P (ω0)D (ω0)/P (mω0)D (mω0). The corresponding transmission spectra are 

thus inevitably deformed and contain information not only on the sample properties, but also 

on the propagation of the transient THz waveform behind the sample and the detector response. 

We emphasize that relations (4.15) can be applied only when both the fundamental frequency 

ω0 and its higher harmonic frequency mω0 lie within the spectral bandwidth of the used 

detector. Outside this bandwidth, the detector response function D (ω) decreases sharply to 

 
Fig. 4.2. The scheme of detection of the fields transmitted through or emitted from the 

sample. ET(ω0) and ΔE
T
m(mω0) are the field values at the output sample surface. Beyond the 

sample, the fields are propagating through the free space and focusing optics which is 

described by the propagation function P (ω). The electric field then reaches the detector 

with a response function D (ω) which causes a further difference between the incident and 

measured fields. We thus do not detect the field  ET(ω0) and ΔE
T
m(mω0) but the signals 

ST(ω0) and ΔS
T
m(mω0) defined by (4.14). 
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zero and no signal is detected. We note that (4.15) reduces to the form of (3.49) in the regime 

of linear response. 

 Extraction of transport parameters from the nonlinear transmission spectra thus 

requires the knowledge of instrumental functions P (ω) and D (ω). For a spatial Gaussian 

profile of the THz beam and common electro-optic detection, these functions were derived in 

[50]-[52]. Evaluation of the instrumental response was needed e.g. in [65] where mixing of 

frequencies occured. 

4.2 Heterogeneous thin films – monochromatic electric fields 

 Relations (4.11) and (4.15) were derived for a homogeneous photoconductive sample 

and a spatially uniform local electric field Es, and thus spatially uniform local electric current 

density j(Es). Real nanostructures, however, are inherently inhomogeneous with potentially 

complicated morphologies. The incident electric field Einc thus creates a complex spatial 

distribution of local electric fields inside the nanostructure. The individual photoconductive 

constituents become electrically polarized and the local electric field E inside the structure thus 

becomes spatially inhomogeneous. Since individual photoconductive parts may exhibit 

different shapes, sizes and surrounding environment, the local electric field E can be different 

in distinct structures. While this is not a problem for linear response (Section 3), it constitutes 

a challenging issue in nonlinear systems where the response is field-dependent. The task may 

be further complicated by inhomogeneous profile of carrier concentration induced by the 

photoexcitation and possibly by the transient fields emitted from surrounding photoconductive 

parts. The effective transient field transmitted through the entire nanostructure is thus expected 

to be different from the homogeneous one given by (4.11). 

 This problem can be in principle addressed by a suitable nonlinear effective medium 

theory. Here, we expand upon the existing theories describing the nonlinear response of 

inhomogeneous systems [60]-[64]. Since the development of a general approach directly 

applicable to our case is clearly beyond the scope of this work, we will consider the simplest 

situation – a two-component system consisting of non-percolated weakly nonlinear inclusions 

in a matrix with linear behavior. Furthemore, we focus on the geometries which are described 

by the Mawell-Garnett effective medium theory or by the brick-wall model (Section 3.1). 

 First, we recall our discussion (Section 3.1.4) of the spatial distribution of local electric 

fields in the sample. There, we argued that the local field Ep in the photoconductive inclusions 

is directly proportional to the effective electric field Eeff (3.12). The knowledge of the local 

field Ep is then essential as it drives the nonlinear response. For experimental reasons, we wish 

to link the local field Ep with the electric field Einc incident on the sample. Since the effective 

electric field Eeff in the inhomogeneous sample is equivalent to the field Es inside the 

homogeneous slab from the previous section, combining (4.12.2) and (3.12) leads to 
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which constitutes the relation between the fields Einc and Ep inside the inclusions without 

photoexcitation (the field-enhancement Q(ω0) is given by (3.13)). The above relation remains 

valid also for the photoexcited sample, if we replace the Q(ω0) with Qexc(ω0,Δσp
(1)

) given by 

(3.14)1. We emphasize that the argument (ω0,Δσp
(1)

) denotes that the linear photoconductivity 

Δσp
(1)

 is a function of frequency ω0, too.  

 Now, we turn to the effective photoconductivity of the studied system. The first-order 

effective photoconductivity )( 0

)1(

eff  (3.15) is described within the framework of the linear 

theories (Section 3.1). To reflect the notation used in this section, we rewrite (3.15) as 
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 For higher-order transient conductivities, we generalize the results derived in [61]-[63] 

for nonlinear susceptibility in the limit of a weak nonlinearity. In these works, it was shown 

that the effective and microscopic nonlinear response are directly proportional to each other 

and the proportionality constant is given by the local-field correction factor. In our case, the 

nonlinearity is driven by the field Ep and the correction factor thus equals 

the field-enhancement factor (3.14). The condition of the weak nonlinearity means that we 

neglect the frequency mixing between individual nonlinear orders. Finally, we consider that 

there is no conductivity without photoexcitation. Under these assumptions, inspection of 

results from the cited works2 allows us to provide the sought relation between the effective 

nonlinear photoconductivity and the nonlinear photoconductivity of inclusions 
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  (4.18) 

The field-enhancement factors at the fundamental frequencies ωj appear α-times in (4.18) 

(α ≥ 2 is the order of the nonlinearity, i.e. power of the electric field), while the additional 

factor at the resulting frequency of the nonlinearity 


1j
j  appears since the material also 

responds linearly to the field generated by the nonlinearity [61]. In the dilute limit (s ≪ 1), our 

results reduce to the ones from [62] and [63]. 

 We now assess the nonlinear transient transmission for the investigated weakly 

nonlinear system. The equations (4.13) and (4.15) derived for the homogeneous slab remain 

valid if we replace the slab parameters with the effective parameters of the studied structure. 

The substition of (4.18) into (4.15) then yields 

                                                 
1 In Section 3, we denoted the linear photoconductivity by Δσp. Here, we denote it by Δσp

(1)
 to emphasize the 

difference between the linear and the nonlinear response. 
2 This concerns namely the Eq. (5.15) in [61], Eqs. (30) and (33) in [62] and Eqs. (35) and (38) in [63]. 
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Relations (4.19) constitute the main result of this section. They link the macroscopic signals 

ΔS
T

m
 and ST measured in the experiments with the transient conductivities Δσp

(α)
 of the 

photoconductive parts, therefore they enable estimation of the amplitudes of the measured 

signals. We emphasize, that the above relations were derived in the limit of optically thin 
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sample with weak photoexcitation (i.e. the limit kL ≪ αeffL ≪ 1  from Section 3.2). For the 

linear response, formulae (4.19) reduce to (3.49). 

4.3 Heterogeneous thin films – broadband THz pulses 

 Until now, we have assumed monochromatic electric fields. Here, we expand our 

theory to broadband THz pulses Einc(ω). In such case, it is neccesary to consider the frequency 

mixing between individual spectral components of the pulse. The net electric current density 

inside the photoconductive constituents jp(ω) then consists of the linear contribution jp
(1)

(ω) and 

the contribution jp
NL

(ω) of all nonlinear processes with the resulting frequency ω 

 )()()( NL

p

(1)

pp  jjj . (4.20) 

These two contributions read 
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where the sums in (4.21.2) take place over all wave mixings yielding frequency ω and 1/(α!) 

is a degeneracy factor. Analogous relations hold also for the effective current densities jeff(ω),

)((1)

eff j and )(NL

eff j . 

 Using (4.17), (4.21.1) and (3.12) the effective linear current density )((1)

eff j can be 

written as 

 )()()( (1)

p

(1)

eff  jsQj , (4.22) 

and it is thus proportional to the microscopic linear current density jp
(1)

(ω). Regarding the 

effective nonlinear current density )(NL

eff j , we will, for the sake of simplicity, consider the 

second-order nonlinearities. Higher orders can be treated in an analogous way. From (4.21.2), 

the effective second-order current density )((2)

eff j reads 

 )()(),(
2

1
)( 2eff1eff21
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(2)
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21

 
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EEj . (4.23) 

Substitution of (4.18) and (3.12) into the above relation leads to 
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 (4.24) 

Since ω1 + ω2 = ω, we can factor Qexc(ω1 + ω2,Δσp
(1)

) out of the sum and comparison with 

(4.21.2) yields 

 )(),()( (2)

p

)1(

pexc

(2)

eff  jsQj , (4.25) 

where )((2)

p j is the microscopic second-order current density. Identical relation holds for all 

other orders. The effective nonlinear current density is then directly proportional to the 

nonlinear current density in the inclusions 

 )(),()( NL

p

)1(

pexc

NL

eff  jsQj . (4.26) 

The net effective current density jeff is then the sum of the linear (first-order) effective current 

density (4.22) and the nonlinear current density (4.26)  
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This derived relation constitutes a non-trivial result which links the effective electric current 

density with the linear and non-linear components of electric current density in the 

photoconductive parts. 

 We now turn to the discussion of the transient transmission ΔET/ET. Since we consider 

nonlinear processes with the same resulting frequency ω, the generalization of (4.11) yields 

the total transient field ΔET(ω) = ΔE(1)(ω) + ΔENL(ω), where ΔE(1)(ω) is the linear component 

and ΔENL(ω) is the component due to the nonlinearities. These transients are generated by the 

pertinent current densities and read 
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The above equation is valid for waves just leaving the output surface of the sample. 

 The pertinent transient transmissions then follow straightforwardly from the above 

relations by using (4.12) and making substitutions for effective current densities  
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In the above equations, we express the transient transmissions as functions of the electric 

current density jp(ω) and the electric field Ep inside the photoconductive constituents. This is 

convenient for our non-perturbative Monte-Carlo calculations (Section 2.2) where we evaluate 

jp(ω) as a functional of Ep. The formulae (4.29) thus allow us to directly transform the 

calculated spectra into predicted measurable signals. While (4.29.1) describes the signal 

arising from the net current density jp, (4.29.2) and (4.29.3) are the partial signals due to the 

linear and the nonlinear conductivity, respectively.  

 For experiments, it is more convenient to link the transient transmission ΔET/ET with 

the response function of a single carrier. For the linear contribution, it stems from the equations 

(1.2) and (1.3) that the electric current density jp
(1)

(ω) is proportional to the linear mobility of 

carriers μ(1)(ω): jp
(1)

(ω) = Ne0μ
(1)(ω)Ep(ω). Regarding the nonlinear contribution, we introduce 

the net nonlinear mobility μNL(ω) in an analogous way: jp
NL

(ω) = Ne0μ
NL(ω)Ep(ω). We 

emphasize that while the linear mobility μ(1)(ω) does not depend on the electric field from the 

definition, the nonlinear mobility μNL(ω) is a functional of the driving electric field. 

Substitution for the electric current densities in (4.29) then yields 

 

 )()()()()(
)()(

)(

)(

)(

)(

)(

)(

NL

exc

)1(

0exc

21

0

T

NL

T

(1)

T

T





















QQNeLsQ
nn

Z

E

E

E

E

E

E

 (4.30) 

 For monochromatic fields, we discussed the difference between the fields emitted 

directly from the sample and the detected fields (4.14). Here, the transient fields ΔE
T
(ω) and 

the reference wave ET(ω) depend on frequency in the same way. The instrumental functions 

thus cancel each other out and the same relations (4.29) and (4.30) thus hold also for the 

detected signals ΔS
T
(ω)/ST(ω). 

 The developed theory provides a way to determine theoretically the measurable signal 

for broadband THz pulse of arbitrary shape. In the first step, we employ the non-perturbative 

Monte-Carlo calculations which yield the net electric current density jp (4.20). Then, if we 

know the linear conductivity spectrum Δσp
(1)

, we can calculate the linear current density jp
(1)

(ω) 

using (4.21.1). The nonlinear current density is then easily retrieved as jp
NL

(ω) = jp(ω) – jp
(1)

(ω). 

This allows the calculation of the effective current density jeff (4.27) and the related signal 

ΔE
T
/ET (4.29.1). 
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 A significant simplification is achieved in the limit of low photoexcitation 

(i.e. |Δσp
(1)

| ≪ |εpε0ω0| in (3.14)). We can then replace Qexc(ω,Δσp
(1)

) with Q(ω) in the effective 

electric current density jeff(ω) (4.27) which is then directly proportional to the electric current 

density jp(ω) in the photoconductive parts 

 )()()( peff  jsQj . (4.31) 

The total transient transmission ΔET/ET (4.29.1) is then also directly proportional to the local 

current density jp 
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We now express this result in terms of the response function of a single carrier. In analogy 

to linear equations (1.2) and (1.3), we thus introduce a generalized mobility of carriers 

μgen(ω) = jp(ω)/[Ne0Ep(ω)] which is directly proportional to the electric current density1. The 

mobility μgen(ω) contains contributions from both the linear and the nonlinear responses and is 

thus a functional of the driving electric field. The pertinent substitution in (4.32) then yields 
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nn

Z
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. (4.33) 

4.4 Conclusions 

 We analytically solved the nonlinear wave equation for a thin homogeneous slab. This 

allowed us to express the measurable nonlinear transient transmission signal as a function of 

nonlinear photoconductivities Δσp
(α)

 (4.15). Unlike in the linear case, new spectral components 

emerge, therefore the nonlinear transient transmission signals depend on the instrumental 

response functions describing the propagation of THz waves behind the sample and the 

detector response. 

 We further developed a framework for the treatment of inhomogeneous nonlinear 

media. Here, it is important to realize and account for the difference between the electric field 

incident on the sample and the local fields in the constituents of inhomogeneous structure 

(4.16). The principal derived relation is then (4.18) which links the nonlinear effective 

photoconductivity )(

eff

  and the local photoconductivities Δσp
(α)

. This homogenizes the 

problem and thus allows us to substitute the effective photoconductivity into the solution for 

the thin homogeneous slab. As a result, we can express the measurable nonlinear transient 

transmission directly as a function of the local photoconductivities (4.19). 

 A major simplification is achieved if we consider the total nonlinear response (i.e. we 

disregard the decomposition into the nonlinear photoconductivities Δσ(α)): the effective 

                                                 
1 In the general case (4.30), a definition of a single generalized charge mobility μgen is not straightforward as the 

depolarization fields influence the linear and the nonlinear responses in a different way. 
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nonlinear electric current density is then directly proportional to the local one (4.26). Since the 

nonlinearity can generate new spectral components, we have to distinguish the measurable 

signals within and above the incident pulse bandwidth. Within the incident pulse bandwidth, 

we can define nonlinear transient transmission (4.30) which does not depend on the 

instrumental response behind the sample and detector response functions. Outside the 

bandwidth of pulses transmitted through an unphotoexcited sample, the main output is the 

transient wave which is distorted by the instrumental response functions (no reference 

measurement is possible)1. The formulae (4.29) then form a basis for our study of nonlinear 

response of semiconductor nanostructures in Section 7.  

 For a quantitative analysis of real experiments, it is essential to determine the shape 

and the amplitude of the THz electric pulse incident on the structure. We point out, however, 

that the real pulse shape would be necessarily different from the detected one due to the 

detector response function D (ω) and possibly also due to the reshaping due to propagation. 

A careful deconvolution of the detector response measured in the place of a sample would be 

required to retrieve the real THz electric field [49]. 

 

  

                                                 
1 In practice, the detector bandwidth would have to be considerably wider than the bandwidth of the THz emitter. 

For example, emitters based on ZnTe deliver broadband pulses with frequencies from ~ 0.1 THz to ~ 2.5 THz 

while a GaP electro-optic sensor allows detection of frequencies up to ~ 6 THz [66]. 
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5. Linear THz conductivity of confined electron gas 

 In Section 3, we described how to link the microscopic linear conductivity with the 

effective response of nanostructured systems and the corresponding measurable quantities. 

Here, we discuss the fundamental aspects of linear THz conductivity of a confined electron 

gas. We focus  just on the band-like transport (we do not consider other mechanisms such as 

hopping [67]). The nonlinear THz conductivity of confined charges is covered in Section 6. 

 In most bulk semiconductors, the linear THz (photo)conductivity σ of conduction-band 

electrons is well described by the Drude model [5],[68],[69] which assumes a ballistic motion 

of charges interrupted by scattering events randomizing the carrier velocity 

 
s
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, (5.1) 

where N is the concentration of carriers, m is the carrier effective mass, τs is the bulk scattering 

time and σdc is the dc conductivity. Examples of Drude spectra are shown in Fig. 5.1. 

In nanostructured systems (i.e. for confined carriers), however, linear THz conductivity 

spectra generally differ from the Drude model due to the presence of confining potential. 

For example, no steady electric current can flow through an isolated object and thus the dc 

conductivity σdc = 0 which inevitably affects also the rest of THz spectrum. On a semi-classical 

level, this problem can be generally treated by the Monte-Carlo calculations from Section 2. 

However, these are often time-consuming and development of simpler models is thus desired. 

 The linear THz conductivity spectrum of confined non-degenerate electron gas exhibits 

a single very broad resonance [29],[70]-[82]. We will review theoretical approaches for this 

well-documented case in Section 5.1. Then, we introduce our model describing the response 

of confined degenerate electron gas and we show that a series of sharp resonances may emerge 

in the conductivity spectrum (Section 5.2). We further show that these resonances couple with 

the plasmon in isolated systems; this coupling is qualitatively different in one-, two- and 

 

Fig. 5.1. Illustration of the Drude model (5.1) for several values of the scattering time τs. 

The real part (a) is positive and exhibits a Drude peak with width 1/τs  located at zero 

frequency. The conductivity decrease reflects the inertia of charges. The imaginary part (b) 

is positive and peaks at frequency 1/(2πτs). 
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three-dimensional structures (Section 5.3). Finally, we employ the Monte-Carlo calculations 

to show that complicated features appear in conductivity spectra of systems with non-trivial 

shapes (Section 5.4). Our results concerning the degenerate electron gas and the chaotic 

systems were published in [83] and [84], respectively.  

 We note, that we represent the results in the form of either the conductivity σ or the 

charge mobility μ. These quantities are linked together by Eq. (1.3). The presented results are 

also valid for the photoexcited systems (we just replace the conductivity σ with the 

photoconductivity Δσ). 

5.1 Non-degenerate electron gas 

 Majority of experimental works has been realized under conditions for which the 

confined carriers can be described by Maxwell-Boltzmann statistics (e.g. [5],[42],[70]-[82]). 

The linear THz conductivity spectrum then exhibits a single broad resonance (Fig. 5.2) with 

characteristic features in the real and imaginary parts – at low frequencies, the real part is 

positive and slowly increases while at the same time, the imaginary part is negative and 

decreases.  

 In the literature, the considered response is often reproduced in terms of the 

phenomenological Drude-Smith model [70] 

 

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
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


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DSDS

DS

i1
1

i1
)(

c
, (5.2) 

where σDS characterizes the conductivity amplitude, τDS is the Drude-Smith scattering time 

(which can generally differ from the bulk scattering time τs) and c is a parameter which 

describes the level of carrier localization within nanostructure. The parameter c may have any 

value from the interval −1,0. For c = 0, formula (5.2) simplifies into the Drude model (5.1). 

For c = −1, the dc conductivity is then fully suppressed. While the Drude-Smith model (5.2) 

can reproduce linear THz conductivity spectra of a large variety of materials 

(e.g. [70],[85],[86]), there are several drawbacks. Firstly, this model assumes that the first 

scattering event is different from the others and thus it does not respect the homogeneity of 

time (nevertheless, this assumption was supported in [71], where it was argued that in a 

spherical nanoparticle with dominating charge backscattering at its boundary, the charge 

velocity is perfectly randomized upon the second and further scattering events). Furthemore, 

this model is purely phenomenological and the microscopic interpretation of parameters τDS 

and c is not clear (see e.g. a discussion in [27]). Most importantly, Eq. (5.2) does not explicitly 

depend on the important parameters such as structure dimensions or shape. These parameters 

are then encoded in an unknown way in the phenomenological parameters τDS and c.  

 In [29] and [72], it was discussed that the low-frequency behavior of the conductivity 

is caused by a diffusive restoring current of scattered charges. On this basis, a semi-classical 

modified Drude-Smith formula for completely isolated nanoparticles was derived in [29] 
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where τ' is the effective scattering time and τdiff is the diffusion time which specifies how long 

does the carrier need to diffuse across the nanoparticle. These two times read 

 

1

th

s

21

















l

v
 (5.4.1) 

 













thsth

diff 2
12 v

l

v

l
, (5.4.2) 

where mTkv /Bth   is the thermal velocity and l is the confining length. The "original" 

Drude-Smith model (5.2) is then a special case of the above equation (for τdiff  = τ').  

 For a thorough understanding of smaller structures, a quantum-mechanical treatment 

is necessary [72]. In [73], it was shown that the conductivity of a non-degenerate electron gas 

confined in an infinitely deep rectangular potential well reads 

 

Fig. 5.2. Examples of the charge mobility spectra for various confining structures (outer 

diameter = 140 nm for all nanostructures, nanotube wall thickness = 10 mm, "Nanoregions" 

identify nanotube wall divided into cubic regions with dimensions 10 nm (see Section 8.3.1, 

Fig. 8.5(b)). The mobility spectra clearly deviate from the bulk response for low 

frequencies: the real parts are positive and increase with the frequency while the imaginary 

part is initially negative. All the spectra were calculated using the Monte-Carlo method 

based on Kubo formalism with following parameters: τs = 10 fs, m = me, T = 300 K. 
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where ΓD = Ddiffπ
2/l2 is the diffusion rate and ξp is the dimensioneless parameter 

ξp = (ω + iγ)tth/p (where thth 2/ vlt  ).  The complex scaled complementary error function 

erfcx is defined in terms of standard error function erf as 

  zzz erf 1)exp(erfcx  2  , (5.6) 

The absolute value of the terms under the sum in (5.5) rapidly decreases with increasing p and 

often it is sufficient to consider p ≤ 5. If we approximate the complementary error function for 

large |z| as 
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the series in (5.5) can be further summed up and the result has the form of the modified 

Drude-Smith model (5.3) [2], although with different diffusion time τdiff [73] 
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5.2 Degenerate electron gas confined in infinitely deep rectangular well 

 Here, we investigate a linear terahertz conductivity of a degenerate electron gas 

(kBT ≪ EF, implying a low temperature or elevated Fermi energy) confined in an infinitely 

deep rectangular potential well (Fig. 5.3(a)). We consider ballistic (or close to ballistic, i.e. we 

assume very long bulk scatterin time τs) motion of non-interacting carriers. In the first part, we 

treat this problem in both the semi-classical and quantum-mechanical way and we show that a 

series of geometrical resonances emerges in the mobility spectrum. This also allows us to 

interpret the response of non-degenerate electron gas as a coalescence of the resonances into a 

single broad-band. We published these results in [83]. 

5.2.1 Semi-classical calculations 

 Our theoretical analysis is based on the semi-classical Kubo formula (2.4). We consider 

very long scattering times τs (e.g. τs = 10 ps was reported for high-quality GaAs [88]) which 

favor the role of carrier interaction with well boundaries over bulk scattering. We assume that 

the carriers reflect from the well boundary elastically and specularly and we thus neglect 

a possible influence of surface roughness [89]. 

 We start with the one-dimensional (1D) well (Fig. 5.3(a)). Geometrically, this problem 

is equivalent to carriers bouncing between two straight parallel planes. In the limit T → 0 K, 

the distribution (−𝜕F/𝜕E) (see (2.2)) reduces to Dirac delta function and thus only carriers 

initially moving with Fermi velocity vF contribute to the autocorrelation function in (2.4). The 

velocity vx of conducting charges thus periodically switches between +vF and −vF as the carriers 
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bounce between the planes. The period of this motion is the round-trip time tr = 2l/vF where l 

is the distance between the planes. The product vx(0)vx(t) in the autocorrelation function is then 

a square wave oscillating between ±vF

2
 with period tr (Fig. 5.4(a)). The phase shift of this square 

wave depends on the initial positions in the phase space and it may have any value just from 

the interval 0,π) as vx

2
(0) is always positive (Fig. 5.4(b)). The averaging over all initial 

positions then yields a triangle wave shape Λ(t/tr) of the autocorrelation function (Figs. 5.4(c) 

and 5.5(a); the symbol Λ(x) denotes a triangle function oscillating between +1 and −1 with 

period 1). After substitution into the Kubo formula (2.4) we obtain the corresponding charge 

mobility (without bulk scattering) 
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Fig. 5.3. (a) Schematics of the charge motion in an infinitely deep rectangular potential 

wells for Fermi-Dirac (F-D) and Maxwell-Boltzmann (M-B) statistics. For Fermi-Dirac 

statistics, only carriers with velocity close to the Fermi velocity vF contribute to the 

conductivity. In case of Maxwell-Boltzmann statistics, the conductive charges exhibit a 

broad distribution of velocities. (b),(c) Geometries used for the calculations of THz 

conductivity in 2D (panel (b)) and 3D (panel (c)) cases. We assume that charge reflections 

at the boundaries are elastic and specular. Therefore, the presence/absence of enclosement 

in the y- and z- directions does not affect the response in the x-direction. 
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The real part of mobility (5.9.1) consists of a sum of Dirac delta functions δ which are located 

at the fundamental frequency corresponding to the round-trip movement with frequency 

fr = 1/tr and its odd harmonics (Fig. 5.5(b)). The higher harmonics originate from the 

anharmonic shape of the confining potential, which causes an anharmonic character of carrier 

trajectories. In the quantum-mechanical approach (Section 5.2.2), we will show that these 

harmonics are linked to dipolar transitions to higher unoccupied levels. 

 In a two-dimensional (2D) well, the charges can move at an oblique angle θ with 

respect to the well boundaries (Fig. 5.3(b)). This prolongs the round-trip time compared to the 

1D case which now reads tr/cos θ. The velocity component parallel with the probing electric 

field is then a projection of the Fermi velocity to the x-axis (perpendicular to the confining 

planes), i.e. vx(0) = vFcos θ. In analogy to the 1D well, averaging over all initial positions leads 

to a triangular time evolution of velocity 

 

Fig. 5.4. Derivation of the autocorrelation function for degenerate electron gas in a 1D 

potential well. A carrier bounces between two straight parallel planes; for a single charge, 

the product vx(0)vx(t) then takes form of a square wave with phase shift determined by the 

initial charge position and period given by the round-trip time tr of carriers in the well (a). 

The averaging takes place over all possible initial positions which are represented by 

different phase shifts (a few of them are illustrated in panel (b)). Integration over all possible 

initial phases of movement then yields the triangle wave shape of the autocorrelation 

function (c). 
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To find the velocity autocorrelation function in the time-domain, we have to average over all 

possible directions of movement (represented by θ ranging from 0 to 2π) 

 

Fig. 5.5. (a) Velocity autocorrelation functions in the time-domain of carriers bouncing in 

a multidimensional infinitely deep rectangular potential well with width l = 300 nm. The 

carriers were described either with Fermi-Dirac statistics (F-D) (vF = 1000 m/s, 

EF = 0.20 eV, T = 0 K) or Maxwell-Boltzmann statistics (M-B) (to allow a direct 

comparison, the mean square velocity in the Maxwell-Boltzmann statistics is set to vF

2
, 

i.e. T = 4620 K; to transfer the results towards realistic temperatures, the frequency would 

need to be scaled with √𝑇 ). (b) Mobility spectra corresponding to the velocity 

autocorrelation functions from panel (a) calculated using the Kubo formula (2.4). For the 

purpose of plotting, we phenomenologically introduced a bulk scattering time τs = 1 ns 

(i.e. the triangle wave from panel (a) is multiplied by exp(-t/τs)). The Dirac delta functions 

are then replaced by a narrow Lorentzians for 1D Fermi-Dirac statistics and also the 

divergences are prevented in the 2D case. The unrealistically long scattering time allows us 

to clearly distinguish the intrinsic damping in the 2D and 3D systems (picosecond time 

scale) from the artificial extrinsic losses (decay time of 1 ns). Other parameters: m = 0.07me. 
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The oscillations of the above autocorrelation function (the inner integral) are damped due to 

dephasing of the triangle functions corresponding to carriers moving under different angles θ 

(Fig. 5.5(a)). Substitution of (5.11) into the Kubo formula (2.4) and considering that 

EF = mvF

2
/2 then yields the mobility of carriers 

  
 

 












0

2

0

2

r

20 ddcoscos
1

)( t
t

t
e

m

e
f ift

xx
. (5.12) 

As in the 1D case, the mobility spectrum contains a series of odd harmonics with fundamental 

frequency fr (Fig. 5.5(b)). However, the corresponding peaks are intrinsically broadened due 

to the damped character of the autocorrelation function (intrinsic peak broadening due to 

a distribution of trajectory lenghts was predicted also for nanodiscs [89],[90]). The 

low-frequency tails then emerge due to carriers with non-zero velocity component along the 

boundaries. The round-trip of such carriers lasts necessarily longer which implies a lower 

bouncing frequency. Similar broadening towards higher frequencies cannot appear since no 

trajectory has a period shorter than tr. Instead, the diverging conductivity at the frequency 

fr = 1/tr is followed by a sharp cut-off. 

 For carriers confined in three-dimensional (3D) well, there is an additional degree of 

freedom (Fig. 5.3(a)). The transformation into spherical coordinates then reveals that both the 

carrier round-trip time tr and the x-component of velocity vx are determined just by the polar 

angle θ. However, the additional degree of freedom appears as the Jacobian sin θ in the 

coordinate transformation and the autocorrelation function thus reads  
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where φ is the azimuthal angle. Trivial integrations followed by the substitution into the Kubo 

formula (2.4) then yield 
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The time-domain velocity autocorrelation and the corresponding mobility spectrum exhibit 

similar features as in the 2D case. The additional degree of freedom, however, leads to 

a broader distribution of the x-components of velocity vx. Therefore, the oscillations in the 
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time-domain autocorrelation are damped faster (Fig. 5.5(a)). The mobility then does not 

diverge at the frequency fr and its odd harmonics and there are just discontinuities. 

 For a given well width l, the resonant frequency fr depends just on the Fermi velocity 

vF and thus also on the charge density n. In the semi-classical limit, the density of states is 

continuous and thus vF ~ n1/D where D is the dimension. All the resonant frequencies in our 

model are then directly proportional to n1/D (Fig. 5.10(a)-(c)). The proportionality constant is 

determined just by the geometry and scales with the reciprocal site of the nanostructure. 

For this reason, we call these resonances "geometrical". We note that the 1/D-power 

dependence is universal; it does not depend on the particular nanostructure shape. 

 Within the developed framework, we now revisit the calculations of the conductivity 

of confined non-degenerate electron gas. In such system, the conducting carriers exhibit 

a broad distribution of thermal velocities (according to the Maxwell-Boltzmann statistics). 

Averaging over the velocity amplitudes is then required and the carrier mobility thus reads 
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Fig. 5.6. Mobility spectra of a degenerate electron gas confined in an infinitely deep 

rectangular potential well in the presence of finite bulk scattering time τs. Following 

parameters were considered: l = 300 nm, vF = 1000 m/s, EF = 0.20 eV, T = 0 K, m = 0.07me. 

The round-trip time is then tr = 600 fs. Individual geometrical resonances can be resolved 

for τs as short as one half of tr. 
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The inner integral is the time-domain velocity autocorrelation exhibiting very rapidly damped 

oscillations (Fig. 5.5(a)). The mobility spectrum is then very broad and it is essentially identical 

to the behavior of confined charges described in Section 5.1. This emphasizes the key role of 

the broad velocity distribution. Even though there is no bulk scattering, the effective damping 

and associated resonance width induced by the carrier dephasing are large enough to form 

a single broad absorption band. 

 We now discuss the conditions under which we can clearly resolve individual 

geometrical resonances. It is obvious that the electron gas must be degenerate (i.e. kBT ≪  EF). 

In such case, the response is dominated by carriers which move perpendicularly to the surface, 

while the influence of carriers moving under an oblique angle θ (and thus contributing to the 

low-frequency tails) is suppressed by the factors cos2θ and cos2θ sin θ in 2D (5.12) and 3D 

(5.14) case, respectively. In the non-degenerate electron gas, however, the entire distribution 

of velocities contributes (independently of dimension) and the mobility spectrum is dominated 

by a single broad band. The weak background above this broad band (f ≳ 6 THz in Fig. 5.5(b)) 

can be attributed to the onset of the high harmonics. 

 The degeneracy of the electron gas, however, is not a sufficient condition for clear 

resolution of individual geometrical resonances. In real materials, the spectra would be further 

smeared due to the inherent bulk scattering and inhomogeneous broadening. Our calculations 

show, that the scattering time τs exceeding one half of the round-trip time tr is required 

(Fig. 5.6). This condition can be easily satisified in 2DEG-based nanostructures at low 

temperature (long τs) or in nanometer-sized metallic particles (short tr due to high Fermi 

velocity vF). The large spectral separation of individual geometrical resonances also weakens 

the demand on monodispersity. We estimate that the fundamental and third harmonic 

resonance should be distinguished even for a size distribution with full width reaching 100% 

of the man value. Considerably better structures can be routinely prepared by 

lithography-based methods [91],[92].  

5.2.2 Quantum-mechanical calculations 

 Here, we treat the conductivity of degenerate electron gas confined in a rectangular 

potential well (Fig. 5.3(a)) using quantum-mechanical approach. This allows us to discuss the 

limits of the semi-classical model developed in previous section.  

 To calculate the conductivity, we will recall the approach developed in [72]. We first 

consider the well-known Kubo-Greenwood formula for conductivity in a relaxation time 

approximation [82] 
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where p̂ is the momentum operator, e


 is the unit vector pointing in the direction of the probing 

electric field, ψi and Ei are the wave function and energy corresponding to the i-th state, indices 

j and k denote the initial and final states, respectively, F(E) is the distribution function, andV 
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is the volume of the nanocrystal. The term ħ/τ then accounts for all scattering processes and 

ensures a finite line width. The above formula can be safely applied for optical frequencies. 

In the THz range, however, (5.16) always yields a non-zero dc conductivity which is 

unphysical for finite isolated objects. In [72], a restoring diffusion current of scattered charges 

was considered and an appropriate correction to quantum Kubo formula was found. 

The conductivity of electrons confined in a three-dimensional infinitely deep rectangular well 

(the probing electric field is polarized along the x-axis) then reads [72] 
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where j = (jx, jy, jz) and k = (kx, ky, kz) are multi-indices with positive integers ji and ki (i = x,y,z) 

denoting the quantum states of electrons in the appropriate directions, fi is the occupation 

of state i (given by Maxwell-Boltzmann or Fermi-Dirac statistics), l is the well width in the 

x-direction, γ is the scattering rate (related to the scattering time τs as γ = 1/τs) and 

kjjk xexe  ˆ
00  is the dipole matrix element. Ddiff is the diffusion constant which is given 

by the Einstein's relation Ddiff = kBT/(mγ) (for degenerate electron gas, kBT should be replaced 

by N(𝜕𝐸F /𝜕N) where N is the concentration of carriers in the conduction band) [87]. 

The energy levels in the infinitely deep rectangular quantum well are 
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The angular frequency ωjk corresponding to the transition between two states j and k then reads 
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For large nanocrystals in the semi-classical limit, it was shown in [72] that (5.17) yields same 

results as the Monte-Carlo calculations based on Kubo formalism. 

 In order to resolve the geometrical resonances in the mobility spectra, we have to meet 

generally two conditions. First, the nanostructure size should significantly exceed the 

de Broglie wavelength of electrons at Fermi level. In such case, the Fermi velocity vF satisfies  
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h
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where h is the Planck constant. Since vF is directly proportional to the power of charge density 

n (vF ~ n1/D, where D is the dimension), the above relation implies that the semi-classical 

approach can be applied only for high enough carrier concentrations. As an example, we 

consider potential wells with width l = 300 nm, for which we find 
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Second, the quantum transitions should be smeared enough so that density of states could be 

regarded as a continuum. This is achieved for scattering times τs for which h/τs is at least 

comparable with the energy-level spacing around EF. 

 In Fig. 5.7, we show that the first geometrical resonance is clearly resolved even close 

to the critical concentrations (5.21) in the quantum-mechanical results. Its frequency then 

coincides with that predicted in the semi-classical model (for higher charge densities, they 

match each other perfectly). Higher-order geometrical resonances are than resolvable for 

higher charge densities (we can identify them by comparison with the semi-classical results). 

The corresponding peaks split due to the discrete character of density of states. This becomes 

suppressed with increasing density of carriers or for a stronger damping which would smear 

the individual transition lines. In this sense, we thus confirm the existence of higher-order 

geometrical resonances also in the quantum-mechanical view. We note that the differences 

 

Fig. 5.7. (a)-(c) Comparison of real parts of mobility spectra calculated using the quantum 

formula (5.17) (thin solid lines) and the semi-classical model from Section 5.2.1 

(Eqs. (5.9.1), (5.12) and (5.14); thick dashed lines) for various charge densities n 

(l = 300 nm, T = 0 K, τs = 10 ps, m = 0.07me). (d)-(f) Comparison of the frequency of the 

first peak from panels (a)-(c) (symbols) and the frequency of the fundamental geometrical 

resonance (~ n1/D where D is dimension (Fig. 5.10)) in the semi-clasical description (lines).  
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between semi-classical and quantum description are less pronounced for 3D well due to higher 

density of states. 

 We now further discuss the origin of the predicted peaks from the quantum-mechaical 

view. The frequencies corresponding to the transition between quantum energy levels in the 

infinitely deep rectangular well are given by (5.19). The dipole selection rules then allow just 

the transitions from the state kx to the state jx = kx + 1 + 2q, where q is a non-negative integer. 

The transition frequency can be thus written as 

 )12)(122(
4 2




 qqk
ml

f xjk


. (5.22) 

At zero temperature, the states are occupied up to the Fermi energy which thus determines 

the highest value of kx. For large structure size l, the states are dense and approach continuum. 

Degeneracy of the electron gas then implies large value of such kx. Dipole matrix elements 

rapidly decrease with increasing q and thus only transitions close to the Fermi level contribute 

to the response (i.e. q ≪ kx, jx). We can thus approximate 2kx + 2q +1 by 2kx and find 

 )12(
2

F  q
l

v
f jk , (5.23) 

which is equivalent to the semi-classical result. The odd harmonics accompanying the 

semi-classical motion thus have their origin in quantum transitions to higher energy levels. 

5.3 Coupling between geometrical and plasmonic resonances 

 The conductivities calculated in Section 5.2.1 describe the response to the local probing 

electric field. As we discussed in Section 3, however, the nanostructures are inherently 

inhomogeneous systems where the depolarization fields cause the local field to be different 

from the applied one. The measured (effective) spectra then generally differ from the local 

conductivity spectra (Section 3.2). We now investigate how does the effective medium 

influence the geometrical resonances. For the sake of simplicity, we will use the semi-classical 

description of local conductivity from previous section. We published these results in [83]. 

 In Section 3.1.3, we discussed that non-existence of percolation (in the direction of the 

polarization of the probing electric field) leads to a build-up of a plasmonic resonance in the 

effective conductivity spectrum. Qualitatively, this behavior is identical for any non-percolated 

morphology (particular layout would affect just quantitative properties). Therefore, we 

consider the structures from Fig. 5.8(a)-(c) which consist of blocks filled with nanostructures 

(surrounded by infinitesimally thin isolating barriers) separated by insulating layers with finite 

thickness. There is obviously no percolation in the direction of the probing electric field 

(x-direction) and the symmetry further ensures that there are no induced net fields in the y- and 

z-directions. We can thus equivalently consider a structure consisting of alternating conductive 

and nonconductive laterally infinite blocks (Fig. 5.8(d)) which is described by the brick-wall 

model (Section 3.1.2). In 2D and 1D case, we have to additionaly consider the number 

of nanosheets per unit length η2 and the number of nanowires per unit area η1, respectively. 
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These parameters (together with the carrier concentration in the nanostructures) control 

at which (volume) charge density the plasmonic resonance meets the geometrical one. 

 We assume that the nonconductive parts have a purely real constant permittivity εp. 

The permittivity of the conductive parts is considered in the form εp + ie0Nμxx(f,n)/(2πfε0). 

Here, N is the average number of charges per unit volume of the block, whereas n is the number 

of charges per unit length, surface and volume in one, two and three dimensions, respectively. 

In 3D case, obviously N = n. For 2D and 1D nanostructures, N = η
2
n and N = η

1
n, respectively. 

The effective conductivity σeff of the structure is given by Eq. (3.10). We further represent the 

results in the form of normalized effective conductivity σeff/e0N which describes effective 

response of a single carrier (i.e. σeff/e0N can be identified with the electron mobility in 

homogeneous systems). The plasma frequency fpl is controlled by the concentration N and it 

reads [33] 

 

Fig. 5.8. Scheme of structures used for the study of coupling between geometrical and 

plasmonic resonances. Mutually isolated conducting 1D, 2D and 3D nanostructures 

(orange) are separated by thick nonconductive blocks (gray, εp = 12.6) (a)-(c). The 

percolation along the direction of the probing field is broken which allows the plasmonic 

resonance to build up. The effective response of all these geometries is equivalent to the 

structure in (d) which consists of alternating conducting (thickness l) and nonconductive 

blocks. The blocks are infinite in the lateral directions. Such structure is then described 

within the brick-wall model (i.e. analogy with capacitors connected in series; Section 3.1.2). 

To guarantee the correct filling factor s of the conducting material, we have to scale the 

thickness of nonconductive blocks by factor (1−s)/s. 
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where s is the filling factor of conducting material. 

 For large nanostructures (i.e. l → ∞), the local conductivity approaches the Drude 

model (5.1) (Fig. 5.9(a)) – there is a peak at the zero frequency independently of charge 

density. In the effective conductivity, this peak is preserved just in the limit N → 0 while for 

higher N, the spectrum is dominated by the plasmonic resonance with the frequency following 

N1/2-dependence (Fig. 5.9(c)). This behavior was already discussed in [32].  

 Response of confined non-degenerate electron gas exhibits similar behavior. The 

geometrical resonance in the local conductivity does not depend on the carrier density 

(Fig. 5.9(b)). In the effective conductivity (Fig. 5.9(d)), this broad geometrical resonance 

dominates at low charge densities. The plasmonic resonance follows the N1/2-dependence and 

takes over at higher carrier densities. 

 

Fig. 5.9. (a) Drude mobility spectrum (5.1) (nanostructure size  l → ∞) exhibits a peak 

at zero frequency. The spectrum shape does not depend on the carrier density n. (b) Mobility 

spectrum μxx of non-degenerate electron gas confined in an infinitely deep rectangular 

potential well (width l = 300 nm) calculated using (5.15). (c),(d) Normalized effective 

conductivities of the structure from Fig. 5.8(d) corresponding to mobilities from panels (a) 

and (b), respectively. Solid red lines serve as a guide for the eye for the resonances 

(represented by the maxima of |Δσ|) – the parts following the N1/2-dependence represent the 

plasmonic resonance. Following parameters were considered: T = 4620 K, τs = 10 ps, 

s = 0.5, m = 0.07me. In panel (d), the density of nanowires is η1 = 1011 cm-2. All panels show 

the amplitudes of the complex spectra. 
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 For degenerate electron gas (Section 5.2.1), the frequency fr of geometrical resonances 

in local conductivity is directly proportional to n1/D (Fig. 5.10(a)-(c)). The plasmonic frequency 

fpl, however, is directly proportional to N1/2. The effective conductivity thus exhibits clear 

signatures of a coupling between the geometrical and plasmonic resonances (Fig. 5.10(d)-(f)). 

In the 3D case (Fig. 5.10 (f)), individual geometrical resonances exist for low carrier 

concentrations and they are not influenced by the plasmonic resonance. With increasing carrier 

density, mixing with the plasmonic mode becomes important. The plasmonic resonance then 

takes completely over at high concentrations. This behavior is similar to the one observed for 

local Drude response and non-degenerate electron gas. In 1D and 2D case, however, this 

coupling is strikingly different.  

 In 1D systems, it is the plasmonic resonance which dominates for low charge densities 

(Fig. 5.10(d)). With increasing concentration, mixed modes appear and they successively 

transform into the geometrical modes at high concentrations.  

 The 2D systems are then specific since both the geometrical and plasmonic resonances 

depend on the charge density in the same manner. The resonant frequencies of the mixed 

modes thus keep the square-root dependence on the carrier concentration. In comparison with 

 

Fig. 5.10. (a)-(c) Mobilities of D-dimensional degenerate electron gas confined in an 

infinitely deep rectangular potential well with width l = 300 nm (T = 0 K, τs = 10 ps, 

m = 0.07me). The geometrical resonant frequencies are directly proportional to the n1/D. 

(d)-(f) Normalized effective conductivities of the structure from Fig. 5.8(d) corresponding 

to the mobilities from panels (a)-(c). Solid red lines serve as a guide for the eye to indicate 

the behavior of a few lowest resonances – the parts following N1/2-dependence represent the 

plasmonic resonance while those with n1/D-trend represent the geometrical modes. 

In panel (d), the density of nanowires η1 = 1012 cm-2 was considered. The density of 

nanosheets in panel (e) is η2 = 105 cm-1. The filling factor is s = 0.5 in panels (d) and (e), 

and  s = 0.944 in panel (f).  All panels show the amplitudes of the complex spectra. 
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the geometrical resonances in the local conductivity, the mixed effective resonances are only 

scaled (shifted in the logarithmic scale in Fig. 5.10(e)) and their line shape is altered. To further 

understand this mixing, we investigate the dependence on the density of nanosheets η2 

(Fig. 5.11). In the effective conductivity, the geometrical modes exist for small nanosheet 

densities. For higher densities η2, these modes then progressively transform into a single 

plasmonic resonance. 

 The first geometrical mode and the plasmonic mode cross at the carrier density for 

which the corresponding frequencies are equal. These crossover charge densities ncross read 

 
0

24

2

0

p

2

1
cross

4
)1(











e
s

ml
n        for 1D nanostructures, (5.25.1) 

 
6

0

3

0

610

3

3

2

p

cross

9

)1(

1

esml
n












 



       for 3D nanostructures. (5.25.2) 

The above relations show that the crossover is controlled by a large number of parameters (m, 

s, l, εp and η1). This allows us to tune ncross and the corresponding frequency as desired. 

Importantly, this permits to find such material and conditions for which the assumptions of 

semi-classical description are satisfied. We note that in real situtations, we would also need to 

consider the dependence of scattering time on the charge density and the temperature. This 

 

Fig. 5.11. Amplitudes of complex local and effective conductivity of confined 2D 

degenerate electron gas as a function of the density of nanosheets η2. (a) Mobility spectrum 

does not depend on the nanosheet density η2 (it varies just with carrier density in the 

nanosheets n). (b) Normalized effective conductivity of the structure from Fig. 5.8(d) 

corresponding to the mobility from panel (a). Solid red lines serve as a guide for the eye to 

indicate the behavior of the three lowest resonances – the parts following N1/2 trend 

represent the plasmonic mode while the constant parts (i.e. independent of η2) represent the 

geometrical modes. Following parameters were considered: l = 300 nm, n = 1012 cm-2, 

s = 0.5, τs = 10 ps, m = 0.07me. 
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time has to be long enough to resolve the resonances, and at the same time sufficiently short 

to avoid the dominance of quantum effects. 

5.4 Degenerate electron gas confined in further model 2D nanostructures 

 In this section, we calculate the linear terahertz conductivity of degenerate electron gas 

confined in various further 2D model nanostructures (periodically perturbed parallel planes, 

and chaotic behavior in oval Bunimovich stadium [93] and Lorentz gas potential [94]) using 

the Monte-Carlo calculations based on Kubo formalism (Section 2.1). We thus describe the 

response just at the semi-classical level (complex quantum effects were described e.g. for 2D 

nanodiscs in [90]). As previously, we assume a close to ballistic motion of non-interacting 

carriers (i.e. very long scattering times). This favors the influence of interaction with 

nanostructure boundaries over the bulk scattering and thus allows to resolve distinct features 

in the conductivity spectra. Also, we assume that the carriers reflect elastically and specularly 

from the boundary. We published these results in [84]. 

 We first investigate a 2D potential well with boundaries periodically perturbed by 

eliptically curved segments (Fig. 5.12(a)). The geometrical resonances observed for 

 

Fig. 5.12. (a) Scheme of the 2D well with periodically perturbed boundaries. The boundary 

segments are eliptically curved and the difference between the longest and shortest distance 

between boundaries is 0.1 nm. (b) Mobility spectrum μxx corresponding to carriers bouncing 

between the curved planes from (a). Despite the perturbation, the geometrical resonances at 

the round-trip frequency fr and its odd harmonics (Section 5.2.1) are clearly resolved. (c) 

Detail of the low-frequency tail of the fundamental geometrical resonance. The arrows 

indicate secondary resonances for given pitch q (5.26). The mobility spectrum was assessed 

using the Monte-Carlo calculations based on Kubo formalism. Following parameters were 

considered: vF = 1000 m/s, EF = 0.20 eV, T = 4 K, τs = 1 ns, m = 0.07me. 
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unperturbed rectangular well (Fig. 5.5(b)) are quite stable with respect to the perturbation and 

remain clearly resolved (Fig. 5.12(b)). However, a careful examination reveals a presence of a 

fine structure of the low-frequency tail (Fig. 5.12(c)). We provide the following explanation. 

The concave parts of the boundaries focus charge trajectories towards stable periodic orbits. 

These stable pathways are characterized by frequencies 

 
22

F

)(2 qal

v
f


 , (5.26)  

where l is the distance between the planes, a is the period of the curvature (Fig. 5.12(a)) and 

the rational number q describes the pitch of the motion. The narrow peaks in the low-frequency 

tail then appear at the above frequencies. Trajectories close to these periodic orbits rapidly 

converge to these stable pathways. Therefore, the conductivity is depleted close to the 

frequencies (5.26) and side minima around the peaks appear (Fig. 5.12(c)). This example 

shows, that even a very small perturbation can lead to presence of new spectral features 

(in Fig. 5.12, the difference between the longest and shortest between the boundaries is just 

0.1 nm, compared to the 100-nm characteristic size). 

 Much more complicated conductivity spectra are expected for systems with chaotic 

behavior where a very complex charge motion may occur. We start with the Bunimovich 

 

Fig. 5.13. (a),(b) Oval geometry with an example of chaotic thermal trajectory (a) and its 

marked sections (b). (c),(d) Real and imaginary parts of the mobility spectra μxx and  μyy of 

degenerate electron gas confined in the geometry from panel (a). The spectra were 

calculated using the Monte-Carlo method based on Kubo formalism (vF = 1000 m/s, 

EF = 0.20 eV, T = 4 K, τs = 1 ns, m = 0.07me). (e),(f) The windowed Fourier transforms of 

the velocity components vx(t) and vy(t) corresponding to the chaotic trajectory from 

panel (a). The arrow colors match the trajectory sections in panel (b). 
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stadium (Fig. 5.13) [93]. The mobility tensor component μyy corresponds mainly to the 

bouncing of carriers between the vertical planes. Its spectrum (Fig. 5.13(c),(d)) is then similar 

to that of the 2D rectangular well (Fig. 5.5(b)) as it also exhibits a series of geometrical 

resonances. Qualitatively similar, but less pronounced features appear in the spectrum of μxx. 

Here, we can resolve the fundamental geometrical resonance (~ 1.7 THz) which corresponds 

to the horizontal bouncing of charges between the semicircular parts. The peak at third 

harmonic frequency (slightly above 5 THz) is also pronounced. However, the higher 

harmonics are replaced by a series of irregularly spaced peaks.  

 To further confirm the origin of the peaks in the mobility spectrum (Fig. 5.13(c),(d)), 

we simulate a long trajectory of a single carrier. Then, we calculate a windowed Fourier 

transform (with a Gaussian window) of the temporal profile of velocity components vx(t) and 

vy(t) and plot the results as a 2D frequency-time maps (Fig. 5.13(e),(f)). This allows us to link 

the peaks in the velocity spectra with trajectory sections in time. The fundamental peak in the 

spectrum of μxx then indeed originates from the bouncing of carriers between the semicircular 

oval parts. This motion is frequently interleaved by longer periods during which the carriers 

bounce between the vertical planes. The latter type of movement then leads to the geometrical 

resonances in the mobility μyy. The presented analysis reveals that there is a broad distribution 

of quasi-periodic trajectories in this chaotic system. The corresponding peaks in the mobility 

spectrum are then rather broad. However, we can still clearly resolve them as they do not merge 

into a single broad-band as in the case of non-degenerate electron gas (Fig. 5.5(b)). 

 Further, we investigate the conductivity of 2D Lorentz gas potential in which the 

carriers scatter on periodically distributed cylinders arranged in a hexagonal lattice 

(Fig. 5.14(a)). This billiard model is used to simulate the thermal and electric conductivity of 

metals  and it resembles the Drude model with random intervals between scattering events 

[94],[95]. Our calculations confirm this for smaller cylinder radii – the calculated spectra are 

dominated by a very narrow Drude peak at zero frequency (Fig. 5.14(b); due to hexagonal 

symmetry μxx = μyy). With increasing cylinder radius, the mean time between scattering events 

becomes shorter and the Drude peak thus broadens and decreases. When the cylinders touch 

each other, the long-range transport is no longer possible and dc conductivity necessarily drops 

to zero. Above the Drude peak, the spectra exhibit an irregular series of peaks. 

 To find the origin of the irregular peaks in the mobility spectrum (Fig. 5.14(b)), we 

calculate the windowed Fourier transform of single-carrier trajectory (Fig. 5.14(d)). Here, we 

focus on the cylinder radius 30 nm, analogical conclusions would apply also for other cylinder 

radii. We first consider the pronounced peak located at ~ 12 THz. The shortest possible 

distance between two cylinders is 40 nm. For the considered Fermi velocity (vF = 1000 m/s), 

this corresponds to the round-trip frequency of 12.5 THz. This implies that the considered peak 

in the spectrum originates from the carrier bouncing between the neighboring cylinders (this 

is also confirmed by the windowed Fourier transform – see the appropriate sections in the 

trajectory in Fig. 5.14(c)). The peaks at higher frequencies then cannot be linked to a specific 

quasi-periodic trajectories and they rather originate from the complex anharmonic character of 

thermal charge trajectories. Another feature in the mobility spectrum is the shoulder at ~ 3 THz 

which is due to bouncing of carriers among more distant cylinders (Fig. 5.14(c),(d)). 
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5.5 Conclusions 

 In this section, we calculated the linear terahertz conductivity spectra of carriers 

moving classically in various model nanostructures. We thoroughly analyzed the situation 

when most sources of broadening are suppressed. This essentially required us to consider a 

degenerate electron gas in which only the carriers close to the Fermi level contribute to the 

conductivity. The conductivity spectra then may exhibit specific features: 

 For structures with rectangular geometries, the conductivity spectra exhibit a series of 

geometrical resonances which are directly associated with the frequency of the 

 

Fig. 5.14.  (a) Scheme of hexagonal Lorentz gas potential for the calculations of mobility 

(period a = 100 nm). (b) Mobility spectra μxx of degenerate electron gas confined in the 

geometry from panel (a). The spectra were calculated using the Monte-Carlo method based 

on Kubo formalism for various cylinder radii r (vF = 1000 m/s, EF = 0.20 eV, T = 4 K, 

τs = 1 ns). The hexagonal symmetry ensures that μxx = μyy. To emphasize the Drude-like 

peak at zero frequency, the scale up to 1 THz is logarithmic while the rest of the spectra is 

in the linear scale. (c) Example of the chaotic single-carrier trajectory in the geometry from 

panel (a). (d) Windowed Fourier transform (with a Gaussian window) of velocity 

component vx(t) corresponding to the trajectory in panel (c). The color arrows then 

correspond to the sections marked in the trajectory in panel (c). The cylinders are smooth 

in the calculation whereas here they appear rasterized due to problems with rendering. 
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round-trip bouncing and also with its higher harmonics due to anharmonic character of 

charge motion.  

 The roundness of the structure surfaces can lead to emergence of complex patterns in 

the conductivity spectra. The origin of these features can be linked to complex 

trajectories and their higher harmonics. 

 Under common experimental conditions, the mobile charges form a non-degenerate 

electron gas. A broad distribution of charge velocities (and to a lesser extent also the bulk 

scattering and distribution of nanoelement sizes) then smears the sharp geometrical resonances 

into a single broad resonance. 

 In mutually isolated nanoelements, a plasmonic resonance develops and couples with 

the observed spectral features. In 1D nanostructures, the plasmonic mode dominates the 

response only at low carrier densities. In 3D systems, the plasmonic resonance then dominates 

in the spectra only at high enough carrier concentrations. The 2D nanostructures are then 

specific as the geometrical and plasmonic modes couple independently of the charge density. 
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6. Nonlinear THz conductivity of 1D confined electron gas 

 In section 5, we thoroughly explained the fundamental aspects of linear THz 

conductivity of confined degenerate and non-degenerate electron gases. Here, we expand these 

studies on the case of nonlinear response. For simplicity, however, we focus just on the 

microscopic conductivity of one-dimensional systems. In Section 7, we will cover the 

influence of the effective medium and also calculate the corresponding transient signals which 

can be measured in experiments. 

6.1 Non-degenerate electron gas 

 In this part, we use the non-perturbative Monte-Carlo calculations to study the 

nonlinear conductivity of non-degenerate electron gas confined in a one-dimensional (1D) 

infinitely deep rectangular potential well with width l (Fig. 6.1(a)). In the calculations, we start 

with an equilibrium ensemble of carriers. At zero time, a monochromatic wave 

 )cos()( 00 tEtE  , (6.1) 

with amplitude E0 starts to drive carriers out of the equilibrium. After a transient regime, which 

lasts a few times the scattering time, the mean carrier velocity v(t) attains stationary 

oscillations (Fig. 6.1(b)) [29]. For sufficiently low electric fields (red curve in Fig. 6.1(b)), the 

linear response dominates and the oscillations of the mean velocity are thus monochromatic, 

generaly phase shifted with respect to the driving field. With increasing electric field, the 

   

Fig. 6.1. (a) Schematic illustration of the investigated confined 1D non-degenerate electron 

gas subjected to a monochromatic wave (6.1). The net velocity of a single carrier is a 

superposition of the random thermal velocity vtherm and the drift velocity vdrift(t) induced by 

the electric field. (b) Solid lines: the time evolution of the carrier mean velocity for different 

amplitudes E0 of the driving electric field (dashed lines, arbitrary units). For lower fields, 

the harmonic profile of the oscillations is retained (red), while with increasing electric field 

the deviations from the harmonic profile become prominent (green). Gray area: Transient 

behavior of the mean velocity due to the sudden switch-on of the driving electric field. 

Following parameters were considered in the calculations: T = 300 K, τs = 100 fs, 

m = 0.07me, l = 100 nm. 
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oscillatory behavior is retained but the deviations from the harmonic time profile become 

prominent (green curve in Fig. 6.1). Spectral decomposition of the mean velocity (analogous 

to (1.12)) then straightforwardly yields the complex harmonic amplitudes v[m] which can be 

further transformed into distinct non-linear orders v(α). The nonlinear mobilities μ(α) are then 

calculated by the framework described in Section 1.2. To obtain their entire spectra, it is 

neccesary to calculate the conductivity for a set of discrete frequencies of the driving 

monochromatic wave. 

6.1.1 Linear response 

 We start with the calculations with the field amplitude E0 = 0.1 kV/cm which is 

sufficiently weak for the charge transport to be linear (thermal velocity vtherm ~ 2.5×105 m.s−1 

for 300 K is much higher than the drift velocity vdrift ~ μE0 ~ 2×103 m.s-1; moreover, we verified 

that the shape of the spectrum does not change noticeably for fields up to 1 kV/cm). In Fig. 6.2, 

we present the comparison of the linear mobility spectra μ(ω) (≡ μ(1)(ω)) obtained by the Kubo 

formalism calculations (i.e. thermal motion without the electric field) [27] and the 

non-perturbative calculations (i.e. with the electric field) developed here. Both spectra show 

qualitatively the same resonant-like behavior typical for the response of confined carriers.  

Quantitatively, however, the shapes of the spectra slightly differ. This can be ascribed to the 

influence of the electric field on the statistical distribution, which we do not consider in our 

approach. In linear calculations, where no electric field is present, the equilibrium Boltzmann 

statistics is well defined. In the nonlinear calculations, however, we require the presence of 

a time-varying electric field which pushes the system out of the equilibrium. This leads to the 

modification of the statistical distribution function in time which influences the carrier 

ensemble properties and thus can alter the shape of the mobility spectrum. Furthermore, we 

 

Fig. 6.2. Comparison between the linear responses of a 1D non-degenerate electron gas 

confined in an infinitely deep rectangular potential well calculated by the Kubo formalism 

calculations without the electric field [27] and the developed non-perturbative calculations, 

where the charges are driven by monochromatic waves with a low amplitude 

(E0 = 0.1 kV/cm). Parameters of the calculations: T = 300 K, τs = 100 fs, l = 100 nm, 

m = 0.07me. 
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assume that the carriers become thermalized after the bulk scattering event. The presence of 

the electric field, however, changes the conditions under which the scattering occurs and may 

in reality lead to a non-equilibrium distribution. 

6.1.2 Nonlinear response – high harmonics generation 

 Here, we consider the nonlinear response of the confined non-degenerate electron gas. 

In analogy to linear response (1.4), we define the harmonic mobility μ[m] = v[m]/E0. In Fig. 6.3, 

we show an example of the calculated spectra of μ[m]. In contrast to the weakly nonlinear 

regime known from the nonlinear optics, we observe nonlinearities of much higher orders – 

here, for the strongest presented electric field of 200 kV/cm, harmonic orders exceeding 91 

with strengths of 10-4 of the first harmonic order can be still recognized. We are aware that for 

fields exceeding a few times 10 kV/cm, other nonlinear effects may emerge, such as the 

intervalley scattering and intravalley dynamics [18]-[20] or ultrafast dynamics of 

polarons [96]. Nevertheless, our theoretical calculations predict an efficient high harmonics 

generation from a semiconductor nanostructure as a consequence of carrier confinement 

(4.11). 

 High harmonics generation is a well-known effect which was experimentally observed 

in the THz spectral range for bulk semiconducting GaSe [24], where the dynamical Bloch 

oscillations of the electron wave packet in the band structure combined with coherent interband 

excitation were indetified as its origin. In contrast, we do not consider any quantum effects in 

our calculations where the carriers move strictly according to the classical Newton's equations 

of motion (2.5).  

 High harmonics generation is also achieved in atomic gases where it is usually 

described by a semi-classical three-step model [99]. In the first step, electrons are ionized from 

the atomic shell, then they are accelerated in the free space by an external laser electric field 

and finally they recombine with the original ion; the excess electron energy is then emitted in 

the form of the high-harmonic photon. This model is thus similar to our situation, in the sense 

that it also considers classical movement under a time-varying electric field. The difference, 

however, lies within the generation of high-harmonic photons. The three-step model considers 

recombination of electrons with ions while in our case, the generation is due to the time-

varying electric current. 

 We thus predict another mechanism leading to high harmonics generation – the 

interplay between the oscillatory movement of carriers and the charge confinement. While the 

two other mechanisms require electric fields comparable to the atomic fields (~ MV/cm) to 

enable efficient high harmonics generation, we achieve it for much lower fields of several tens 

of kV/cm. 

6.1.3 Qualitative properties of harmonic mobility spectra 

 The response at the fundamental frequency μ[1](f0) (Fig. 6.3(a)) exhibits the behavior 

typical for the response of confined carriers. The resonant peak in the real part clearly 

decreases, blueshifts and broadens with the increasing electric field while the spectral weight 
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remains conserved. When the electric field is very weak, the frequency of this peak is 

proportional to the thermal velocity of carriers vtherm [27] 
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peak , (6.2) 

 

Fig. 6.3. Spectra of harmonic mobility amplitudes μ[m] obtained by the non-perturbative 

Monte-Carlo calculations for the 1D non-degenerate electron gas confined in an infinitely 

deep rectangular potential well and subjected to a monochromatic electric field (6.1). 

Following parameters were considered in the calculations: T = 300 K, τs = 100 fs,  

m = 0.07me, l = 100 nm. 
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where α is an empirical factor related to the shape of the confining potential and the distribution 

of thermal velocities. A strong electric field induces a drift contribution to the carrier velocity 

vdrift which we estimate as a time-average of the solution of Newton's equations (2.5) over the 

period of the electric field 
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where T = 1/f0 is the period of the electric field. The net velocity v of carrier then consists of 

both the thermal and the drift components, respectively, which sum up incoherently and thus 

 
2

2

drift

2

2

therm







vv
v , (6.4) 

where we introduce a factor β to account for the geometry and exact shape of distribution of 

thermal velocitites. The peak frequency then changes to 
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The substition of (6.4) (with the frequency
*

peakf in the field term vfield) into (6.5) leads to 

a quadratic equation for the shifted peak frequency
*

peakf . Its solution then yields the relation 

between the peak frequency and the amplitude of the electric field 

 

Fig. 6.4. Dependence of the frequency
*

peakf of the spectral peak in μ[1] from Fig. 6.3(a) 

on the amplitude of the electric field E0. Circles: results of the Monte-Carlo calculations, 

lines: dependencies calculated from (6.6) for various values of geometrical factor β. The 

geometrical factor α = 0.8 was determined from the spectrum calculated for the lowest 

electric field. Dashed lines represent the slopes of the depicted dependence for low and 

high electric field limits. 
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For the parameters used in the presented calculations (T = 300 K, m = 0.07me), the thermal 

velocity is vtherm ~ 2×105 m.s-1. Comparison of (6.2) with the spectrum for the lowest electric 

field (Fig. 6.3(a)) gives an estimate α ~ 0.8 and the geometrical factor β thus remains the only 

unknown parameter in the above formula. Its fitting allows us to reproduce peak positions 

obtained by the Monte-Carlo calculations (Fig. 6.4). We can qualitatively distinguish several 

regimes in this dependence. For the lowest electric fields, their influence is negligible and the 

thermal velocity thus solely governs the peak position which thus remains constant. When the 

field increases, its contribution to the velocity of carriers becomes comparable to the thermal 

one and departure from the constant value is observed. Finally, the field contribution 

completely takes over for the strongest fields and peak frequency thus starts to follow the 

square-root dependence on field ampitude. 

 We now address the response at higher harmonic frequencies μ[m](mf0) (m > 1, 

Fig. 6.3(b)-(f)). Since the studied system has a center of symmetry, the even harmonic and 

nonlinear orders are not present. The nonlinear spectra show more complicated behavior than 

their linear counterparts (Fig. 6.3(a)). They clearly broaden and blueshift with increasing 

electric field while their amplitude changes in a more complex way, however, no other 

significant changes in their shape are observed. 

 

Fig. 6.5. Dependence of the absolute value of the first extreme of the real part of the 

harmonic spectra in  Fig. 6.3 on the amplitude of the electric field E0. With increasing 

electric field, the amplitude of the first harmonics decreases at the expense of higher 

harmonics. The amplitudes of the higher harmonics rapidly increase with electric field until 

reaching a saturated state. For the lowest harmonics, we also observe the beginning of their 

depletion. Filled symbols: first maximum in the spectrum, hollow symbols: first minimum 

in the spectrum. Dashed indicate the E0
(m-1)-dependence which the peaks should follow in 

weak electric field. 
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 Based on the above observations, we quantify the dependence of the harmonic spectra 

(Fig. 6.3) on the electric field by the absolute value of the first extreme in the real part of the 

mobility μ[m], i.e. the local minimum or maximum of the real part of μ[m] which lies at the 

lowest non-zero frequency (Fig. 6.5). The peak of the linear amplitude μ[1] is initially constant 

but with increasing electric field, it decreases due to the spectral broadening. Meanwhile, the 

higher harmonic amplitudes μ[m] exhibit three different regimes in their dependence on the 

electric field. Initially, the nonlinearities rapidly increase with the m-th power of the electric 

field E0
m
 (in Fig. 6.5, due to the normalization by field amplitude E0, the nonlinearities increase 

with E0
m-1

). This power dependence is followed even for low electric fields where we cannot 

resolve the mobilities μ[m] due to the noise in the calculations. Eventually, the strong 

dependence on the electric field disappears and the nonlinear velocity becomes saturated. 

For the lowest orders (m = 3,5), we also observe the third regime, where the decrease due to 

the spectral broadening begins for the strongest electric fields. 

6.1.4 Analogy with an anharmonic oscillator 

 Using the framework developed in Section 1.2, we calculate the odd nonlinear 

mobilities μ(α) from the spectra of harmonics μ[m] in Fig. 6.3 corresponding to a motion of 

charges in an infinitely deep rectangular potential well. The mobility spectra μ(α) up to the fifth 

order are shown in Fig. 6.6. The spectrum of μ(5)(−ω0,−ω0,ω0,ω0,ω0) is not shown because its 

peak amplitude is comparable with the noise originating from the calculations. We emphasize 

the frequency arguments of the discussed quantities. Whereas the harmonic mobilities μ[m] are 

naturally functions of the m-th harmonic frequency mω0, we display the nonlinear mobilites 

μ(α) as functions of the fundamental frequency ω0. The first-order mobility μ(1)(ω0) (Fig. 6.6(a)) 

is esentially the same as the linear mobility (Fig. 6.2) and its spectrum reflects the carrier 

confinement, while the spectra of the third- and the fifth-order mobility are more complicated 

(Fig. 6.6(b),(c)). The mobility spectra are expected to be smooth – their roughness in Fig. 6.6 

is due to the noise originating from Monte-Carlo calculations which is amplified due 

to ill-conditioning of the matrices in (1.18) and (1.19) (as we discussed in Section 1.2). 

 The nonlinear mobility spectra μ(α) in Fig. 6.6 can be interpreted qualitatively in terms 

of a classical anharmonic oscillator (i.e. nonlinear Lorentz model) [28]. In the linear Lorentz 

model, electrons oscillate around a minimum in a parabolic potential. The nonlinear behavior 

is then accounted for by an anharmonic correction to this potential. Here, we assume 

nonlinearities up to the fifth order, for which the binding potential reads 

V(x) = mΩ
2
oscx

2/2 − mbx
4/4 − mcx

6/6, where Ωosc is the resonant oscillator angular frequency 

and b and c are parameters characterizing the strength of the nonlinearity (i.e. the deviation 

from the parabolic binding potential). The sign of parameter b is arbitrary while c must be 

negative to guarantee the binding character of the potential. If we introduce 

N(ω0) = Ω
2
osc – ω

2
0 – 2iω0γ, where and γ is the oscillator damping rate, the pertinent mobilities 

of the anharmonic oscillator read (see appendix B for the derivation) 
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Fig. 6.6. Nonlinear mobilities μ(α) of carriers from the non-degenerate electron gas confined 

in an infinitely deep rectangular potential well. Solid lines: spectra calculated from the 

harmonic mobilities μ[m] in Fig. 6.3 using the framework developed in Section 1.2 (spectra  

for 0.1 kV/cm, 3 kV/cm and 5 kV/cm were used for the decomposition). The spectrum of 

μ(5)(−ω0,−ω0,ω0,ω0,ω0) is not shown because its peak amplitude is comparable with the 

noise originating from the calculations. Dotted lines: spectra predicted by the anharmonic 

oscillator model (6.7.1)-(6.7.3). The spectra were normalized individually to match the 

peak amplitude of the extracted mobilities μ(α). Dashed line: normalized spectrum of the 

c-term from (6.7.5). Dot-dash line: linear combination of c-term and net b-term from 

(6.7.4). Both terms were normalized to peak mobility amplitude and then the c-term was 

subtracted (c < 0) from the net b-term which was taken with the weight of 1.5. Following 

parameters of the anharmonic oscillator were assumed: Ωosc = 1.5 THz,  γ = 10 ps-1. 
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 The shape of the first-order mobility μ(1)(ω0) is well reproduced by (6.7.1) for 

Ωosc = 1.5 THz and γ = 10 ps-1 (Fig. 6.6(a)). However, the anharmonic oscillator model 

predicts five times lower amplitude. This stems from the difference between the polynomial 

potential of the anharmonic oscillator and the rectangular potential used in the Monte-Carlo 

calculations. For the considered parameters Ωosc and γ, a good qualitative match in the spectral 

shapes is obtained also for the third-order mobilities μ(3)(ω0,ω0,ω0) and μ(3)(−ω0,ω0,ω0), 

respectively (Fig. 6.6(b)). Similarly to the linear case, both models predict different spectral 

amplitudes. Furthermore, the anharmonic oscillator model does not correctly scale 

μ(3)(−ω0,ω0,ω0) with respect to μ(3)(ω0,ω0,ω0). Similar analysis of the fifth-order mobilities is 

more complicated due to the presence of several terms with different frequency dependence 

(6.7.4)-(6.7.6). Nevertheless, the shape of the spectra can be also understood within this 

framework – the spectrum of μ(5)(−ω0,ω0,ω0,ω0,ω0) is qualitatively matched just by the c-term 

from (6.7.5), while the shape of μ(5)(ω0,ω0,ω0,ω0,ω0) is reproduced by (6.7.4) if we consider 

c < 0 and take the net b-term with the weight of 1.5. 

 The real and imaginary parts of the first-order mobility must always satisfy the 

Kramers-Kronig (K-K) relations. Their applicability for the nonlinearities is discussed in detail 

in [28] and [100]. On the one hand, the K-K relations still apply for the mobilities μ(3)(ω0,ω0,ω0) 

and μ(5)(ω0,ω0,ω0,ω0,ω0). On the other hand, they are not valid for the mobilities 

μ(3)(−ω0,ω0,ω0), μ
(5)(−ω0,ω0,ω0,ω0,ω0) and μ(5)(−ω0,−ω0,ω0,ω0,ω0), respectively, with respect to 

the frequency ω0. 

6.2 Degenerate electron gas 

 In this section, we turn to the nonlinear response of a degenerate electron confined 

in a one-dimensional infinitely deep rectangular potential well with width l (Fig. 6.1(a)). 

In Section 5.2, we have shown that the linear mobility of such system consists of a series of 

peaks which are located at the frequency fr = 1/tr, where tr is the round-trip time of the carriers 
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inside the well, and its odd harmonics. In analogy with the non-degenerate case, we calculate 

the response to a monochromatic wave (6.1). For simplicity, we limit the incident frequencies 

to f ≤ 2fr = 10 THz, thus focusing on the response just around the peak at the fundamental 

frequency fr. 

 In Fig. 6.7 we show the calculated spectra of the harmonic mobility μ[m]. In comparison 

to the non-degenerate electron gas (Fig. 6.3), we observe a much stronger dependence on the 

electric field. Indeed, while the response for the field 0.1 kV/cm can be considered linear in 

the non-degenerate case, here we can resolve nonlinearities up to the fifth order. Such strong 

nonlinear response appears since the driving field is in resonance with the motion of carriers 

inside the well. This, however, means that the linear regime is practically unattainable by the 

non-perturbative Monte-Carlo calculations (for fields below ~ 0.1 kV/cm, the results are 

hindered by noise). We thus calculate the linear mobility μ using the Kubo-based formalism 

(we have to be aware of the slight quantitative differences between the spectra calculated by 

both approaches (Fig. 6.2)). Furthermore, it is not possible to obtain the nonlinear mobilities 

μ(α) using the framework from Section 1.2 since the harmonic series cannot be truncated 

(higher orders are important even for low fields). We thus further focus just on the 

characteristics of the harmonic spectra from Fig. 6.7. 

 For the response at the fundamental frequency μ[1](f0) (Fig. 6.7(a)), the resonant peak 

at the frequency fr is preserved only for the lowest electric fields considered. For higher fields 

(≥ 1 kV/cm), this peak splits into a doublet. We will later explain explain this splitting 

qualitatively. 

 The main feature of spectra of higher harmonics μ[m](mf0) (m > 1) are peaks located at 

the odd harmonic frequencies mfr which further split into multiplets with increasing E 

(Fig. 6.7(b)-(d)). The number of sub-peaks within the multiplet increases with the harmonic 

order m. Similarly to the response of the first order, these sub-peaks broaden and move away 

from the central frequency mfr.  

 For fields stronger than ~ 1 kV/cm, we can in each spectrum of μ[m] resolve further 

peaks located close to frequencies nfr, where n is an integer lower than m (insets in 

Fig. 6.7(b)-(d)). These peaks appear due to the resonant character of carrier motion inside the 

well. With increasing field, they broaden and blueshift. For high enough fields, there is 

necessarily an overlap with the redshifting multiplets around mfr described above. Furthemore, 

the whole spectra blueshift for sufficiently strong fields. This shift is most obvious in the 

response of the first order (Fig. 6.7(a)). The nonlinear response of the confined degenerate 

electron gas is thus clearly very complicated and development of a model quantitatively 

explaining all observed features lies beyond the scope of this work. 

6.2.1.a) Geometrical model describing the first order response 

 For a qualitative explanation of the splitting in the first-order harmonic spectra from 

Fig. 6.7(a), we develop a geometric model based on the classical movement of carriers 

subjected to a monochromatic wave (6.1) inside the well. 
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Fig. 6.7. Spectra of the harmonic mobility μ[m] obtained by the non-perturbative 

Monte-Carlo calculations for 1D degenerate electron gas confined in an infinitely deep 

rectangular potential well and subjected to a monochromatic electric field. Following 

parameters were considered: vF = 106 m/s, EF = 0.2 eV, T = 4 K, τs = 1 ps,  m = 0.07me, 

l = 100 nm. Real and imaginary parts of these spectra are shown in the Appendix C. The 

spectrum of the linear mobility was calculated by the Monte-Carlo calculations based on 

Kubo formalism. Insets: details of the secondary peaks in the nonlinear spectra located at 

frequencies nfr.  
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 We start with a carrier located at the left side of the well (i.e. x = 0, Fig. 6.8) in time 

t = 0. Its (drift) velocity evolves according to the equation of motion 
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d

)(d
00

00
F

s
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, (6.8) 

where vF is the Fermi velocity and φ0 represents the initial phase shift between the applied field 

and the carrier movement. The solution reads 
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where v0 is the drift velocity acquired during the previous driven motion (on top of the Fermi 

velocity). If we turned off the electric field, v(t) would decay towards vF with the time constant 

equal to the scattering time τs.  

 Using (6.9), we now describe the movement of charges inside the well for a given 

initial phase φ0. First, we find the time t1 at which the carrier reaches the opposite well wall, 

i.e. it travels the distance l (Fig. 6.8). We assume low enough fields which prevent multiple 

bouncing of carriers by a single wall during their round-trips. Integration of (6.9) yields 
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which is a transcendental equation for t1 which has to be solved numerically. The carrier then 

reaches the right wall with velocity vF + v1, where the drift component v1 = v(t1) is given 

   

Fig. 6.8. Illustration of the carrier movement within the well under the monochromatic 

electric field E0cos(ω0t + φ0). At zero time, the carrier is located at the left well wall (x = 0) 

and moves with velocity vF + v0. At the time t1, the carrier reaches the right well wall and 

upon the reflection, it moves back with velocity − vF − v0(t1). Finally, the carrier returns to 

the left wall at t = t2 and upon reflection, it has velocity vF + v2(t2). In reality, the carrier 

dimensions are negligible with respect to the well width l. 

− vF − v1(t1) 
t = t1 

t = 0 

t = t2 
vF + v2(t2) 

l 

E0cos(ω0t+φ0) vF + v0 

0 x 

t 

v(t) 
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by (6.9). Upon reflection, the carrier moves back towards the original wall and reaches it at the 

time t2 which satisfies transcendental equation 
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Just after the reflection from the left well wall, the drift component v2 reads 
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 The motion of carriers described above will lead to a resonant behavior when two 

conditions are met. First, the period of the carrier movement must match the period of the field 

 
0

21

2




 tt . (6.13) 

Second, the described motion must be stationary. This requires the equality of the drift 

components at the beginning and at the end of the period 

 20 vv  . (6.14) 

 In Fig. 6.9, we show the frequency f0 = 2π/ω0 and the drift velocity v0, which satisfy 

the conditions (6.13) and (6.14) simultaneously, as functions of the initial phase shift φ0 for 

several lowest electric fields. For 0 ≤ φ0 ≤ π, the resonant frequencies f0 are below fr 

(Fig. 6.9(a)) and thus correspond to the lower-frequency peak in the doublet (Fig. 6.7(a)). Since 

 

Fig. 6.9. Solution of the geometric model (Eqs. (6.9)-(6.14)) which explains the existence 

of the doublet in the first-order harmonic spectra of confined 1D degenerate electron gas 

(Fig. 6.7(a)). For the lowest electric field, the model also predicts the doublet frequencies. 

Dashed and dotted lines: doublet frequencies obtained by the Monte-Carlo calculations. 

Solid line in panel (a): the frequency of the fundamental geometrical resonance in the linear 

spectra (Fig. 5.5(b)). 
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the corresponding drift velocity v0 is negative (Fig. 6.9(b)), the carriers are effectively slowed 

down during their round-trip (with respect to the equilibrium Fermi velocity) and their 

velocity spectra thus redshift. On the other hand, for π ≤ φ0 ≤ 2π, the resonant frequencies f0 

are above fr which leads to the emergence of the higher-frequency peak in the doublet as the 

carriers are moving faster (v0 > 0). 

 The solution of the geometric model gives the resonant frequency f0 as a continuous 

function of the phase shift φ0 (Fig. 6.9(a)). The resonant frequencies predicted by the 

 

Fig. 6.10. Charge densities of the confined 1D degenerate electron gas for field amplitudes 

0.1 kV/cm (panel (b)), 1 kV/cm (middle row) and 20 kV/cm (lower row) calculated using 

the non-perturbative Monte-Carlo calculations. The carriers were subjected to 

a monochromatic electric field 6.1. For 0.1 kV/cm, the field frequency f0  = 5.0 THz 

matches the peak position in the first order response (Fig. 6.7(a)). For higher fields, the 

selected frequencies f0 match the characteristic features of the doublet observed in the first 

order response: the redshifted sub-peak ((c),(d)), blueshifted sub-peak ((e),(f)) and the 

minimum ((g),(h)). Zero charge density in the maps represents the equilibrium value. The 

graph in panel (a) shows the time profile of the driving electric field. 
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non-perturbative Monte-Carlo calculations (Fig. 6.7(a)) then correspond to φ0 for which the 

carrier movement occurs in stable periodic pathways. For other φ0, the corresponding 

trajectories are unstable and rapidly converge into the stable pathways (i.e. due to the 

scattering). The exact evaluation of the stability conditions, however, would require further 

analysis which we do not cover here. 

 For a further insight, we tracked also the charge density within the well in the 

non-perturbative Monte-Carlo calculations (Fig. 6.10). For low enough electric fields 

(≲ 0.1 kV/cm), the peak in μ[1](f0) does not split (Fig. 6.7(a)). For the peak frequency, the 

charge movement is in-phase with the driving field – the charges are located at the right well 

wall (x = 100 nm) for the maximum field and at the left wall (x = 0 nm) when the field reaches 

the lowest negative value (Fig. 6.10(b)). For higher fields, this behavior is preserved for 

frequencies around the redshifted sub-peak (Fig. 6.10(c),(d)). For frequencies near the 

blueshifted sub-peak, however, the charge movement is out-of-phase (Fig. 6.10(e),(f)). These 

features are well preserved with increasing electric field. The behavior around the minimum 

between the doublet peaks, however, becomes more complicated (Fig. 6.10(g),(h)). 

6.3 Conclusions 

 We used the non-perturbative Monte-Carlo calculations to investigate the nonlinear 

THz conductivity of 1D confined non-degenerate and degenerate electron gases under 

monochromatic electric field. The response of both systems is well beyond the perturbative 

regime: we predicted an efficient high harmonics generation due to charge confinement. 

 Nonlinear THz conductivity spectra of the non-degenerate electron gas are 

qualitatively compatible with the response of an anharmonic oscillator. The conductivity 

spectra broaden and blueshift with the increasing electric field due to increasing mean charge 

velocity. The response of the degenerate electron gas is much more complicated. For low 

electric fields, the conductivity spectra contain peaks centered around the harmonic 

frequencies mfr (fr corresponds to the equilibrium round-trip time). With increasing electric 

field, each of these peaks splits into multiplets. At the same time, other complicated features 

emerge in the spectra due to the resonant character of the carrier motion inside the well. 
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7. Nonlinear THz response of semiconductor nanostructures 

 In section 6, we studied the nonlinear THz conductivity of confined one-dimensional 

electron gas. Here, we expand the calculations on selected multi-dimensional structures and 

more importantly employ the developed theory of wave propagation in nonlinear media 

(Section 4) to find measurable signals related to the nonlinearities. We thus provide a 

theoretical feasibility study for an experimental observation of nonlinear THz 

photoconductivity in nanostructures using free space THz radiation. We namely focus on 

non-percolated structures as percolation weakens the charge confinement and thus also the 

corresponding nonlinearities. 

 Table-top optical pump-THz probe time-domain spectroscopy usually utilizes THz 

pulses generated by optical rectification in nonlinear crystals. Fields generated this way, 

however, are not always strong enough to induce nonlinearities in the studied systems. We 

thus consider sources which can generate pulses with high enough field amplitudes for 

nonlinearities to occur – three different apparatuses will be examined in detail: 

 Tilted-wavefront optical rectification in lithium niobate 

Lithium niobate (LiNbO3) is a crystal with high nonlinear coefficient. However, the 

phase-matching condition in this material cannot be satisfied in a colinear scheme. 

To generate intense THz radiation, it is necessary to tilt the pump pulse wavefront using 

e.g. a diffraction grating [6]-[8]. This allows generation of pulses with peak amplitudes 

up to 1 MV/cm [14]. The generated THz pulse profiles and spectra strongly depend on 

the parameters of the employed optical pumping and the tilt angle [7],[101]-[104]. 

For simplicity, we perform the calculations with a model THz pulse with rather narrow 

spectrum (Fig. 7.1(a),(b)).  

 Generation from air-based plasma ("multi-THz") 

Above a certain intensity threshold, a laser pulse focused in air generates a plasma. 

A nonlinear interaction between the pulse at the fundamental frequency ω and its second 

harmonics 2ω inside such plasma can be utilized to generate strong THz 

radiation [9]-[13]. The THz pulses generated this way exhibit very broad spectra ranging 

from about 1 THz to several tens of THz and their peak amplitudes can reach values over 

100 kV/cm. These pulses are sometimes refered to as multi-THz. For the calculations of 

nonlinear conductivity, we use a multi-THz pulse measured in our experimental setup 

(without deconvoluted instrumental response) [47]. Its temporal profile with peak 

amplitude ~ 120 kV/cm and spectrum containing frequencies up to 20 THz are shown 

in Fig. 7.1(c),(d). 

 Free electron lasers 

Free electron lasers are large-scale facilities which utilize a beam of relativistic electrons 

to generate tunable high-intensity radiation [15]-[17]. In this work, we focus on the 

FELBE facility located in Forschungszentrum Dresden-Rossendorf, Germany 

[106]-[108]. This laser operates in the far-infrared spectral range and allows generation 

of frequencies from ~ 1.2 THz to ~ 75 THz. The estimated peak electric fields are of the 

order of hundreds kV/cm and they are summarized in Fig. 7.2. The generated THz pulses 
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are narrowband and we model them as monochromatic pulses modulated by a Gaussian 

envelope 
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where E0 is the peak amplitude of the electric field, σFWHM is the pulse full width at half 

maximum and f0 is the central pulse frequency. Based on the laser parameters, we assume 

σFWHM = 4 ps a f0  1.5 THz in our calculations. An illustration of the model pulse for 

the lowest frequency and peak amplitude 70 kV/cm is shown in Fig. 7.1(e),(f). 

 We now turn to the theoretical investigation of nonlinear THz conductivity. First, we 

recall the general theoretical way to assess the response linked with nonlinear THz 

conductivity. Then, we study the response of selected semiconductor nanostructures under the 

high-field sources mentioned above. We namely focus on the nanostructures of GaAs 

  

Fig. 7.1. Temporal profiles (upper row) and spectra (lower row) of high-field THz pulses 

used for the theoretical study of nonlinear response. (a),(b) Model of a pulse generated in 

a LiNbO3 crystal. From historic reasons, we modelled it by broadening a THz pulse 

generated by optical rectification in ZnTe in time so it lasts twice longer. The resulting 

pulse spectrum is similar to that of LiNbO3 in Ref. [105]. (c),(d) Multi-THz pulse generated 

in the air-based plasma measured in our experimental setup [47]. (e),(f) Model pulse 

generated by free electron laser. The pulse shape is described by Eq. (7.1) for following 

paramers: f0 = 1.5 THz,  σFWHM = 4 ps. Apeak denotes the peak spectral amplitude. 
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(nanobars, nanowires and slits between metallic blocks) which provide a very promising 

material towards the experimental observation of nonlinear conductivity. We also examined 

ZnO nanoparticles [27],[110] and CdS nanocrystals [111],[112] which can be prepared by 

considerably easier methods. Finally, we compare the estimated strength of nonlinearities with 

known nonlinear phenomena in bulk materials. Based on our experience with setups utilizing 

ZnTe for generation and detection of THz radiation (0.1 THz ≲ f ≲ 2.5 THz), we assume that 

transient transmissions as low as ~ 10-5 can be detected [42],[47],[113].  

7.1 Theoretical assessment of nonlinear THz signal  

 In this part, we draw a general way to calculate the signal linked with the nonlinear 

THz conductivity. The thorough assessment of the measurable nonlinear signal is very 

complex and requires careful application of the methods introduced earlier – namely the 

theories of wave propagation in both the linear and nonlinear inhomogeneous media 

(Sections 3 and 4) and the Monte-Carlo calculations of conductivity (Section 2). We depict 

our entire approach schematically in Fig. 7.3. 

  

 

Fig. 7.2. Parameters of FELBE facility pulses. (a), (b) Dependence of the average pulse 

power P on the undulator parameter Krms and the kinetic energy of electrons Ee
kin for 

electron pulse lengths στ 1 ps (a) and 4 ps (b) and for the outcoupling hole diameter 7.0 mm. 

The graphs were taken from Ref. [109]. (c) Estimated peak electric fields Epeak 

corresponding to the graphs from panels (a),(b) for pulses focused into a spot with radius 

r = 1 mm. The peak fields were then calculated from the Poynting vector as

) /(2 rept0

2

peak fcrPE  , where frep = 13 MHz is the repetition rate of the laser. 

a) b) 

 

c) στ [ps] λ [μm] f0 [THz] P [W] Epeak [kV/cm] 

1 
100 3.0 50-60 300-330 

200 1.5 10-20 140-190 

4 
100 3.0 20-30 100-120 

200 1.5 10-20 70-100 
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Fig. 7.3. Scheme of the calculations of measurable signals linked with the nonlinear THz conductivity 

due to charge confinement. 
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 For each structure, our analysis starts with the evaluation of the linear THz response 

(parts I)-III) in Fig. 7.3). This requires not only to evaluate the effective linear 

photoconductivity of the nanostructure, but also the local field in the photoconductive parts 

which we use later in the calculations of the nonlinear response: 

I) First, we consider the geometry and parameters of individual nanoobjects and we 

calculate the linear THz mobility μ and the corresponding linear THz photoconductivity 

Δσp
(1)

(ω0) = Ne0μ of confined carriers using the non-perturbative Monte-Carlo 

calculations (Section 2.2) for a sufficiently weak electric field (typically ~ 0.1 kV/cm). 

The temporal profile of this field is arbitrary since the linear response is 

field-independent; only a wide enough spectral bandwidth is required. For the structures 

covered here, we verified that these calculations yield same results as the established 

approach based on Kubo formalism. 

II) Depending on the distribution and layout of the nanobjects, we next apply a suitable 

effective medium theory1. We thus calculate the linear effective photoconductivity Δσeff 

for various concentrations of photoexcited carriers N (using (3.7) or (3.10)) and also the 

field-enhancement factors Q (3.13) and Qexc (3.14) which link the local electric field Ep 

in the nanoobjects with the effective electric field in the homogenized sample in 

equilibrium and upon photoexcitation, respectively. 

III) Finally, we apply the solution of the linear wave equation (3.20) in small-signal and 

thin-sample limits (i.e. kL ≪ αeffL ≪ 1, see Section 3.2.2). Using (3.49), we then 

determine the linear transient transmission ΔT/T which we later compare with the 

estimated measurable nonlinear signals. For a given incident THz electric field2 Einc, we 

also calculate the local field Ep in the photoexcited photoconductive parts using (4.16). 

This transformation necessarily changes the field amplitude and may also change the 

pulse profile due to the dispersion of material parameters. Furthermore, since the 

field-enhancement factor Qexc in (4.16) depends on the linear photoconductivity, the 

local field amplitude and waveform will differ for various carrier concentrations N. As 

the pulse shape is expected to strongly influence the nonlinear carrier response, the 

described transformation has to be applied very carefully. 

 In the above steps, we prepared ground for the calculations of nonlinear THz response 

(parts IV)-VI) in Fig. 7.3) which itself consists of the following steps: 

IV) For the geometry and parameters from step I) and the known local field Ep (evaluated in 

the step III)), we employ the non-perturbative Monte-Carlo calculations to determine the 

total local electric current density jp. For further analysis, however, we have to provide 

the decomposition (4.20) of jp into the linear jp
(1)

 and nonlinear jp
NL

 contributions. We 

calculate the linear component jp
(1)

 from the linear mobility determined in step I) easily 

as jp
(1)

 = Ne0μEp. The nonlinear electric current density is then the difference 

                                                 
1 Here, we consider either the Maxwell-Garnett effective medium theory (Section 3.1.2) or the brick-wall model 

(Section 3.1.3). 
2 In this work, we always assume one of the model pulses from Fig. 7.1. 
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jp
NL

(Ep) = jp(Ep) − jp
(1)

(Ep).Using a nonlinear effective medium theory for the specified 

geometry and layout of the nanostructure, we transform the local electric current 

densities jp, jp
(1)

 and jp
NL

 into their effective counterparts jeff, j
(
e
1
f
)
f and  je

N
f
L
f  using (4.22), 

(4.26) and (4.27), respectively. 

V) Finally, we wish to link the effective electric current densities jeff, j
(
e
1
f
)
f and je

N
f
L
f with 

measurable signals (i.e. solution of the nonlinear wave equation (4.6)). In the linear case, 

the results of experiments are usually represented as the transient transmission (3.49). 

Since nonlinear processes can generate signals at frequencies which are not present in 

the driving THz pulse (and thus neither in the reference wave), we cannot 

straightforwardly apply the concept of the transient transmittance from the linear case. 

We therefore propose three different representations of the results obtained in a nonlinear 

regime: 

 Generally, it is always possible to calculate the transient waves which are just leaving 

the output surface of the sample. For known effective electric current densities, we 

thus apply equation (4.28) which yields the sought transient waves ΔET, ΔE(1) and 

ΔENL. The comparison of the transient waves calculated for different amplitudes of 

the driving field then gives the estimate of the strength of involved nonlinear 

phenomena. The final link with experimental results requires to account for the 

instrumental response functions P (ω) and D (ω) introduced in (3.25) (we skip this 

step for simplicity).  

 For frequencies contained in a broadband THz pulse ET(ω) transmitted through 

sample in equilibrium, we can define the total and nonlinear transient transmissions 

ΔET/ET and ΔENL/ET (4.29), respectively. ΔENL/ET reveals the presence and strength 

of the signal due to nonlinearities. The comparison of ΔET/ET with the linear transient 

transmission calculated in the step III) then allows us to discuss the feasibility of 

experimental observation of the nonlinear response. We note that for fields low 

enough to induce just the linear response, Eq. (4.29) will essentially yield the same 

results as Eq. (3.49) used in step III). Outside the transmitted spectrum of ET(ω) (i.e. 

ET(ω) = 0 within the noise floor), ΔET/ET cannot be calculated directly. In this case, 

we estimate the corresponding signal as ΔET/ET,peak where ET,peak is the peak spectral 

amplitude of the field transmitted through the sample in equilibrium. 

 For narrowband THz sources, the individual nonlinearities can be spectrally 

separated, therefore the spectral decomposition of the electric current density (12) can 

be performed. Using (4.27) and (4.28), we then calculate the corresponding transient 

fields ΔE
T

m
. To estimate the strength of the measurable nonlinear signal, we further 

introduce a relative spectrally integrated power signal of the m-th harmonics 

(RSIPS[m]) as the ratio between the powers of the field ΔE
T

m
 at the harmonic frequency 

mω and the field ET transmitted through the structure in the equilibrium 

 








d)(

d)(
RSIPS

2

T

2
T

][

E

mEm
m  . (7.2) 
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We developed this construction since there is no THz detector with sufficient spectral 

resolution and we thus essentially always measure an integral over a continuous spectral 

interval. Also, it represents a more appropriate quantity with respect to possible 

measurements at the FELBE facility where most of the experiments are not 

phase-sensitive as they utilize power detectors [108],[116]-[120]. We note that if the 

calculations were provided for multiple amplitudes of the driving field, it would be 

possible to apply framework analogous to the one from Section 1.2 and thus assess the 

strength of individual nonlinear phenomena contributing to the response. 

7.2 Nanostructures of GaAs 

 Gallium arsenide is a semiconducting material on which a plethora of high-field THz 

studies in the bulk has been conducted recently. This includes among others the studies of 

intervalley scattering and intravalley dynamics [18]-[20], reports on the ultrafast dynamics of 

excitons [26] and polarons [96] and observation of phase-coherent stimulated emission from 

impurities [97]. Regarding the charge transport, there are observations of field-induced 

tunnelling between valence and conduction bands [98], partial Bloch oscillations [21] and 

transition from ballistic to drift-like transport in electron-hole plasma under high THz 

field [22].  

 Since the bulk scattering time in GaAs is rather long (τs = 270 fs) and carrier effective 

mass is rather low (m = 0.07me in the Γ-valley), it constitutes a very promising material 

towards the experimental observation of nonlinear THz conductivity in nanostructures. 

However, we have to be aware of the nonlinear bulk phenomena mentioned above. For our 

work, the most important of these effects is the acceleration of electrons in the conduction 

band of GaAs by the THz electric field which allows the scattering into L- and X-valleys where 

the electron effective mass is higher (which results in much smaller mobility and in turn much 

smaller absorption of THz pulse) [18]-[20]. This effect can be considerably strong (according 

to [20], the absorption may decrease by up to 80% with respect to the linear response for very 

high THz fields of ~ 150 kV/cm, see Fig. 7.22(a) in Section 7.5) and will thus likely 

accompany any nonlinearitites arising due to the charge confinement. Within the incident pulse 

bandwidth, the resulting signal will be then a mixture of signals of different origin and careful 

discussion would be required to identify the dominant contribution. Above this bandwidth, 

however, it is currently unknown to which degree the intervalley scattering yields any signal 

as there are no reports in the literature for GaAs (emerging high-frequency signals were 

observed in InGaAs [23]). In Section 7.5, we estimate the strength of this effect and compare 

it with the nonlinearities due to charge confinement. 

 Using the framework described above, we will investigate the nonlinear responses only 

due to charge confinement in two different nanostructures of GaAs (Fig. 7.4) – nanobars and 

nanowires: 

 The GaAs nanobars have width 250 nm and are separated by 350 nm gaps (Fig. 7.4(a)). 

The layer is 1 μm thick and placed on GaAs substrate. We already verified that such 
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a kind of structure can be prepared by a molecular beam epitaxy followed up by 

a litography.  

 The GaAs nanowires form an array embedded in a polydimethylsiloxane (PDMS) matrix 

(Fig. 7.4(b)). The nanowires are 2 μm long, have 50 nm diameter and their volume filling 

fraction s is 7%. PDMS is a polymer transparent in both the optical and THz range and 

has terahertz permittivity εPDMS ~ 2.56 [121]. Linear response of a similiar array of 

heavily n-doped InP nanowires was studied in [92]. 

 The linear (3.49) and nonlinear (4.29) signals are both limited by the filling factor of 

GaAs and the structure thickness L. For the nanobars, it is possible to significantly increase 

the filling factor by tayloring their width and mutual spacing. However, the achievable aspect 

ratio between the layer thickness and the gap width is limited in the current fabrication process. 

In contrast, the filling factor of the nanowires is strongly limited by the growth process. On the 

other hand, their prolongation is feasible and thus could be exploited to enhance the measurable 

signals. 

 To simplify the analysis, we neglect the dispersion of all equilibrium material 

parameters. While this approximation is valid for most frequencies, it inevitably fails in the 

reststrahlen band of GaAs between the TO and LO phonon modes at the frequencies 8 THz 

and 8.7 THz, respectively [122]. In all Monte-Carlo calculations used in this part, we assume 

Boltzmann statistics and the following parameters: τs = 270 fs, m = 0.07me, T = 300 K. The 

electric field is always assumed to be propagating along the z-axis and polarized in the 

x-direction. Any nonlinearity is thus fully described by the x-component of the electric current 

density jx as symmetry prohibits a non-zero response in the other directions. For the effective 

medium theory, we consider ε
p = ε

GaAs
 ~ 12.6. 

       

Fig. 7.4. Schematic illustration of GaAs nanostructures used for the theoretical study of 

nonlinear THz photoconductivity – nanobars (panel (a)) and nanowire array embedded in 

PDMS matrix (panel (b)). Filling factor of the nanowires: 7%. Both optical pump and THz 

probe beams propagate along z-axis. THz electric field is polarized in the x-direction. 
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 As the nanobars and the substrate are formed by the same material, experimental study 

of this structure may be problematic due to an unwanted signal from the substrate. The 

unwanted signal may be very high compared to the signal from the nanostructure (compare 

bulk mobility of GaAs μ ~ 7×103 cm-2V-1s-1 with the normalized effective photoconductivity 

of nanobars (≲ 30 cm-2V-1s-1) in Fig. 7.5(b)). This signal could be reduced by a deposition of 

a reflective coating onto the substrate prior to the GaAs growth. Even better, the nanowires 

may be embedded in PDMS and separated from the substrate which eliminates the discussed 

problem completely. 

7.2.1 Linear response 

 The linear mobility μ of carriers inside both the nanobars and nanowires 

(Fig. 7.5(a),(d)) was calculated using the Monte-Carlo calculations based on Kubo formalism 

(Section 2.1). The spectrum for the nanowires is blueshifted and has lower amplitude since the 

confining length is shorter. To assess the effective response, we used the brick-wall model 

((3.14) for K = 0 and (4.17)) for the nanobars and the Maxwell-Garnett theory ((3.14) and 

(4.17)) for the nanowires. The calculated normalized effective photoconductivities Δσeff/(Ne0) 

are shown in Fig. 7.5(b),(e). For low enough carrier concentrations (N ≲ 1014 cm-3 for the 

nanobars and N ≲ 1016 cm-3 for the nanowires), the effective conductivity is directly 

proportional to the microscopic conductivity. For higher concentrations, a plasmonic 

resonance develops and blueshifts with increasing number of photoexcited carriers. 

 In experiments, the linear response is characterized by the transient transmission ΔT/T. 

In our case, the thin-film limit is satisfied and ΔT/T is thus directly proportional to the effective 

photoconductivity Δσeff (3.49). The normalized effective photoconductivity Δσeff/(Ne0) then 

represents the effective mobility of the structured system and in this case, it is two orders of 

magnitude lower than the mobility of bulk GaAs (μ ~ 7×103 cm-2V-1s-1). While response of 

bulk GaAs is easily measurable [123], the conductivity measurement of the considered 

structured systems then provides a greater challenge. Indeed, for the intermediate carrier 

concentration N = 1016 cm-3, the absolute values of the measurable transient transmissions are 

≲ 3×10-4 (Fig. 7.5(c),(f)), which is just an order of magnitude above the detection limit of 

common setups [42],[47],[113]. The transient transmission of the nanowires is comparable 

with the values measured for a similar array of heavily n-doped InP nanowires [92]. 

7.2.2 Nonlinear response under broadband THz and multi-THz pulses 

7.2.2.a) THz pulses 

 Here, we investigate the nonlinear response of the GaAs nanobars and nanowires 

induced by the high-field broadband low-frequency THz pulses. We will assume that a pulse 

from Fig. 7.1(a) with peak amplitude 100 kV/cm is incident on the structure. Using the linear 

effective medium theory (Eqs. (4.16) and (3.14)), we first calculate temporal profile and 

spectrum of the field Ep inside a single photoconductive constituent for various concentrations 

of photoexcited carriers. The resulting pulse amplitudes are significantly smaller than the 

amplitude of the incident electric field (Fig. 7.6). This striking decrease is mainly due to the 

high contrast between the permittivities of GaAs and the surrounding non-conducting material, 
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Fig. 7.5. Linear responses of the GaAs nanobars ((a)-(c)) and nanowires ((d)-(f)). (a),(d) 

Linear mobilities of carriers confined within the considered structures calculated using the 

Monte-Carlo calculations based on Kubo formalism. (b),(e) Normalized effective 

photoconductivity spectra for various concentrations N of photoexcited carriers calculated 

using Eqs. (3.14) and (4.17). For low enough concentrations, the spectra are directly 

proportional to the microscopic conductivity. With increacing carrier concentration, 

a plasmonic resonance develops and blueshifts. (c),(f) Linear transient transmission spectra 

calculated from panels (b) and (e), respectively, using Eq. (3.49). 
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and to a lesser extent due to the small filling factor of GaAs. The higher permittivity of PDMS 

(and thus a smaller permittivity contrast) ensures that local fields in the nanowires are stronger 

than in the bare nanobars. Note that the pulse shape slightly changes due to the linear 

photoconductivity dispersion. We also emphasize that the transformation (4.16) is linear in the 

electric field, therefore it does not introduce any new spectral components (Fig. 7.6(b),(e)). 

 For low enough concentrations N, the local field amplitude is almost constant and it is 

close to the value reached without photoexcitation (Fig. 7.6(c),(f)). Carrier concentrations 

exceeding 1014 cm-3 then start to cause a screening of the incident electric field and thus a rapid 

drop of Ep. The decrease is the most pronounced for the concentrations which coincide with 

the build-up of the plasmonic resonance in the effective response (Fig. 7.5(b),(e)). Finally, for 

the highest concentrations, the field is almost completely screened and Ep approaches zero. We 

emphasize that this screening becomes inefficient for frequencies close to the plasmonic 

resonance as the local field is enhanced due to the coupling with the plasmon (Fig. 7.9). 

  

           

Fig. 7.6. THz waveforms inside GaAs nanobars (a),(b) and nanowires (d),(e) induced by 

an incident high-field pulse from Fig. 7.1(a) with peak amplitude of 100 kV/cm. The peak 

amplitude decreases with the increasing carrier concentration N due to the screening caused 

by free charges (c),(f). The temporal profile shape then slightly changes due to the linear 

photoconductivity dispersion of the nanobars.  Solid lines in panels (c) and (f): amplitude 

of Ep without photoexcitation. 
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 Using the non-perturbative Monte-Carlo calculations with fields from Fig. 7.6, we 

assess the nonlinear response of the nanostructures (Fig. 7.7). Despite the rather low fields 

inside the nanobars (Fig. 7.6(a)-(c)), a non-zero nonlinear electric current density jx
NL

 is clearly 

resolved (Fig. 7.7(c)). The nonlinearity is seen as a departure from the linear response (i.e. the 

decrease of the total electric current density with respect to the linear component) and also as 

the tail emerging above the incident frequencies. The responsible nonlinear process is a general 

four-wave mixing between individual spectral components of the driving THz pulse. The 

relative strength of the nonlinearity is clearly the highest for the lowest carrier concentration 

of 1×1015 cm-3 (i.e. the highest electric field inside the nanobars) and decreases with increasing 

concentration (Fig. 7.7(c)) which is in agreement with the same dependence of the local field 

 

Fig. 7.7. Amplitudes of the electric current density induced inside GaAs nanobars ((a)-(c)) 

and nanowires ((d)-(f)) by the incident THz pulses from Fig. 7.1(a) with peak amplitude 

100 kV/cm for various concentrations of carriers N calculated using the non-perturbative 

Monte-Carlo calculations. Clear departure from the linear response  jx
(1)

 and presence of tail 

in the nonlinear component  jx
NL

  above the incident frequencies (gray areas) are observed 

for N ≤ 1016 cm-3 (nanobars) and  N ≤ 3×1017 cm-3 (nanowires), respectively. For the linear 

component, the data above the incident frequencies are just a noise originating from the 

calculations.  Real and imaginary parts of the spectra are shown in the Appendices D and 

E, respectively. We note, that the normalized electric current density  jx/(e0N) represents 

the velocity of carriers. The Fourier transform then reduces the unit of velocity from meters 

per second just to meters. 
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(Fig. 7.6(c)). This decrease is then rather steep and the nonlinearity can be hardly resolved 

already for N ≳ 2×1016 cm-3. This corresponds to local fields Ep ≲ 1.5 kV/cm (Fig. 7.6) and 

the response of the nanobars can be then described solely by the linear theory. 

 For the nanowires, the local fields are higher than for the nanobars and the 

nonlinearities are thus more pronounced (Fig. 7.7(f)). The nonlinear electric current density 

jx
NL

 clearly contains the third harmonics of the incident spectrum followed by a tail. 

In comparison with the nanobars, the tail here extends up to ~ 8 THz which implies 

the involvement of nonlinear phenomena of up to the 7th order. The relative strength of the 

nonlinearity decreases with increasing concentration of photoexcited carriers. 

 The electric current densities jx
(1)

, jx
NL

 and jx calculated so far (Fig. 7.7) characterize just 

the local response of a single constituent within the structure. To evaluate the effective 

response of the entire structure, it is necessary to transform them into the effective electric 

current densities j
(
e
1
f
)
f,x, je

N
f
L
f,x and jeff,x using (4.22), (4.26) and (4.27), respectively. The net 

effective electric current density jeff,x then gives rise to the transient electric field ΔET at the 

output sample surface according to (4.28). This field contains both linear and nonlinear 

contributions ΔE(1) and ΔENL, respectively, linked with the partial electric current densities j
(
e
1
f
)
f,x 

and je
N
f
L
f,x, respectively. We emphasize that if the response of the nanostructure were solely 

linear, only the field ΔE(1) would exist while ΔENL would vanish. The comparison of the total 

transient signal ΔET and the linear contribution ΔE(1) thus allows to assess the role of the 

nonlinearities. 

 The calculated transient amplitudes ΔET, ΔE(1) and ΔENL are shown in Fig. 7.8(a),(c). 

For frequencies within the incident pulse bandwidth (f ≲ 1.3 THz), there are differences 

between the linear and total responses which indicate the presence of a non-zero nonlinear 

component ΔENL (dotted lines in Fig. 7.8): 

 For the nanobars (Fig. 7.8(a)), this nonlinearity can be resolved for carrier concentrations 

lower than 1×1016 cm-3. It is the most distinct for N = 1×1015 cm-3, for which the total 

transient field ΔET is by ~ 20 % lower than the linear transient wave ΔE(1). With 

increasing concentration, the difference between the total and linear transient waves 

becomes less pronounced. 

 For the nanowires (Fig. 7.8(c)), the total and linear field components differ for 

N ≤ 1017 cm-3. The nonlinearity is the most pronounced for N = 5×1015 cm-3, for which 

the transient signal decreases by one third with respect to the linear response. The relative 

strength of the nonlinearity decreases with increasing carrier concentration and for 

N ≳ 3×1017 cm-3 almost no difference between ΔET and ΔE(1) is observed. 

 Above the incident pulse bandwidth (f ≳ 1.3 THz), the linear transient amplitude ΔE(1) 

sharply decreases below the noise floor of the calculations (Fig. 7.8(a),(c)). In contrast, the 

total transient amplitudes ΔET exhibit high-frequency components (similarly to the electric 

current densities from Fig. 7.7) which thus appear solely due to the nonlinear response. For the 

nanowires (Fig. 7.8(c)), the initially decreasing high-frequency tail is followed by a resonant 



 

93 

 

behavior for N ≳ 3×1017 cm-3. This field enhancement stems from the interaction with the 

plasmonic resonance (Fig. 7.5(e)) which overlaps with transient field spectrum for these 

concentrations. 

 From the experimental point of view, there are two phenomena available for the 

measurements – the change of the transient signal for the frequencies within the incident pulse 

bandwidth (i.e. dependence of the transient signal on the local electric field), or the emergence 

of the signal at higher frequencies. As noted in the introduction of this section, we will consider 

that transient transmissions ΔT/T as low as ~ 10-5 is detectable. 

 Within the bandwidth of the pulse ET transmitted through the samples in equilibrium 

(i.e. f ≲ 1.3 THz), we calculate the transient transmissions ΔET/ET, ΔE(1)/ET and ΔENL/ET 

  

Fig. 7.8. (a),(c) Transient amplitudes ΔET (solid), ΔE(1) (dashed) and ΔENL (dotted) at the 

output surface of the investigated nanobar structure (a) and nanowire array (c) for various 

concentrations N of photoexcited carriers. The structures were subjected to the model 

broadband low-frequency THz pulse (Fig. 7.1(a)) with peak amplitude 100 kV/cm. The 

transient amplitudes were calculated from the electric current densities in Fig. 7.7. (b) The 

transient transmission spectra of the nanobars (b) and nanowires (d) in the linear (dashed) 

and the nonlinear regime (solid) calculated using (4.29). 
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directly using (4.29) (Fig. 7.8(b),(d)). Since ΔE(1)/ET is essentially the same as ΔT/T defined 

by (3.49) (the calculated data match each other within the precision of used Monte-Carlo 

calculations), we directly obtain comparison between the measurable linear and nonlinear 

signals (Tab. 7.1). Experimentally, this would require to measure both the linear and nonlinear 

responses and then calculate their difference. In principle, there are two possible approaches. 

The first one is to provide separate measurements in two different setups optimized for low 

and high THz fields, respectively. However, the resulting nonlinear transient transmission 

would then be strongly influenced by inevitable systematic experimental errors (e.g. different 

temporal windowing, different parasitic reflections, different Gouy shift correction etc.). The 

other option is to measure both responses in a single setup. The low field for the linear response 

would be obtained by detuning the source of THz radiation. However, this detuning would 

necessarily increase the noise. To judge the experimental feasibility, it is then necessary to 

consider not only the absolute value of the nonlinear transient transmission ΔENL/ET but also 

its relative strength with respect to the linear transient transmission ΔE(1)/ET. 

 For the nanobars, the highest nonlinear transmission ΔENL/ET ~ 10-5 is reached for the 

carrier concentrations 5×1015 cm-3 and 1016 cm-3. The corresponding linear signals are then 

one order of magnitude higher (Tab. 7.1). The considered nonlinear response of the nanobars 

is then rather weak and we cannot realistically expect its observation in experiments. The 

nanowires then seem to be more promising. However, even for the theoretically most suitable 

carrier concentration 5×1016 cm-3 (ΔENL/ET ~ 7×10-5 while ΔE(1)/ET ~ 3×10-4), it would require 

 

N (cm-3) 
|ΔE(1)/ET| 
(0.5 THz) 

|ΔENL/ET|  

(0.5 THz) 

|ΔENL/ET,peak|  

(1.5 THz) 

 

1015 3×10-5 6×10-6 2×10-6 

5×1015 10-4 10-5 6×10-6 

1016 2×10-4 10-5 5×10-6 

 

N (cm-3) 
|ΔE(1)/ET| 
(0.6 THz) 

|ΔENL/ET| 

(0.6 THz) 

|ΔENL/ET,peak| 

(1.8 THz) 

|ΔENL/ET,peak| 

(7.0 THz) 

5×1015 5×10-5 2×10-5 3×10-5 — 

5×1016 3×10-4 7×10-5 5×10-5 — 

1017 5×10-4 8×10-5 6×10-5 — 

3×1017 9×10-4 3×10-5 3×10-5 6×10-6 

5×1017 10-3 2×10-5 10-5 2×10-5 
 

Tab. 7.1. Summary of the linear ΔE(1)/ET and nonlinear transient transmissions  ΔENL/ET 

and  ΔENL/ET,peak for the GaAs nanobars (a) and nanowires (b) for various concentration of 

photoexcited carriers N. Both structures were subjected to the model THz pulse from 

Fig. 7.8(a) with peak amplitude 100 kV/cm. The frequencies were selected to reflect the 

position of the third harmonics peak. 

(a) 

(b) 
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precise measurements of the responses in both regimes followed by a proper analysis of the 

experimental errors.  

 A more prospective might be the observation of the high-frequency tail present in the 

total transient field ΔET (Fig. 7.8(a)) as linear signal cannot appear above the pulse bandwidth 

(i.e. only noise would be present in the linear response). The experiments would be then much 

simpler then in the previous case – we would have to measure just the high-frequency response 

for a long enough time to reduce the noise which should confirm an existence of the signal. 

Since the transient transmission cannot be calculated directly in this case, we estimate the 

corresponding signal as ΔET/ET,peak where ET,peak is the peak spectral amplitude of the field 

transmitted through the sample in equilibrium (Tab. 7.1). 

 For the nanobars, the estimated maximum transient transmission corresponding to the 

high-frequency tail ΔENL/ET,peak ~ 6×10-6 is reached for N = 5×1015 cm-3. Since this value is 

below the detection limit of 10-5, we do not believe that the experimental confirmation of this 

nonlinearity is feasible. Regarding the nanowires, for concentrations up to 3×1017 cm-3 we 

consider mainly the peaks located at the third harmonic frequencies (f ~ 1.8 THz). The 

estimated corresponding signals ΔENL/ET,peak are above the detection limit (Tab. 7.1) and thus 

detectable (the highest signal 6×10-5 is reached for N = 1017 cm-3). We estimate, that the 

measurement of such signals would last at least 16 hours. Furthermore, these nonlinear 

signals do not depend strongly on the concentration of carriers which could be further 

exploited to confirm that the experimentally observed signal is due to the nonlinear 

conductivity. For N = 5×1017 cm-3, we may consider also the resonance at f ~ 7 THz caused by 

the interaction with plasmon. The estimated corresponding transient transmission is 

ΔENL/ET,peak ~ 2×10-5. However, we do not have an estimate of detection sensitivity for such 

high frequencies. 

 Even though we are assuming high incident field of 100 kV/cm, the corresponding 

nonlinear signals are rather low. Here we briefly discuss possible modifications of the 

investigated nanobar structure which would provide an enhanced signal (these ideas can be 

applied to any non-percolated structure). There are two feasible possibilities – filling air gaps 

with nonconducting material transparent both in optical and THz range to reduce the 

permittivity contrast within the structure, or reduction of the spacing between the nanobars 

which would increase the nanobars aspect ratio. We now estimate how the change of the 

pertinent parameters affects the response. Since the electric field induces just the nonlinearities 

of the third order, we approximate the nonlinear electric current density as jx
NL

 ~ Δσp
(3)

Ep
3 where 

Δσp
(3) is a nonlinear conductivity of the third order. Using (4.29.3) and (4.16), we then express 

the ratio of nonlinear transient transmissions ΔENL/ET as 
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
, (7.3) 

where the index 1 is related to the originally investigated structure from Fig. 7.4(a) and index 

2 denotes the modified structure. The fourth-power dependence implies that a significant 
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enhancement of the measured signal can be achieved1. We now provide several illustrations 

for N = 5×1015 cm-3: 

 First, we consider filling of the air gaps with PDMS which was already used as a matrix 

in the THz study of vertically aligned InP nanowires [92]. Its terahertz permittivity is 

εPDMS ~ 2.56 [121] which would increase the nonlinear signal 30 times. If the filling 

material had permittivity ε = 5, the nonlinear transient transmission would be 270 times 

higher than for the bare nanobars. 

 Reduction of the gap between the nanobars from 350 nm to 100 nm would change both 

s and Qexc, and the nonlinear signal would then increase 20 times. 

 If we filled the gaps with PDMS and reduced them to 100 nm at the same time, the 

nonlinear signal would be 300 times higher (the transient transmission does not depend 

linearly on the spacing and permittivity of the filling material). 

Based on these illustrations, the signals depend more significantly on the permittivity contrast 

within the structure than on the nanobar aspect ratio. Filling with a suitable material is thus 

a more prospective way to signal enhancement. It is also more feasible since the reduction of 

the spacing between the nanobars is almost impossible in the current fabrication process. 

7.2.2.b) Multi-THz pulses 

 The low-frequency THz pulses used in the previous section contain just the frequencies 

up to ~ 1.3 THz (Fig. 7.1(b)). For higher carrier concentrations N, the measurable signal 

at these frequencies is limited by the plasmonic resonance (Fig. 7.5(b),(e)). In contrast, the 

very broad spectra of multi-THz pulses (Fig. 7.1(d)) cover the spectral range where the 

plasmonic resonances enhance the linear transmission (Fig. 7.5(b),(e)). The interaction with 

the plasmon could be then exploited to strongly enhance also the nonlinear response. 

 We assume that the multi-THz pulses from Fig. 7.1(c) are incident on the structures 

(Einc ~ 120 kV/cm). Using (4.16), we first evaluate the local field Ep (Fig. 7.9). Without 

photoexcitation, the spectrum and temporal profile of the local field are directly proportional 

to those of the incident field due to the neglected dispersion of the material parameters. 

For higher concentrations examined here (N ≥ 1017 cm-3), the local field Ep then fundamentally 

changes and its spectrum becomes resonant-like. The resonance blueshifts with N while the 

peak value attains maximum for certain concentration of carriers (N = 7×1017 cm-3 for the 

nanobars and N = 1018 cm-3 for the nanowires). 

 The complicated behavior described above stems from the interaction with the plasmon 

which inherently develops for high carrier concentrations. In order to fully understand it, we 

examine the spectra of the field-enhancement factor Qexc (Fig. 7.9(b),(e)). The factor Qexc is 

given by (3.14) and completely accounts for the sample influence in the applied transformation 

of the incident field (4.16). For N = 0 cm-3 and dispersion-free equilibrium material parameters, 

Qexc is a real constant. This corresponds with the proportionality between the incident and the 

                                                 
1 We note that the field-enhancement factor Qexc depends strongly on the permittivity contrast across the structure 

and to a lesser extent also on the filling factor s. 
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Fig. 7.9. Spectra of the electric field inside the GaAs nanobars (a) and nanowires (d) 

induced by a multi-THz pulse (Fig. 7.1(c)) with peak amplitude 120 kV/cm for various 

concentrations N of photoexcited carriers, calculated using (4.16). Without 

photoexcitation, the local field has same shape as the incident one. For N ≳ 1017 cm-3, the 

spectra exhibit a resonant character which stems from the interaction with the plasmon. 

The corresponding plasmonic resonances are captured in the field-enhancement factors 

Qexc (panel (b) for nanobars and (e) for nanowires) which enter the transformation (4.16). 

The temporal profiles of the local fields (panels (c) and (f)) then consist of slowly damped 

oscillations which last much longer then the incident pulse. Gray areas: reststrahlen band 

of GaAs. 
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local fields observed above. For N ≳ 1017 cm-3, the spectra of Qexc reflect the plasmonic 

resonance – the peak grows and blueshifts with increasing N. The observed asymmetry stems 

from the different behavior of Qexc for low and high frequencies. In the dc-limit, 

Qexc approaches 0 as no permanent electric current can flow through an isolated object. In the 

high-frequency limit, Qexc converges to the equlibrium value since the term Δσp
(1)/ωε0 can be 

neglected in (3.14). 

 We can now fully explain the shapes of the local field spectra (Fig. 7.9(a),(d)). In the 

frequency-domain, the field Ep is a product of the incident field Einc (Fig. 7.1(d)) and the 

field-enhancement factor Qexc (Fig. 7.9(b),(e)) (i.e. transformation (4.16)). Since the spectrum 

of Einc is featureless, the resonant-like character of Ep (Fig. 7.9(a)) clearly originates from the 

plasmonic resonance which is captured in Qexc (Fig. 7.9(b)). The non-monotonous dependence 

of peak amplitude of Ep on the carrier concentration then stems from different characteristics 

of spectra of Qexc and Einc (while the resonant amplitude of Qexc increases and blueshifts with 

increasing N, the spectrum of Einc is non-monotonous and obviously does not depend on N). 

We note, that the interaction with the plasmon leads to the amplification of the local field 

spectral amplitude at certain frequencies in comparison to the equilibrium state. This feature 

could be possibly exploited to resonantly amplify the investigated class of nonlinear 

phenomena. However, we have to be aware of the reststrahlen band in real GaAs (gray areas 

in Fig. 7.9). 

 To provide the entire physical picture, we further examine the dependence of the field 

Ep on carrier concetration in the time-domain (Fig. 7.9(c),(f)). For the sample in the ground 

state, the local field is directly proportional to the incident field (under our assumptions, the 

factor Qexc(ω) does not depend on frequency in this case) and thus has the form of broadband 

practically single-cycle pulses. In the photoexcited case, however, the interaction with the 

narrow plasmon leads to a narrower spectrum which translates into long-lasting damped 

oscillations. The peak field amplitude follows a trend similar to the one in the 

frequency-domain – a maximum exists for certain concentration of carriers and the 

amplification with respect to the equilibrium is also observed. 

 With known the local multi-THz fields Ep, we can proceed with the assessment of the 

nonlinear conductivity using the non-perturbative Monte-Carlo calculations. From now on, we 

treat both considered structures separately.  

 We start with GaAs nanobars and consider a carrier concentration N = 3×1017 cm-3 for 

which the local field amplitude is sufficiently amplified and the corresponding maximum of Ep 

appears well below the reststrahlen band of GaAs (Fig. 7.9(a)). In Fig. 7.10, we show the 

spectra of local electric current densities calculated for various amplitudes of the electric field. 

For the lowest incident field of 10 kV/cm, the total current density jx coincides with the linear 

density jx
(1)

, i.e. the response is purely linear. Strikingly, no nonlinearity is observed even for 

incident field as high as 120 kV/cm (i.e. Ep ~ 12 kV/cm). In contrast, twice lower local field 

was sufficient to induce nonlinear response in the case of THz pulses (Section 7.2.1.b)). To 

understand this, it is necessary to consider the spectra of the pertinent local fields together with 

the microscopic nonlinear coefficients (e.g. Fig. 6.6, although potential well width is different. 
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The spectra for the nanobars would be redshifted). The THz pulses then essentially cover the 

spectral range where the nonlinear coefficients exhibit their maxima. The considered local 

multi-THz fields, however, are suppressed in this spectral range due to the plasmonic 

resonance, while the amplified local field maxima are located at higher frequencies for which 

the nonlinear coefficients already decrease towards zero values. 

 Based on the above discussion, the observation of nonlinear conductivity of the 

nanobars would require extremely strong multi-THz fields. As an example, we show the 

electric current density calculated for the incident field with amplitude 500 kV/cm (i.e. local 

field of ~ 48 kV/cm) in Fig. 7.10. Even such a strong field, however, induces just a weak 

nonlinearity for the frequencies ≲ 2 THz (appearing as the small systematic difference 

between the linear response and the result of non-perturbative Monte-Carlo calculations) while 

the response at high frequencies remains linear. 

 Regarding the experimental feasibility, the air-based multi-THz spectroscopy is not 

a suitable tool for the observation of nonlinear conductivity in the considered GaAs nanobars. 

For the commonly available fields (e.g. ≲ 120 kV/cm achievable in our lab), the response 

of the nanobars is still linear. Although we predicted a weak nonlinear response for extremely 

strong incident fields (≳ 500 kV/cm), such high fields are not yet commonly obtainable by the 

air-based techniques [13]. Moreover, this nonlinearity appears at low frequencies 

(i.e. f ≲ 2 THz) which can be better investigated using the high-field low-frequency THz 

pulses. 

 

Fig. 7.10. Amplitude spectrum of the local electric current density jx inside the GaAs 

nanobars induced by the multi-THz pulse for N = 3×1017 cm-3. Various amplitudes of the 

electric field were considered. Symbols: spectra calculated using the non-perturbative 

Monte-Carlo calculations. Lines: spectra of the linear current density calculated as 

jx
(1)

 = Ne0μEp where μ is the linear mobility of the nanobars. Legend: amplitudes of the 

incident multi-THz field; parenthesis then contain the corresponding peak amplitude of the 

local field inside the nanobars. 
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 For the GaAs nanowires, we will consider the carrier concentration N = 5×1017 cm-3 

for which the amplified part of the local field still partly lies below the reststrahlen band of 

GaAs (Fig. 7.9(d)). The corresponding electric current densities are shown in Fig. 7.11. Unlike 

for the nanobars (Fig. 7.10), a strong nonlinear component exists for higher amplitudes of the 

electric field (Fig. 7.11(c)). This is due to the shorter confining length of the nanowires. The 

corresponding spectra of the nonlinear coefficients are then blueshifted and thus better overlap 

with the multi-THz pulses. 

 To describe the response of the entire nanowire array, we further transform the local 

electric current densities from Fig. 7.11 into their effective counterparts j
(
e
1
f
)
f,x, je

N
f
L
f,x and jeff,x using 

(4.22), (4.26) and (4.27), respectively, which are shown in Fig. 7.12. For the highest considered 

electric field, the spectra of jeff,x (Fig. 7.12(c)) and jx (Fig. 7.11(a)) fundamentally differ as the 

peak at 7.2 THz splits in the effective response. This splitting is caused by the interaction with 

the plasmonic resonance. For proper understanding, we have to carefuly examine the applied 

transformations. The effective and local linear current densities are mutually scaled by the 

equilibrium field-enhancement factor Q (4.22). Since we neglect the dispersion of equilibrum 

permittivities, the factor Q is constant and shape of the current density spectrum is thus 

preserved. The effective and local nonlinear current densities, however, are linked by the 

field-enhancement factor Qexc for the photoexcited structure (4.26). For the considered carrier 

concentration, the factor Qexc exhibits a resonant behavior (Fig. 7.9(e)) which enhances the 

effective nonlinear electric current density je
N
f
L
f,x around the resonant frequency. The 

corresponding peaks in j
(
e
1
f
)
f,x and je

N
f
L
f,x are then mutually shifted and for high enough fields, their 

amplitudes become comparable. The total effective electric current density follows 

jeff,x = j
(
e
1
f
)
f,x + je

N
f
L
f,x. Since the linear and nonlinear components have different polarity (the total 

 

Fig. 7.11. Amplitudes of the local electric current density jx induced in the GaAs nanowires 

induced by the multi-THz pulses for N = 5×1017 cm-3. Various amplitudes of the electric 

field were considered. The total electric current density jx (a) was calculated using the 

non-perturbative Monte-Carlo calculations. The linear current density  jx
(1)

 (b) was found as 

jx
(1)

 = Ne0μEp where μ is the linear mobility of the nanobars. The nonlinear component is 

then jx
NL = jx − jx

(1)
 (c). Gray areas: reststrahlen band of GaAs. Incident fields 120 kV/cm 

and 200 kV/cm correspond to the local fields 45 kV/cm and 76 kV/cm, respectively. 
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density is always lower than the linear density), jeff,x is here actually a difference of two close 

peaks of similar amplitudes which explains the observed splitting. We emphasize that the shift 

between the corresponding linear and nonlinear peaks depends on the concentration 

of photoexcited carriers. This feature could be exploited to avoid the reststrahlen band of GaAs 

in experiments. 

 In analogy to the broadband low-frequency THz pulses, we further evaluate the 

transient amplitudes ΔE(1) and ΔET at the output sample surface (Fig. 7.13(a)) which are linked 

to the corresponding effective electric current densities according to (4.28). The linear signal 

ΔE(1) vanishes above ~ 20 THz (there is just a noise which scales proportionally to the incident 

electric field). For higher incident electric fields, a pronounced high-frequency component 

emerges (f ≳ 20 THz) in the total signal, thus indicating a strong nonlinear response. At the 

same time, the spectrum of transient amplitude fundamentally changes within the incident 

pulse bandwidth (f ≲ 20 THz). 

 We now discuss the calculated results with respect to potential experiments. 

Practically, it is possible to measure either the dependence of the transient signal on the electric 

field, or the emergence of the high-frequency signal. Previously, we considered that the 

common THz setups allow detection of transient transmissions as low as ~ 10-5. For the 

air-based multi-THz setups, however, the sensitivity is necessary lower due to air fluctuations 

and inherent absorption in the water vapors [47]. Furthemore, a significant decrease of detector 

sensitivity is expected above the multi-THz pulse bandwidth as a result of limited gating laser 

pulse bandwidth. 

 Regarding the field-dependence of the signal within the incident pulse bandwidth 

(i.e. f ≲ 20 THz), we directly calculate the total ΔET/ET, linear ΔE(1)/ET and nonlinear ΔENL/ET 

transient transmissions using (4.29) (Fig. 7.13(b)). In Tab. 7.2, we compare the transient 

transmissions ΔE(1)/ET and ΔENL/ET for frequencies which correspond to the maximum of 

 

Fig. 7.12. Amplitudes of the effective electric current densities induced in the GaAs 

nanowires induced by the multi-THz pulses for N = 5×1017 cm-3. Various peak amplitudes 

of the electric field were considered. The effective current densities were calculated from 

their local counterparts from Fig. 7.11 using the transformations (4.22), (4.26) and (4.27), 

respectively. The splitting of the main peak in the total effective electric current density  

jeff,x (c) appears for 200 kV/cm due to the interaction with the plasmon. 
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linear signal (f = 7.3 THz) and to the peak which appears for 200 kV/cm due to the interaction 

with plasmon (f = 10.2 THz). In both cases, the linear and nonlinear signals are comparable to 

each other. Since the transient transmissions are of order 10-2 and the their spectrum 

fundamentally changes with increasing field, the nonlinearity should be easily detectable by 

the measurement of both the linear and nonlinear responses in a single setup.  

 The other option is the emergence of the high-frequency response in the total transient 

field (Fig. 7.13(a)) for strong incident multi-THz fields. Similarly to the THz pulses, we 

estimate the corresponding signal as ΔET/ET,peak where ET,peak is the peak spectral amplitude of 

the field transmitted through the sample without photoexcitation. The estimated corresponding 

nonlinear transient transmissions are of order 10-4 (Tab. 7.2). As discussed above, the detection 

of such signals may be problematic in the current multi-THz setups. 

 The predicted high values of nonlinear transient transmission for GaAs nanowires 

appear promising for experiments. However, we will later argue (in Section 7.5) that the 

THz-induced intervalley scattering leads to comparable signals for nanostructures with 

dimensions ≲ 50 nm (Figs. 7.22(a) and 7.23(b)). The detected signal will then contain 

information on both nonlinear phenomena with no simple way to disentangle them from each 

other. For larger nanostructures, we can hardly resolve any nonlinearity due to charge 

confinement in the multi-THz range (Fig. 7.10). We thus conclude that the multi-THz 

 

Fig. 7.13. (a) Total and linear transient amplitudes ΔET (solid) and ΔE(1) (dotted), 

respectively, at the output surface of the investigated nanowire array for various peak 

amplitudes of the incident multi-THz pulse. Carrier concentration N = 5×1017 cm-3 was 

considered. The amplitudes were calculated from the effective electric current densities 

in Fig. 7.12 using (4.28). Above the incident pulse bandwidth (f ≳ 20 THz) the linear 

transient amplitudes ΔE(1) consist just of a noise originating from the measured multi-THz 

pulse. (b) The transient transmission spectra of the nanowires calculated from the transient 

fields in panel (a) using (4.29). The response for 10 kV/cm may be considered linear. Gray 

areas: reststrahlen band of GaAs. 
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spectroscopy is not a suitable technique for experimental confirmation of nonlinearities due to 

charge confinement in semiconductor nanostructures. 

7.2.3 Nonlinear response under narrowband pulses generated by free electron 

laser 

 In this section, we study the nonlinear response of the GaAs nanobars and nanowires 

(Fig. 7.4) under the narrowband pulses generated by free electron lasers. Unlike the broadband 

THz and multi-THz pulses, the pulses generated by free electron laser are composed of several 

cycles which implies that the pulse reshaping due to the dispersion and phase change is 

unimportant. This allows a simplification of the computational procedure: we assume a fixed 

pulse shape inside the nanostructures (that from Fig. 7.1(e)) and then we find just the 

corresponding amplitude of the incident pulse for given concentration of carriers N (using 

(4.16)). This avoids the necessity to re-evaluate the incident pulse shape change for each carrier 

concentration. To evaluate the experimental signal, we have to further calculate the waves ET 

transmitted through the sample without photoexcitation using (4.12.3).  

 Pertinent electric field parameters entering our calculations are estimated based on the 

outputs of the FELBE facility (Fig. 7.2) [106]-[108]. The other parameters depend on the 

investigated structure and are selected to correspond with the response of the high-field 

low-frequency THz pulses (Section 7.2.2.a)): 

 For the nanobars, we assume local field with amplitude 5 kV/cm in the time-domain 

(i.e. peak spectral amplitude Ap ~ 1.3×106 V/m/THz) and carrier concentration 

N = 5×1015 cm-3. The corresponding incident fields are then Einc ~ 80 kV/cm  

(for 1.5 THz ≤ f0 ≤ 1.8 THz). 

 For the nanowires, we consider local fields with amplitude 20 kV/cm and carrier 

concentration N = 1017 cm-3. The amplitudes of Einc then somewhat depend on the pulse 

central frequency f0 and are summarized in Tab. 7.3. 

 

Einc 

(kV/cm) 

f = 7.3 THz f = 10.2 THz f = 22.0 THz 

|ΔE(1)/ET| |ΔENL/ET| |ΔE(1)/ET| |ΔENL/ET| |ΔENL/ET,peak| 

120 
3×10-2 

1.4×10-2 
1.4×10-2 

7×10-3 1×10-4 

200 2.4×10-2 2.0×10-2 4×10-4 
 

Tab. 7.2. Summary of the linear ΔE(1)/ET and nonlinear transient transmissions  ΔENL/ET 

and  ΔENL/ET,peak for the GaAs nanowires for peak various amplitudes of the incident 

multi-THz pulse. Carrier concentration N = 5×1017 cm-3 was considered. The selected 

frequencies correspond to the maximum of the linear transient transmission (f = 7.3 THz), 

the peak appearing for field 200 kV/cm due to the interaction with the plasmon 

(f = 10.2 THz) and the high-frequency tail (f = 22.0 THz). 
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f0 [THz] 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

Einc [kV/cm] 128 125 122 118 115 108 105 98 
 

Tab. 7.3. Incident electric fields Einc required to obtain the local field 20 kV/cm inside the 

nanowires for  N = 1017cm-3 and given central frequency f0 of the free electron laser pulses. 

The fields were calculated using the Maxwell-Garnett effective medium theory ((4.16) and 

(3.14)). 

 

Fig. 7.14. Mean transverse velocity vx of carriers inside the GaAs nanobars for several 

central frequencies f0 of the driving FELBE pulse ((7.1), Fig. 7.1(e),(f)) calculated by the 

non-perturbative Monte-Carlo calculations. The field amplitude inside the nanobars was 

always 5 kV/cm. The velocity spectra are normalized by the peak spectral amplitude 

Ap ~ 1.3×106 V/m/THz of the driving electric field. The ratio vx/Ap gives a rough estimate 

of the mobility of carries inside the nanobars. The corresponding current density jx is 

evaluated for N = 5 × 1015 cm-3. Panels (a)-(c) show the peak located at the fundamental 

frequency while panels (d)-(f) show response at the third harmonic frequency. We identify 

the latter peaks with the harmonic components of velocity vx
[3]

(3ω0) and electric current 

density jx
[3]

(3ω0), respectively, which were introduced in Section 1.2. 

1600

1200

800

400

0

R
e 

v x
/A

p
 (

cm
2
V

-1
s-1

)
15

10

5

0

R
e 

j x
 (

k
A

/c
m

2
/T

H
z)(a) Real part

vx
[1], jx

[1]

1

0

-1

-2

-3

R
e 

v x
/A

p
 (

cm
2
V

-1
s-1

) 10

0

-10

-20

-30

R
e 

j x
 (

A
/c

m
2
/T

H
z)

(d)

Real part

vx
[3], jx

[3]

1600

1200

800

400

0

Im
 v

x
/A

p
 (

cm
2
V

-1
s-1

)

15

10

5

0
Im

 j
x
 (

k
A

/c
m

2
/T

H
z)(b)

Imaginary

part

vx
[1], jx

[1]

1.5

1

0.5

0

-0.5

Im
 v

x
/A

p
 (

cm
2
V

-1
s-1

)

15

10

5

0

-5

Im
 j

x
 (

A
/c

m
2
/T

H
z)(e)

Imaginary part

1 1.5 2

Frequency f  (THz)

2400

2000

1600

1200

800

400

0

|v
x
/A

p
| 

(c
m

2
V

-1
s-1

) 24

16

8

0

|j
x
| 

(k
A

/c
m

2
/T

H
z)

(c)
vx

[1], jx
[1]

Amplitude

3 5 7

Frequency f  (THz)

4

3

2

1

0

|v
x
/A

p
| 

(c
m

2
V

-1
s-1

)

40

30

20

10

0

|j
x
| 

(A
/c

m
2
/T

H
z)

   f0 (THz)

1.5

1.6

1.7

1.8

(f)
Amplitude

vx
[3], jx

[3]



 

105 

 

 The conductivity of the both structures under the free electron laser pulses was assessed 

using the non-perturbative Monte-Carlo calculations. For the nanobars, the calculated electric 

current densities jx contain a distinctive peak located at the fundamental frequency f0 

(Fig. 7.14(a)-(c)) and another peak at the third harmonic frequency 3f0 (Fig. 7.14(d)-(f)). 

Within the framework of theformalism developed in Section 1.2, we identify these peaks with 

the harmonic electric current density components jx
[1]

(ω0) and jx
[3]

(3ω0). The amplitudes of 

higher harmonic components are at best comparable with the noise originating from the 

calculations and can be safely neglected. The third-order harmonic electric current density 

jx
[3]

(3ω0) is thus linked solely to the third harmonics generation while the first order component 

jx
[1]

(ω0) contains contributions arising due to the linear response and the third-order nonlinear 

process resulting in the frequency ω0 = ω0 − ω0 + ω0.  

 The response of the nanowires (Fig. 7.15) exhibits similar features and in addition, we 

can also resolve the peak located at the fifth harmonic frequency 5f0 which we identify with 

the harmonic electric current density jx
[5]

(5ω0). This implies that the response at the 

fundamental and the third harmonic frequencies is generally influenced also by the 

nonlinearities of the fifth order. Several third and fifth harmonic frequencies lie within the 

reststrahlen band of GaAs (gray areas in Fig. 7.15). Although the experimental obsevation of 

the signal at these frequencies is hindered due to the interaction with phonons, we keep the 

calculated data just for the illustration. The changes of the sign of real and imaginary parts of 

jx
[3]

(3ω0) and jx
[5]

(5ω0) are due to the phase of carrier motion which is different for each central 

frequency of the driving electric field.  

 In the following analysis, we focus on the third harmonics generation which should be 

in principle easily detectable in the experiments due to the frequency separation. For the 

nanobars, the third-order harmonic electric current density jx
[3]

(3ω0) is 600 times lower than the 

current density at the fundamental frequency (Fig. 7.14(e),(f)). Therefore, the response at the 

fundamental frequency is dominated by the linear conductivity and its change due to the 

nonlinearities is negligible. Similar conclusions hold also for the nanowires despite the higher 

efficiency of the third harmonics generation. In addition, we also neglect the influence of the 

fifth order nonlinearities. 

 The third harmonics generation gives rise to the transient field ΔE
T

3
(3ω0) emitted from 

the entire structure. Since we neglect nonlinear phenomena of higher orders, Eq. (4.27) and 

(4.28) together with the appropriate effective medium theories (brick-wall model (3.14.2) for 

the nanobars and Maxwell-Garnett theory (3.14.1) for the nanowires) yield 
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Fig. 7.15. Mean transverse velocity vx of carriers inside the GaAs nanowires for several 

central frequencies f0 of the driving FELBE pulses ((7.1), Fig. 7.1(e),(f)) calculated by the 

non-perturbative Monte-Carlo calculations. The field inside the nanowires was always 

20 kV/cm. The velocity spectra are normalized by the peak spectral amplitude 

Ap ~ 5.1×106 V/m/THz of the driving electric field. The ratio vx/Ap gives rough estimate of 

the mobility of carries inside the nanowires. The electric current density jx corresponds to 

N = 1017 cm-3. Panels (a)-(c) show the peak located at the fundamental frequency while 

panels (d)-(f) and (g)-(i) show response at the third and fifth harmonic frequencies, 

respectively. We identify these peaks with the harmonic components of velocity vx
[m]

(mω0) 

and electric current density jx
[m]

(mω0), respectively, which were introduced in Section 1.2. 

Gray areas: reststrahlen band of GaAs. Black arrows outside the graphs indicate the y-axes 

displaying the same quantity. 
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where ε
air

 is the permittivity of air, n
GaAs

 is the refractive index of GaAs, d
GaAs

 and d
air

 are the 

width of the nanobars and the spacing between them, respectively and μ is the linear mobility 

of either the nanobars (7.4.1), or the nanowires (7.4.2) (Fig. 7.5(a),(d)). In comparison with 

the high-frequency tail in the response driven by the model high-field THz pulses 

(Fig. 7.1(a),(c)), the calculated field amplitudes reach similar values for the nanobars 

(Fig. 7.16(a)) and are an order of magnitude higher in the case of nanowires (Fig. 7.16(c)). We 

further evaluate the corresponding (RSIPS[3]) using the definition (7.2). In the covered spectral 

range, the expected signal decreases monotonously with the pulse frequency f0 

(Fig. 7.16(b),(d)). The maximum RSIPS[3] values are ~ 4×10-13 for the nanobars and ~ 4×10-8 

for the nanowires. 

 

Fig. 7.16. (a),(c) Amplitudes of the third harmonics electric field ΔE
T

3
 emitted from the 

GaAs nanobars (a) and the nanowires (c) for various frequencies f0 of the driving free 

electron laser pulses. The amplitudes were calculated from the electric current density jx in 

Figs. 7.14 and 7.15, respectively, using  (7.4). (b),(d) The relative spectrally integrated 

signal (RSIPS[3]) (7.2) corresponding to the third harmonics fields from panels (a) and (c). 

For the nanobars, we assumed Ep = 5 kV/cm and  N = 5×1015 cm-3. For the nanowires, 

Ep = 20 kV/cm and N = 1017 cm-3 were considered. 
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 To assess the feasibility of experiments, we first draw a comparison with the 

time-domain techniques. Since the presented RSIPS[3] is related to the power transported by 

the waves, we will consider its square root which roughly gives the transient change in the 

electric fields. For the nanobars, the maximum transient signal in the fields is then 

ΔENL/ET ~ 6×10-7. This is an order of magnitude lower than the nonlinear transient 

transmission predicted for the model high-field THz pulses (Tab. 7.1). The predicted third 

harmonics generation thus cannot be observed by the time-domain detection techniques, since 

the common setups allow the detection of signals as low as 10-5 [42],[47],[113]. Regarding the 

power measurements, since the incident power is 10 W ≲ Pinc ≲ 20 W (Fig. 7.2(c)), we 

estimate the power of the third harmonics as ~ 10 pW. We do not believe that such a low power 

would be detectable with regard to the presence of much stronger background around the 

fundamental frequency f0. 

 The nanowires are more promising since the RSIPS[3] is five orders of magnitude 

higher. In the electric fields, this would correspond to the nonlinear transient transmission 

ΔENL/ET ~ 2×10-4 which would be easily detectable. In the power measurements, this would 

be equivalent to ~ 4 μW (based on the data from Fig. 7.2(c)). Such powers can be measured 

by available power detectors. In reality, however, the free electron laser radiation itself exhibits 

a third harmonics component as a result of nonlinear interactions in optical elements which 

guide the radiation towards the sample. Since the powers of the FELBE pulses are between 

10 W and 30 W in this case (Fig. 7.2(c)), it is unrealistic to expect that the "natural" third 

harmonics are comparable to or below the level of the predicted third harmonics generation 

from the nanowires. We thus conclude, that the FELBE facility is not suitable for the 

experimental observation of predicted nonlinear phenomena. 

7.3 ZnO nanoparticles and CdS nanocrystals 

 While the nanostructures of GaAs (Section 7.2) are promising towards an experimental 

observation of nonlinearities due to the carrier confienement, their fabrication requires 

an application of advanced techniques (such as molecular beam epitaxy followed up by 

litography). An important limitation of these fabrication processes are a low volume filling 

fraction of the photoconductive material and rather small dimensions of the samples. In this 

section, we consider structures which can be easily prepared by much simpler chemical 

methods. Also, such structures are typically much more tightly packed which significantly 

increases their filling factor and their thickness is scalable. However, the morphology of the 

entire system can become more complicated since percolation pathways may appear.  

 Here, we focus on the nonlinear response of films of ZnO nanoparticles with diamaters 

30 nm and 50 nm (which can be prepared by sol-gel technique [110]) and CdS nanocrystals 

with diameter 6 nm (which can be obtained by chemical bath deposition [112]). The linear 

THz responses of these systems (which are partly percolated) were covered in [27] and [111], 

respectively. We consider, that both structures are in the form of a thin film with thickness 

L = 1 μm placed on a quartz substrate (ns ~ 2). 
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 To account for percolation, we have to appropriately modify our non-perturbative 

Monte-Carlo calculations (Section 2.2) and our nonlinear effective medium theory (Section 4):  

 In the Monte-Carlo method, we need to modify the carrier interaction with the 

nanoparticle boundary. We will assume that carriers are either reflected elastically and 

specularly with probability prel, or they pass through the boundary into a neighboring 

nanoparticle with probability pt (while their velocity does not change during this 

process). It is obvious that prel + pt = 1. In the calculations, we apply parameters from 

[27] and [111] (Tab. 7.4). In fully isolated nanoparticles (i.e. without percolation), pt 

would be equal to 0 and the simulations would revert to those in previous sections. 

 Regarding the effective medium theory, we propose a rather simple approximation. 

In the studies of the linear response of structures considered here, it was concluded that 

the structures are percolated [27],[111]. In the VBD model of effective medium (3.3), 

the linear transient transmission ΔE(1)/ET is then directly proportional to the product 

VΔσp
(1)

(ω) = VΔjp
(1)

(ω)/Ep(ω). To make a simple estimate, we assume that the nonlinear 

response scales in the same way. The nonlinear transient transmissions (4.29) then read 
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 We start with the response of ZnO nanoparticles under FELBE pulses ((7.1), 

Fig. 7.1(e),(f)) with field amplitude Einc = 35 kV/cm in the time-domain (corresponding 

to peak spectral amplitude Ainc ~ 9×106 V/m/THz). The local field in the nanoparticles is then 

Ep = 20 kV/cm (i.e. local peak spectral amplitude Ap ~ 5.1×106 V/m/THz). The calculated 

electric current densities exhibit a distinct peak located at the fundamental frequency of the 

FELBE pulse f0 (Fig. 7.17(a),(c)): its amplitude is considerably lower than for the 

nanostructures of GaAs (Figs. 7.14 and 7.15) due to much lower carrier mobility in ZnO 

(μGaAs ~ 7×103 cm-2V-1s-1; μZnO ~ 200 cm-2V-1s-1). For 30 nm-sized nanoparticles, we can 

barely resolve the peaks emerging at the third harmonic frequency 3f0 (Fig. 7.17(b)) with the 

electric current density 100 times lower than at the driving frequency f0. For the nanoparticles 

Material m τs (fs) pt T (K) Statistics s 

ZnO 0.24 27 0.20 
300 Boltzmann 

0.7 

CdS 0.20 16 0.34 0.8 
 

Tab. 7.4. Summary of the parameters entering the calculations of nonlinear response of 

ZnO nanoparticles and CdS nanocrystals. The parameters were taken from the Refs. [27] 

and [111]. 
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Fig. 7.17.  Mean transverse velocity vx of carriers inside ZnO nanoparticles with diameter 

30 nm ((a)-(d)) and 50 nm ((e)-(h)) for several frequencies f0 of the driving FELBE pulses 

(Fig. 7.1(c),(d)) calculated by the non-perturbative Monte-Carlo approach. The incident 

fields had amplitudes 35 kV/cm and 70 kV/cm, respectively, in the time-domain. 

The velocity spectra are normalized by the peak spectral amplitude Ap (~ 5.1×106 V/m/THz 

for 35 kV/cm, and ~ 107 V/m/THz for 70 kV/cm) of the local electric field which gives 

a rough estimate of the mobility of carries in the nanoparticles. The corresponding current 

density jx (right axis) is illustrated for N = 1017 cm-3.  The left column shows the response 

at the fundamental frequency while the right column shows the peaks emerging at the third 

harmonic frequencies. 
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with diameter 50 nm, the third harmonics generation is even weaker compared to the response 

at f0 (Fig. 7.17(e),(f)). This is due to the longer confinement length which enhances the 

amplitude of the linear response but at the same time it suppresses the nonlinearities due to the 

charge confinement. Even if we increase the incident field to e.g. 70 kV/cm (which correspond 

to the local field 40 kV/cm), the nonlinear response remains rather weak (compare Fig. 7.17 

e.g. with the response of GaAs nanowires in Fig. 7.15); in this situation, intrinsic nonlinearities 

are expected to dominate the response. 

 Using (7.5), we provide upper estimates (i.e. sQ2 = 1) of measurable transient 

transmissions for carrier concentration N = 1017 cm-3. In the calculation, we identify a peak 

located at the fundamental frequency f0 with the linear component of the electric current 

density jp
(1)

 and the peak at the third harmonic frequency 3f0 with the nonlinear component jp
NL

. 

The estimated maximum linear transient transmissions are ΔE(1)/ET ~ 0.03 and the 

corresponding nonlinear signals ΔENL/ET are two orders of magnitude smaller (Tab. 7.4). The 

linear signals are thus rather high compared to the nanostructures of GaAs (Section 7.2.3) 

while the measurable nonlinear signals are comparable despite considerably weaker nonlinear 

conductivity of ZnO nanoparticles. The reason is the percolation between ZnO nanoparticles 

which leads to a stronger effective response (both the linear and nonlinear contributions scale 

in the same way (7.5)) than in the non-percolated nanostructures of GaAs. However, we cannot 

realistically expect to observe such signals experimentally due to the comparably strong 

"natural" third harmonics originating from nonlinear interactions in optical elements guiding 

the radiation (see discussion in Section 7.2.3). In addition, the real signals will be necessarily 

lower since V ≤ 1 (percolation strength V ~ 0.55 for the sample investigated in [27]).  

 In principle, we could increase the nonlinear signals by increasing the concentration 

of carriers. However, this would break the assumed limit of small linear signal and the linear 

transient transmission will then follow the Tinkham formula (3.50) (where we consider 

Δσeff = Vjp
(1)

/Ep). Obviously, this will compromise the nonlinear signals calculated by (7.5) and 

ZnO Einc (kV/cm) |ΔE(1)/ET|(ω0) |ΔENL/ET|(3ω0) 

30 nm 
35 

0.03 
2×10-4 

70 5×10-4 

50 nm 
35 

0.03 
2×10-4 

70 3×10-4 
 

Tab. 7.4. Upper estimates of the linear ΔE(1)/ET and nonlinear ΔENL/ET transient transmissions 

for the ZnO nanoparticles (diameters 30 nm and 50 nm) placed on a quartz substrate probed by 

the FELBE pulses (Fig. 7.1(e),(f)). The linear and nonlinear transmissions correspond to the 

peaks in the electric current density located at the fundamental and third harmonic frequencies, 

respectively, and were calculated using (7.5). Carrier concentration: N = 1017 cm-3. 
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we would thus need to provide a more advanced theory. Development of such approach lies 

beyond the scope of this work. 

 We now briefly discuss why the broadband approaches are not expected to perform 

better high-field experiments. For the terahertz range (i.e. f ≲ 3.0 THz), we expect signals 

which are at best as high as those for the FELBE pulses (Tab. 7.4; calculations for GaAs 

nanowires indicated that the broadband THz signal is at least by a half order of magnitude 

lower than the narrowband signal (Section 7.2)). In the multi-THz range, the nonlinearity 

decreases considerably already for frequencies above ~ 5 THz as a result of conductivity 

 

Fig. 7.18. Amplitudes of the local electric current density jx induced in 6 nm-sized CdS 

nanocrystals (NC) induced by the FELBE (Fig. 7.1(c),(d)) with frequencies f0 calculated 

using the non-perturbative Monte-Carlo calculations. Several amplitudes of the local 

electric field Ep were considered. The calculations were provided both for the percolated 

(solid lines) and isolated (dashed and dotted lines) nanocrystals. Panel (a) shows the 

response at the driving frequency f0 while panel (b) shows the corresponding third 

harmonics generation (for 20 kV/cm, the response is below the noise floor of the 

calculations). Carrier concentration N = 1017 cm-3 was considered. pt is the probability of 

charge transfer into neighboring NC. 
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decrease due to inertia of carriers. This cannot be compensated by an enhancement due to 

plasmonic resonance as it does not develop in the percolated nanoparticles.  

 Using the modified non-perturbative Monte-carlo calculations, we also calculated 

the conductivity of 6 nm-sized CdS nanocrystals for the FELBE pulses. For the local field 

amplitude Ep = 20 kV/cm, however, no third harmonics generation is observed and the 

response can be thus considered linear (Fig. 7.18). For further understanding of this negative 

result, we provide additional calculations for isolated nanocrystals (i.e. pt = 0 and prel = 1 in the 

Monte-Carlo calculations). The long range transport is then prohibited and the conductivity 

spectrum is determined just by the charge confinement. In turn, the amplitude of the linear 

conductivity should decrease while the strongest nonlinearities are expected. The calculated 

response, however, remains linear (Fig. 7.18, although the linear conductivity indeed 

decreases) and we thus attribute the lack of strong nonlinear behavior to the combination of 

low carrier mobility in CdS (μCdS ~ 140 cm-2V-1s-1), strong interparticle charge transport 

(i.e. high pt) inhibiting the role of the confinement and small nanocrystal diameter. To resolve 

the third harmonics generation in the conductivity spectra of the isolated nanocrystals, we 

would need to increase the local field at least up to 40 kV/cm (Fig. 7.18(b)).  

 We thus conclude that the investigated 30 nm and 50 nm-sized ZnO nanoparticles are 

not very promising for the considered experiments at the FELBE facility. While the percolation 

between individual nanoparticles substantially limits the local nonlinearities, at the same time 

it provides considerable enhancement of nonlinearities in the effective response. The 

corresponding transient transmissions, however, are at best comparable with the parasitic 

contributions (see the discussion in Section 7.2.3).  The broad-band techniques are then even 

less suitable due to expected lower signals. The response of percolated CdS nanocrystals with 

diameter 6 nm remains linear even for rather high fields. The main reasons are the low carrier 

mobilities (~ 140 cm-2V-1s-1) and the charge confinement weakened by the existing 

percolation. 

7.4 The most promising structure – metallic nanoslits filled with GaAs 

nanobars 

 In previous sections, we studied nanostructures where the semiconducting parts were 

surrounded by a non-conducting material. In these systems, the local electric field Ep is 

typically considerably lower than the incident electric field Einc due to the structure 

morphology (captured in the field-enhancement factors Q and Qexc) and Fresnel losses (4.16) 

which limits the strength of any nonlinearities. In a striking contrast, it is well known that 

metallic structures can concentrate the electric field into insulating gaps (enhancements in the 

order of several thousands with respect to the incident field were reported in [124]-[126]). This 

could be potentially exploited to observe much stronger nonlinear phenomena. 

 Here, we consider a periodic structure consisting of 250 nm wide GaAs nanobars 

placed between 2250 nm wide gold stripes (Fig. 7.19). The width of the nanobars is thus the 

same as in Section 7.2, but they fill only 10% of the entire structure (compared to 42% 

in Section 7.2). The structured layer is 1 μm thick and lies on a GaAs substrate (this is dictated 
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by the fabrication requirements; we will discuss later that the photosignal possibly originating 

from the substrate is not very important for the considered system).  

 To assess the nonlinear response due to charge confinement of the slit-structure 

(Fig. 7.19), we employ the framework described in Section 7.1. The permittivity εh of gold 

reads 

 ,i)(
0

h
h




  (7.6) 

where σh = 4.5×105 S/cm is the dc conductivity of gold at room temperature [127]. Due to the 

low charge scattering time in gold (τs ~ 27 fs [127]), we can neglect the dispersion of 

conductivity and consider it constant in the investigated frequency range. Similarly as in 

previous sections, we consider εp ~ 12.6 without dispersion for non-photoexcited GaAs which 

is plausible outside the reststrahlen band between 8 THz and 8.7 THz [122]. In the 

Monte-Carlo calculations used in this part, we assume Boltzmann statistics and the following 

parameters: τs = 270 fs, m = 0.07me, T = 300 K.  

7.4.1 Linear response 

 The linear mobility μ of carriers confined in the GaAs nanobars (Fig. 7.20(a)) was 

calculated using the Monte-Carlo calculations based on Kubo formalism (the spectrum is the 

same as in Fig. 7.5(a)  in Section 7.2.1). Using the brick-wall model (3.10) (with permittivity 

εh given by (7.6)), we further assess the effective response of the entire slit-structure.  

 In the limit of a weak photoexcitation (i. e. low N), the conductivity of photoconductive 

parts Δσp = Ne0μ (e.g. Δσp ~ 0.5 S/cm for N = 1015 cm-3) is negligible compared to the 

conductivity of gold (σh = 4.5×105 S/cm [127]). The term εp + iΔσp/(ωε0) in the denominator 

of (3.10) can be then neglected and the normalized effective photoconductivity Δσeff/(e0N) of 

       

Fig. 7.19. Schematic illustration of GaAs (gray) nanobars filling the gold (yellow) nanoslits 

for the theoretical study of nonlinear THz photoconductivity. Filling factor of the nanobars 

is 10%. Both optical pump and THz probe beams propagate along the z-axis. The THz 

electric field is polarized in the x-direction. 
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the structure is thus directly proportional to the mobility of carriers confined in the GaAs 

nanobars 

 , 1
)(
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h
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eff

sd

d
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 (7.7) 

where the proportionality constant does not depend on N and it is equal to the reciprocal value 

of filling factor s. This can be understood in terms of electric circuits. Since gold is a very good 

conductor, the voltage drops are present just on the GaAs nanobars which directly implies the 

1/s-dependence. In our case, s = 0.1 and the effective conductivity is thus ten times stronger 

than the local conductivity (Fig. 7.20(b)). We verified that this regime is attained for N up to 

~ 1017 cm-3. We will further consider lower carrier concentrations and thus provide analysis 

within this limit.  

 We note that the considered metallic structure shows strikingly different behavior than 

the systems with non-conducting matrices studied in Section 7.2. For the latter, the effective 

photoconductivity Δσeff is usually approximately proportional to the filling factor s of the 

photoconductive material. In such case, the effective conductivity is always lower than the 

local conductivity since s < 1. 

 In experiments, the linear response is assessed by the transient transmission ΔT/T. For 

the considered slit-structure, the thin-film limit is satisfied and ΔT/T is thus directly 

proportional to the effective photoconductivity Δσeff (3.49). Since the normalized effective 

photoconductivity Δσeff/(Ne0) ~ 3×104 cm-2V-1s-1 (Fig. 7.20(b)) is higher with the charge 

mobility in bulk GaAs (μ ~ 7×103 cm-2V-1s-1), we expect the corresponding transient signal to 

 

Fig. 7.20. Linear response of the GaAs nanobars filling the gold nanoslits (Fig. 7.19). 

(a) Linear mobility of carriers confined within the nanobars calculated using the 

Monte-Carlo calculations based on Kubo formalism. (b) Normalized effective 

photoconductivity spectra for carrier concentration N = 1015 cm-3 calculated from panel (a) 

using (3.10). The spectrum of Δσeff/(Ne0) does not change for N ≲ 1017 cm-3. (c) Linear 

transient transmission spectrum calculated from panel (b) using (3.49). 
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be easily measurable. Indeed, for N = 1015 cm-3, the absolute value of the transient transmission 

is ~ 4×10-2, which is comfortably above the predefined detection sensitivity limit of 10-5.  

 One of the advantages of the considered metallic nanoslits is a good suppression 

of parasitic signals originating from substrate photoexcitation. The gold parts act as mirrors 

which reflect a large part of the pump beam. The rest of the pump beam is then attenuated 

in the nanobars before reaching the substrate and the concentration of photoexcited carriers is 

thus lower in substrate than in the nanobars. Also, the normalized effective photoconductivity 

of the metallic nanoslits Δσeff/(Ne0) is roughly four times higher than the charge mobility 

in bulk material. At worst, we thus expect the parasitic signal to be a few percent of the 

transient transmission of the nanoslits. This could be further reduced if the optical pump beam 

were polarized along the slits (i.e. in the y-direction in Fig. 7.19) due to waveguiding effects. 

 The high value of ΔT/T predicted above (i.e. for N = 1015 cm-3), however, implies that 

we reached the limits of our theory on wave propagation which is valid just for weak transient 

changes (ΔT/T ≪ 1). For higher concentrations, the measurable signal then follows the 

Tinkham formula (3.50). To evaluate the nonlinearities, we would then need to employ 

finite-difference time-domain calculations. For N ≲ 1015 cm-3, (3.50) yields practically same 

results as our theory (ΔT/T ~ 0.04). 

7.4.2 Nonlinear response 

 Here, we focus on the nonlinear response of the gold nanoslits filled with GaAs 

nanobars from Fig. 7.19 under the incident low-frequency broadband THz pulses1 (Fig. 7.1(a)). 

Using (3.14), we first evaluate the field-enhancement Qexc and find that it is ~ 10 with 

negligible dispersion for N ≲ 1017 cm-3. The local field Ep thus has the same temporal profile 

and spectrum as the incident field Einc. The combination of Fresnel losses and Qexc then implies 

that Ep is enhanced four times compared to Einc. This means that to guarantee 

e.g. Ep = 20 kV/cm inside the nanobars requires only Einc = 5 kV/cm, which is achievable even 

in our existing setup utilizing ZnTe. 

 For Einc = 5 kV/cm, we employ the non-perturbative Monte-Carlo calculations to assess 

the nonlinear conductivity of carriers in the nanobars. The electric current density jx clearly 

exhibits a strong nonlinear component: the nonlinearity decreases the signal by 2/3 compared 

to the original linear response (Fig. 7.21(a)) and a high-frequency tail extending up to ~ 6 THz 

emerges. Since the incident pulse contains just the frequencies below ~ 1.3 THz, generation of 

frequencies up to ~ 6 THz implies that the nonlinearities of the third and the fifth order are 

involved in the response.  

 Since sQexc ~ 1, the total electric current density jx and its linear and nonlinear 

components (Fig. 7.21(a)) are equal to their effective counterparts (4.27). In addition, the 

                                                 
1 Here, we limit ourselves to the nonlinear response under the low-frequency THz pulses. In the multi-THz range, 

the nonlinearity decreases due to inertia of carriers. Since no plasmonic resonance develops in the studied metallic 

structure for low concentration N ~ 1015 cm-3 considered here, an enhancement similar to that observed in Section 

7.2.2.b) is not possible. Experiments at the FELBE facility are then less sensitive then the time-domain 

experiments with the low-frequency THz pulses. 



 

117 

 

spectrum of the transient field ΔET leaving the sample (right axis in Fig. 7.21(a)) has the same 

shape as the spectrum of jx (4.28).  

 We now judge the calculated results with respect to potential experiments. First, we 

focus on the field-dependence of the transient transmission signals ΔET/ET, ΔE(1)/ET and 

ΔENL/ET which we calculate directly using (4.29) (Fig. 7.21(b)). The estimated total signal 

|ΔET/ET| ~ 2×10-2 is approximately twice lower than the signal corresponding to the purely 

linear response. The nonlinear transmission is then |ΔENL/ET| ~ 2×10-2 which is easily 

detectable experimentally. Due to the significant enhancement of the local field, such 

measurements could be realized even in the setups optimized for low THz fields. Note that we 

would again need to perform measurements for various field intensities to be able to extract 

the nonlinear component. 

 The other option is the measurement of the high-frequency signal emerging in the total 

transient field ΔET (Fig. 7.21(a); only noise would be present if the response were linear). Such 

type of experiment would be then potentially simpler since we could avoid the measurement 

of the linear transient response. As previously, we quantify the corresponding signal as 

ΔET/ET,peak where ET,peak is the peak spectral amplitude of the field transmitted through the 

sample in equilibrium. The highest estimated signal is then ΔET/ET,peak ~ 7×10-3 which is 

considerably above the detection limit and thus measurable. 

 

Fig. 7.21.  Nonlinear response of the GaAs nanobars filling the gold nanoslits (Fig. 7.19) 

induced by the incident broadband low-frequency THz pulse with amplitude of 5 kV/cm. 

(a) The electric current density in the nanobars (left axis) calculated using the Monte-Carlo 

calculations exhibits a strong nonlinear component (dotted line). We note, that the 

normalized electric current density  jx/(e0N) represents the velocity of carriers. The Fourier 

transform then reduces the unit of velocity from meters per second just to meters. Since the 

field-enhancement factor Qexc does not show any dispersion (N = 1015 cm-3), the transient 

field ΔET leaving the structure (right axis) is directly proportional to the electric current 

density ((4.27) and (4.28)). (b) The transient transmission spectra in the linear (dashed) and 

the nonlinear regime (solid) calculated from panel (a) using (4.29). Dotted line shows the 

nonlinear component of the total response. 
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 The metallic stripes thus provide substantial enhancement of both the local electric 

field and the effective response. We thus predict a high enough nonlinear signals even for 

rather low incident electric fields. These signals could be measured even in the common 

amplifier-based setups utilizing ZnTe. This is in striking contrast with the dielectrics-based 

structures (Section 7.2) for which we essentially require high-field sources generating 

fields ≳ 100 kV/cm.  

7.5 Discussion of strength of nonlinearities 

 In previous sections, we investigated the nonlinear response due to charge confinement 

in selected nanostructures of various shapes and sizes. Here, we perform a more systematic 

study of the influence of the nanostructure size on the strength of the nonlinearities (the role 

of the shape is considered less important). In addition, we provide a comparison with the 

strength of nonlinearities in bulk GaAs. It is sufficient to provide the discussion at the local 

level as the effective medium will act in the same way on each nonlinearity. 

 For simplicity, we assume a non-degenerate electron gas confined in one-dimensional 

rectangular infinitely deep potential GaAs wells of various widths and subjected to a local 

monochromatic wave with amplitude Ep,0 (6.1). To assess the nonlinear response, we employ 

our non-perturbative Monte-Carlo calculations. We then quantify the nonlinearities by a 

nonlinear mobility μNL which describes the nonlinear response of a single carrier. Considering 

the linear relations (1.2) and (1.3), we express μNL as 

 
p,00

NL

pNL

ENe

j
 , (7.8) 

where the nonlinear electric current density jp
NL

 is a direct output of the calculations.  

 In Fig. 7.22, we show the dependencies of nonlinear mobility μNL at the frequency 

0.5 THz on the amplitude Ep,0 of the monochromatic electric field in the time-domain for 

several well widths. For low enough electric fields, only the third-order nonlinearities 

contribute to the response and the nonlinear mobility μNL thus initially follows a quadratic 

dependence on Ep,0 (considering (1.15) and (7.8)) 

 2

0

NL gE . (7.9) 

The above relation indeed well matches the calculated data for a few lowest fields for each 

well width (dashed lines in Fig. 7.22, the three lowest fields were used to fit the value of g). 

For higher field amplitudes Ep,0, μ
NL significantly deviates from the quadratic dependence and 

|μNL| seems to saturate. In this regime, the response thus cannot be described by the perturbative 

approach common in nonlinear optics. The dependence of the nonlinearity strength on the well 

width (Fig. 7.22(c)) is non-monotonous; a maximum exists for l ~ 250 nm. The real part of μNL 

is negative (Fig. 7.22(b)) for narrow enough wells (i.e. l ≲ 500 nm). This implies the decrease 

of total charge mobility due to the nonlinearity (the driving electric field favors the interaction 

with boundary to bulk scattering). For wide enough potential wells and certain electric field 
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amplitudes (e.g. l = 1 μm, Ep,0 ≲ 20 kV/cm), however, the real part of μNL becomes slightly 

positive, i.e. the charge mobility increases. The origin of this increase is unclear and it is 

a subject of further studies.  

 The nonlinear coefficient g characterizes the third-harmonics generation and we can 

thus link it also with the third-order susceptibility χ(3)(3ω0;ω0,ω0,ω0). The corresponding 

polarization P(3)(3ω0) then reads 

 

Fig. 7.22. The nonlinear mobility μNL at the frequency 0.5 THz of non-degenerate electron 

gas confined in infinitely deep rectangular potential GaAs wells of various widths. The 

carriers were subjected to a local monochromatic wave with amplitude E0. The mobilities 

were assessed by the non-perturbative Monte-Carlo calculations. Dashed lines: fits by 

quadratic function (7.9) (three lowest electric fields were considered). Solid line serves as 

guide for the eye only. Filled triangles are μNL corresponding to the intervalley scattering 

in bulk GaAs (Fig. 7.24; Eq. (7.16)). 
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Since electric current density j(3)(3ω0) is a time-derivative of polarization P(3)(3ω0), we get in 

the frequency-domain 
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Comparison with (7.8) and (7.9) then yields the third-order susceptibility χ(3)(3ω0;ω0,ω0,ω0) 

corresponding to the charge confinement 
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To compare the linear and nonlinear responses, we use the relation between the linear 

susceptibility χ(1)(ω0) and the linear mobility of carriers μ(ω0) 

 )(i)( 0

00

0
0

)1( 



Ne

. (7.13) 

 In Fig. 7.23, we show the dependence of the amplitudes of linear mobility |μ| and 

nonlinear coefficient |g| on the well width l (N = 1015 cm-3 and f0 = 0.5 THz). The amplitude of 

linear mobility |μ| (Fig. 7.23(a)) initially sharply increases with l as the charges interact less 

with the well boundaries which reduces the effective scattering. For very large structures,  |μ| 

begins to saturate as it approaches the bulk value given by the Drude model (5.1). 

The amplitude of the nonlinear coefficient |g| also initially increases with confining length due 

to the reduced effective scattering (Fig. 7.23(b)). On the other hand, the nonlinearities are 

induced just by the charge confinement, therefore the nonlinear response must completely 

vanish for infinitely large structures. Between these two regimes, there is thus quite a broad 

region where the nonlinear response reaches its maximum (l ~ 250-300 nm for f0 = 0.5 THz). 

The relative strength of the nonlinearity with respect to the linear response |g|/|μ| increases with 

decreasing confining length and saturates for lowest l (Fig. 7.23(c)).  

 As we already discussed in introduction to Section 7.2, a plethora of nonlinear 

phenomena was observed in bulk GaAs [18]-[22],[96],[97]. In real nanostructures, these 

effects are then expected to accompany any nonlinearities due to charge confinement. Any 

detected nonlinear signal will be then a mixture of signals of different origin. Therefore, it is 

important to mutually compare expected strengths of these effects.  

 For our work, we expect that the most important nonlinear effect originating from bulk 

GaAs is the acceleration of electrons in the conduction band which enables phonon-initiated 

scattering into low-mobility side valleys [18]-[20]. In Ref. [19], this effect was quantified as 

a decrease of THz absorption coefficient α with increasing electric field (Fig. 7.24). We now 

estimate the nonlinear mobility μNL corresponding to this effect. In an absorbing medium, the 

real part of conductivity σ is directly proportional to α [128] 

  cn 0 . (7.14) 
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We verified that the imaginary part of σ is neglibible for frequencies above ~ 0.1 THz. The 

nonlinear conductivity due to intervalley scattering σNL then reads  

  00

LNLLNL )(   Ecn , (7.15) 

where α0 ~ 250 cm-1 (Fig. 7.22(a)). To describe the nonlinear response of a single carrier, we 

further determine the nonlinear component of charge mobility (in analogy to (1.3) and (1.20)) 

 

Fig. 7.23. Dependence of the strength of linear and nonlinear responses of a single carrier 

on the confining length l. (a) Amplitude of linear mobility of confined carriers. 

(b) Amplitude of the third-order nonlinear coefficient g. The dash-dot line shows g 

corresponding to graphene (7.17), the dashed line then corresponds to the intervalley 

scattering in bulk GaAs (g was found by combining Eqs. (7.16) and (7.9); the data from  

Fig. 7.22(a) were used). (c) Dependence of the relative strength of the nonlinearities due to 

charge confinement on the confining length l. The right axes show the corresponding 

susceptibilities (7.13) and (7.12), respectively, for N = 1015 cm-3 and f0 = 0.5 THz. The 

susceptibilities are expressed in either SI or electrostatic units (e.s.u.) and characterize the 

response of entire ensemble of carriers. Solid lines serve as guide for the eye only. 
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which may be also viewed as a change of the linear mobility under the electric field E. The 

nonlinear component of mobility μNL is the principal quantity which allows us to quantify and 

compare the strengths of various nonlinear phenomena.  

 In Fig. 7.22(a), we show μNL corresponding to the intervalley scattering calculated 

using (7.16) (absorption coefficient α(E) was taken from Fig. 7.24 and N = 8×1015 cm-3 

according to [19]). The real part of nonlinear mobility μNL is negative since the electron 

effective mass is considerably higher in the satellite X- and L-valleys than in the Γ-valley and 

the electron mobility thus decreases upon the intervalley scattering. As this effect originates 

from atomic properties, we do not expect it to depend on the confining volume in 

nanostructures, i.e. μNL will be the same as in bulk material. For all considered nanostructure 

sizes and low enough fields (e.g. Ep,0 ≲ 5 kV/cm for l = 50 nm, Ep,0 ≲ 20 kV/cm for 

l = 100 nm), the intervalley scattering is weaker than the nonlinearities due to charge 

confinement (Figs. 7.22(a)), as confirmed by the values of the g-parameter (Fig. 7.23(b)). For 

nanostructures smaller than 100 nm, however, the intervalley scattering becomes stronger 

effect than the charge confinement for high enough electric fields. For nanostructures larger 

than ~ 200 nm, the signal due to charge confinement remains considerably higher for realistic 

values of electric field.  

 Another bulk nonlinearities stem from optical nonlinear phenomena in GaAs. In [129] 

for example, it was found that the susceptibilities corresponding to four-wave mixing 

 

Fig. 7.24. Dependence of average THz absorption coefficient on peak incident electric field 

Einc in n-type GaAs (N = 8×1015 cm-3). The graph was taken from Ref. [19]. Inset show 

a simplified band structure of GaAs.  
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(f ~ 30 THz) in n-doped GaAs (N ≥ 1016 cm-3) are χ(3) ~ 10-10 e.s.u. The considered 

nonlinearities due to charge confinement are then by at least several orders of magnitude 

stronger (Fig. 7.23(b) where χ(3)(3ω0;ω0,ω0,ω0) is for N = 1015 cm-3). 

 We now discuss the results obtained for GaAs nanowires and nanobars in 

Sections 7.2 and 7.4 with respect to the above conclusions. In the GaAs nanowires 

(Section 7.2, diameter 50 nm), the strength of the nonlinearities due to charge confinement is 

strongly limited by their small diameter. To obtain a reasonably high nonlinear signals, we 

thus require local fields Ep,0 ≳ 10 kV/cm. For these fields, however, the nonlinear response is 

entirely dominated by the intervalley scattering which makes the nanowires unsuitable from 

our perspective. On the other hand, the charge confienement is considerably stronger effect for 

the investigated nanobars (width 250 nm). In addition, the nonlinear susceptibility is close to 

its maximum for this width. At the local level, the GaAs nanobars thus constitute almost the 

best possible system towards an experimental observation of the sought nonlinearities due to 

charge confinement. 

 We now show that the nonlinearities due to charge confinement are comparable even 

with the strongest known THz nonlinearity which was observed in graphene as an extremely 

efficient high harmonics generation [130]. To provide a comparison, we evaluate the 

g-coefficient (7.12) which characterizes the third-order response of a single carrier. Due to the 

nature of graphene, however, we have to consider the sheet third-order susceptibility 
)3(

effL  

(L = 0.3 nm is the thickness of the graphene layer indicated in [130]) and we thus obtain 
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. (7.17) 

The nonlinearity 
)3(

eff  ~ 1.7×10-9 m2V-2 was observed for ω0 = 0.68 THz and we thus find 

|g|graphene ~ 1.7×10-6 cm4V-3s-1 for doping carrier concentration NC = 2.1×1012 cm-2. The 

highest g-coefficients for the charge confinement are then by an order of magnitude higher 

(Fig. 7.23(b)). In other words, the single carrier nonlinearity due to charge confinement is thus 

considerably stronger than high harmonics generation in graphene. In this sense, the charge 

confinement is the source of the strongest known nonlinearities in solid state physics. The 

combination of the charge confinement with the strong "bulk" nonlinearities in doped graphene 

could then motivate a development of a material with ultimate nonlinear behavior. 

7.6 Conclusions 

 In this part, we theoretically investigated the nonlinear THz photoconductivity 

originating from the charge confinement in several semiconductor nanostructures – GaAs 

nanobars and nanowires (Section 7.2), ZnO nanoparticles and CdS nanocrystals (Section 7.3) 

and gold nanoslits filled with GaAs nanobars (Section 7.4). We developed a framework 

(combining Monte-Carlo calculations of linear and nonlinear conductivity, both linear and 

nonlinear effective medium theories and solution of the wave equation) which allowed us to 

calculate the nonlinear signals which could be directly detected in optical pump-THz probe 

experiments with high-field THz pulses. We considered three different sources of intense THz 
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radiation – tilted-wavefront optical rectification in lithium niobate, air-based generation 

of multi-THz pulses (both generating ultrashort broadband pulses) and free electron lasers 

(i.e. longer narrowband pulses). 

 To obtain a high nonlinear conductivity, the nanostructures should be formed by 

a semiconducting material with high carrier mobility (i.e. low effective electron mass m and 

long scattering time τs). Indeed, the nonlinear conductivity is found to be significant in GaAs 

nanostructures (μGaAs ~ 7×103 cm-2V-1s-1) while the nonlinearities in ZnO nanoparticles of 

comparable sizes (μZnO ~ 200 cm-2V-1s-1) are very weak. We further demonstrated that the 

amplitude of the nonlinear mobility exhibits a maximum for certain dimensions of 

photoconductive constituents (e.g. ~ 250-300 nm for the frequency 0.5 THz; Figs. 7.22 and 

7.23(b)). For much smaller dimensions, the confinement strongly limits the mobility 

amplitude. For too large dimensions, the confinement becomes suppressed and thus all 

corresponding nonlinearities vanish. These considerations imply that optimum frequencies are 

around ~ 1 THz to match the spectra of nonlinear coefficients of structures with optimum 

dimensions. 

 Further requirements for a strong nonlinear signal stem from the layout of the 

nanostructures which controls the propagation of the incident field as well as of the generated 

harmonics (i.e. effective medium theory). We have to distinguish percolated and 

non-percolated systems and we also have to consider the character of the material (conducting 

or non-conducting) surrounding the photoconductive nanostructures: 

a) Metallic nanoslits 

 Metallic parts inherently act as short circuits concentrating the electric field into the 

nanostructures embedded in the slits. In nanostructures with suitable layout 

(i.e. Fig. 7.19), this considerably enhances the local field in the photoconductive 

constituents (the field-enhancement factor Qexc follows 1/s and thus |Qexc| ≫ 1 can be 

easily achieved). This enhancement becomes stronger with decreasing filling factor s of 

the photoconducting material. The measurable transient transmission is directly 

proportional to 1/s and thus can considerably exceed the detection limit (for low filling 

factors s of photoconductive material). 

b) Dielectric surroundings 

 In non-percolated structures, a plasmonic resonance develops for high enough carrier 

concentration and enhances not only the local field Ep within the nanostructure 

(compared to the local field in the unphotoexcited sample; Fig. 7.9) but also the 

nonlinearity in the transient waves ΔET leaving the sample (Fig. 7.13). However, this 

implies that the photoconductive constituents should be as close as possible to the 

percolation (i.e. volume filling factor s → 1) and the gaps between them filled with a 

high-permittivity material (ideally |ε| → ∞, which would revert the structure to that of 

metallic nanoslits). These two requirements ensure that the plasmonic resonance begins 

to develop only at higher carrier concentrations and the measurable signals (scaling with 
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carrier density when below plasmonic resonance) are then adequately enhanced as in the 

case of metallic nanoslits. 

 Above the percolation threshold, both the linear and the nonlinear effective responses 

are stronger than in the non-percolated case. The nonlinearities are then observable in 

the experiments as there is no mechanism suppressing their role. Note, however, that for 

strong enough interparticle charge transport (i.e. high interparticle transport probability 

pt in the Monte-Carlo calculations) the charge confinement ceases to exist and in such 

case, no nonlinear conductivity due to charge confinement may appear. 

 From all the investigated nanostructures, the most promising for experiments are the 

gold nanoslits filled with GaAs nanobars (Fig. 7.19) for which we predicted the highest 

nonlinear signals in the THz range. The metallic stripes provide sufficient enhancement of the 

local electric field in the nanobars which even permits observation of these nonlinearities in 

common setups utilizing low THz fields (e.g. kHz amplifier-based setups utilizing optical 

rectification in ZnTe). Furthemore, the nonlinearities due to charge confinement are predicted 

to be considerably stronger than the intervalley scattering (Fig. 7.22(b)). 

 Promising for experiments are also the bare GaAs nanobars (Fig. 7.4 (a)), although the 

predicted nonlinearities due to charge confinement are considerably weaker. This was mostly 

due to the high permittivity contrast across the structure (resulting in low local fields 

Ep ~ 5 kV/cm). We concluded, that the corresponding signals could be measured in very stable 

table-top setups using broadband THz pulses. The intervalley scattering should be also 

negligible (the size of nanobars is the same as in the preceding metallic structure). 

 For the GaAs nanowires embedded in PDMS (Fig. 7.4(b)), their small diameter limits 

the values of the nonlinear mobilities μNL due to charge confinement. Since the intervalley 

scattering is considerably stronger effect, we cannot realistically expect to experimentally 

resolve the confinement-related nonlinearities. 

 For partly percolated ZnO nanoparticles (Section 7.3), we observed only a very weak 

local nonlinear response. Since the percolation preserves the nonlinearities in the effective 

response, the expected nonlinear signal exceeds the sensitivity of common experimental 

setups.  
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8. THz spectroscopy of TiO2 nanotubes 

 Titanium dioxide (TiO2) is a wide band-gap semiconductor with many technologically 

and fundamentally intriguing properties. Its nanostructures are then very promising in a variety 

of applications (e.g. in photocatalysis or in photovoltaics) [1],[131]-[136]. The layers of 

self-organized TiO2 nanotubes are then particularly attractive [137],[138]: their 

semiconductive nature, high surface area, anticipated uni-directional charge transport along 

their walls, and also the ability to be prepared on transparent conducting glasses makes them 

interesting as anode material in dye-sensitized solar cells [139]-[141] and perovskite sollar 

cells [142]-[144]. Depending on the growth process, however, the geometry (e.g. nanotube 

diamater, wall thickness and nanotube lengths) and conductive properties of these layers may 

greatly differ. Therefore, it is essential to thoroughly understand the charge transport properties 

of a variety of nanotube structures. 

 In this section, we investigate linear THz photoconductivity of a series of TiO2 

nanotube layers of different properties, which were grown by Jan M. Macák from University 

of Pardubice [137],[145]-[150]. First, we overview the sample preparation and analysis by 

scanning electron microscope (SEM) which was also provided by our colleagues from 

University of Pardubice. Then, we briefly describe the experimental setup used for THz 

measurements. Using the Monte-Carlo calculations based on Kubo formalism introduced 

in Section 2 and linear effective medium theory and solution of linear wave equation from 

Section 3, we then develop a general model describing the linear THz response of the TiO2 

nanotube layers. Proper application of this model on the measured data then allows us to extract 

information on the intrinsic charge transport in the nanotube walls and also on the electrical 

connectivity between individual nanotubes. Finally, we provide a discussion and comparison 

with previous THz conductivity studies on TiO2 nanotubes [57],[151]. Most of our results were 

published in [42] and [152]. 

8.1 Studied samples 

 In this work, we studied two pairs of TiO2 nanotube layers of different thickness 

(equivalent to the nanotube length) and crystallinity. For simplicity, we therefore call them 

short (length ~ 1 μm) and long (length ~ 30 μm) nanotubes. The studied samples and their 

main characteristics are summarized in Tab. 8.1. Here, we first briefly describe the preparation 

of the samples [42],[150]. Then, we discuss their morphology based on the SEM images and 

their crystallinity.  

8.1.1 Sample preparation 

 The electrochemical setup consisted of a two electrode configuration: a platinum foil 

was used as the counter electrode, while the titanium substrates (working electrodes) were 

pressed against an O-ring of the electrochemical cell, leaving 1 cm2 open to the electrolyte. All 

electrochemical experiments were realized at room temperature using a high-voltage 

potentiostat (PGU-200V, IPS Elektroniklabor GmbH).  
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 Prior to the anodization, the titanium substrates (Sigma-Aldrich 0.127 mm thick, 99.7% 

purity) were degreased by sonication in isopropanol and acetone, then rinsed with isopropanol 

and dried in air. The titanium substrates were then anodized in an ethylene glycol based 

electrolyte using the setup described above. To obtain nanotubes of different lengths and sizes, 

different conditions were applied during anodization: 

 Short nanotubes (H105, H141, Fig. 8.1): The electrolyte contained 0.27M NH4F and 

10 vol.% H2O. The titanium substrates were anodized at 20 V with a sweep rate of 1 V/s 

for 100 minutes. 

 Long nanotubes (H172, H178, Fig. 8.2): The electrolyte containing 0.176M NH4F and 

1.5 vol.% H2O was used. The anodization was carried out at 60 V (with a sweep rate 1 

V/s) for 4 hours. 

After anodization, the samples were rinsed and sonicated in isopropanol and dried.  

 The as-grown nanotubes are amorphous. Samples H105 and H172 were thus annealed 

at 400 °C for 1 h in air to convert them into a crystalline anatase phase (Fig. 8.2(f)). For THz 

 

Fig. 8.1. SEM images of the short TiO2 nanotubes [152]: top-view (a) and cross-section 

with indicated layer thicknesses (b). The nanotubes form oriented layers: their tops are 

opened while their bottoms are closed (c). The nanotubes were originally grown on a Ti 

substrate which was dissolved prior to the THz measurements. Scheme in panel (c) was 

taken from Ref. [137]. 

Sample Phase 

Layer 

thickness 

(μm) 

Inner 

diameter 

(nm) 

Wall 

thickness 

(nm) 

Short 

nanotubes 

H105 Anatase 
1.0 ± 0.1 64 ± 8 3.5 

H141 Amorphous 

Long 

nanotubes 

H172 Anatase 
30 ± 2 120 ± 10 10 

H178 Amorphous 
 

Tab. 8.1. Summary of the studied TiO2 nanotubes samples and their morphologic properties. 

The nanotube layer thickness, inner diameter and wall thickness were determined from the SEM 

images (Figs. 8.1 and 8.2).  

C 
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spectroscopy measurements, the underlying titanium substrates were removed by dissolution 

in a Br2/methanol mixture. The short nanotubes were then transferred onto fused silica 

substrates (the closed bottom parts of the nanotubes were in direct contact with these substrates 

(Fig. 8.1(c))). The long nanotubes formed an oriented free-standing layer. 

8.1.2 Morphological characteristics 

 The morphology of the samples (including the length (i.e. layer thickness) and wall 

thickness of the nanotubes) was characterized using a field-emission scanning electron 

microscope (FE-SEM JEOL JSM 7500F). The precise knowledge of geometrical parameters 

is required to quantitatively interpret the measured THz spectra. 

 In Figs. 8.1 and 8.2, we show a few examples of SEM images of the short and long 

TiO2 nanotubes, respectively. The analyses of the images revealed that the short nanotubes 

were (1.0 ± 0.1) μm long and had an average inner diameter (64 ± 8) nm. The layers of the 

long nanotubes then exhibited thickness (30 ± 2) μm and inner diameter (120 ± 10) nm. The 

 

Fig. 8.2. SEM images of the free-standing layer of long TiO2 nanotubes [42]: top-view (a) 

and cross-sections (b)-(e). Images (c)-(e) are taken at high magnification. In image (b), the 

layer thickness is indicated. The x-ray diffraction pattern (f) confirms the anatase phase of 

the annealed samples (the titanium peaks come from the substrate underneath the layer). 
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nanotubes are also open at their top and clossed at their bottom (i.e. where they were in contact 

with the titanium substrate prior to its dissolution; Figs. 8.1 and 8.2(a),(b)) which is 

in agreement with previous reports [137],[138]. 

8.2 Time-domain THz spectroscopy 

 The steady-state measurements were performed in a common experimental 

configuration for time-domain THz spectroscopy (Fig. 8.3) [71]. The setup was driven by an 

amplified femtosecond Ti:sapphire laser system (Spitfire Ace) delivering optical pulses at 

800 nm with the repetition rate of 5 kHz. A part of the laser beam was used for the generation 

of THz pulses (~ 0.1–2.5 THz) by optical rectification in 1 mm thick (110) ZnTe crystal [153]. 

Using a sensor based on the Pockels effect (another 1 mm thick (110) ZnTe crystal), we then 

measure a polarization change of a synchronized optical gating pulse which allows us to 

determine the instantaneous THz electric field (Fig. 8.3) [153]. Varying the time delay between 

the THz and gating optical pulses (delay line D1) then enables the scanning of the entire 

waveform of the THz pulse. This detection is phase-sensitive: application of Fourier transform 

yields a complex spectrum of the THz pulse which in turn allows determination of complex 

effective permittivity of the sample.  

  For measurements of complex photoconductivity spectra, we modified the above setup 

by adding a branch for optical pumping (Fig. 8.3). Here, a part of the laser beam was frequency 

tripled using BBO crystals and the pulses at resulting wavelength 266 nm (~ 4.66 eV) were 

used for the optical excitation of the TiO2 nanotubes. The photon energy of the pump beam is 

thus sufficient to ensure direct inter-band generation of photocarriers in the conduction band 

 

Fig. 8.3. The experimental setup used for the time-domain THz spectroscopy 

measurements. The scheme was taken from Ref. [71]. 

Photoexcitation 

Gating pulse 
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(the band gap of TiO2 in anatase phase is ~ 3.2 eV [154]). To ensure a homogeneous 

concentration of photoexcited charges across the analyzed region of the samples (delimited by 

a metallic aperture with diameter 3 mm), the pump beam was defocused. Since 

electromagnetic radiation is transverse, the polarization of the THz is perpendicular to the 

nanotube axes, thus probing the lateral charge transport. In all measurements, the probed 

samples were placed in a primary vacuum chamber to eliminate the absorption of the THz 

beam by water vapours. 

8.3 Theoretical calculations of the THz response 

 The main aim of this section is to establish the relation between the microscopic 

properties of the nanotubes (morphology of the nanotube layer, permittivity and 

photoconductivity of the nanotube walls) and the measurable THz signals: transmittance 

spectrum T of the unphotoexcited sample and transient transmission ΔT/T of the sample upon 

photoexcitation (see Section 3.2). Due the inhomogeneity of the nanotube layer, three separate 

steps have to be considered (Fig. 8.4). First, we employ the Monte-Carlo calculations based 

on Kubo formalism to assess the local transient photoconductivity spectrum Δσp(ω) 

(Section 8.3.1). Then, we use finite-element calculations to find the effective permittivity, 

effective absorption coefficient and morphologic parameters of the VBD model for several 

model structures emulating the real morphology of the nanotube layer (Section 8.3.2). Finally, 

we link these results to the measurable transmission functions T and ΔT/T using the solution 

of the wave equation from Section 3.2 (Section 8.3.3).  

 

Fig. 8.4. Illustrations of the steps in theoretical calculations of the THz spectra. The outputs 

identify the quantities calculated in each step of the model while the rest indicates the most 

important input parameters for the given step. In the first step (a), we employ the 

Monte-Carlo calculations based on Kubo formalism (Section 2.1) to find the local transient 

photoconductivity spectrum Δσp. Effective medium theory (b) is then applied to transform 

the permittivity εp and the transient photoconductivity Δσp of the nanotube walls into the 

effective permittivity εeff and effective transient photoconductivity Δσeff of the nanotube 

layer. Finally, the complex steady-state and transient transmission functions T and ΔTnorm, 

respectively, are calculated (c). For this, we use the solution of the wave equation with 

proper boundary conditions from Section 3.2 (i.e. considering internal Fabry-Pérot 

interferences of THz radiation inside the layer). 
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8.3.1 Microscopic properties of TiO2 nanotube walls 

 We assume that the terahertz permittivity εp and optical absorption coefficient αp of the 

unphotoexcited nanotubes are equal to those of bulk anatase, i.e. εp ~ 30 with negligible 

dispersion in the THz range [156] and αp ~ 7×105 cm-1 at the excitation wavelength 

of 266 nm [157]. The main parameters entering the calculations of mobility spectra μ(ω) are 

the nanotube geometry (inner nanotube diameter d and the wall thickness w which are read 

from SEM images), and the bulk scattering time τs which is an adjustable parameter allowing 

us to match the spectra obtained from the experiments. There is an ongoing debate on the 

effective electron masses of electrons and holes in anatase; values in the range from ~ 0.4me 

to ~ 10me were reported [158]-[162]. It is also unclear whether electrons are lighter than holes 

or vice versa; the discussion is further complicated by the anisotropy of effective masses. THz 

spectra alone do not permit determination of the dominant carrier type. However, the THz 

conductivity is usually dominated by the carriers with lighter effective mass which is reported 

to be close to me or 2me in anatase [158]-[162]. In our Monte-Carlo calculations, we thus 

consider carriers with effective mass m = me. 

 As we will show later, the mobility spectra of some samples can be explained just by 

the confinement of carriers by the physical nanotube boundaries (Fig. 8.5(a)). For other 

samples, however, a stronger confinement is required. We proposed and examined several 

different mechanisms (Fig. 8.5(b)-(d)): 

 The nanotube walls may be formed by smaller grains; the grain boundaries then cause 

additional confinement of charges. To model this, we divided the nanotube wall into a 

set of cubes with the dimension a (Fig. 8.5(b)). Upon reaching a boundary of such cube, 

the carrier is scattered and either it enters the adjacent cube (with probability pF), or it 

remains in the original cube (with probability 1 − pF). The nanoregion size a and the 

probability pF are then additional adjustable parameters entering the calculations. We 

note that the case of pF = 0.5 is equivalent to the isotropic scattering. Therefore, pF ≪ 

0.5 is required to observe significant confining effect of the nanoregions. 

 At the nanotube wall surfaces, a band bending occurs [78],[163]. This effect may be 

strong enough to confine carriers of one polarity in the central region of the nanotube 

walls and the charges with opposite polarity in the vicinity of the nanotube wall surfaces 

(Fig. 8.5(c)). The motion of the latter may be then also strongly influenced by possible 

surface defects (see the following paragraph). To approximate the band bending, we 

consider that the charges move in a potential with cylindrical symmetry and with 

harmonic cross-section (Fig. 8.5(c)). This potential involves just a single additional 

parameter: the harmonic resonance frequency f0 

 2

0

2

0

2 )(4)( rrmfrV  , (8.1) 

where r is the distance from the nanotube center and r0 is the distance of the middle of 

the nanotube wall from the nanotube center. Since we do not know neither the polarity 

of mobile charges nor the character of band bending (the potential may increse or 
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decrease towards the nanotube wall surface), we introduce the following notation      

(Fig. 8.5(c)): central charges are those confined to the middle of the nanotube wall while 

peripheral charges are those confined to the vicinity of the nanotube surfaces. 

 Charged surface defects repel mobile charges of the same polarity which may lead to the 

limitation of their motion. To account for this, we constructed a series of periodically 

spaced point charges distributed along the nanotube wall surfaces (Fig. 8.5(d)). We 

describe the influence of each defect by the screened Coulomb potential and the confined 

carriers thus move in the potential 

 

Fig. 8.5. Illustration of models considered for the Monte-Carlo calculations of mobility of 

carriers confined in TiO2 nanobars. In the simplest model, the charges are confined just by 

the nanotube walls (a). In other models (b)-(d), we consider additional mechanisms leading 

to stronger confinement. In model (b), we divide the nanotube wall into a set of cubes with 

dimension a, thus emulating a possible internal structure of the walls (e.g. grains). The 

carriers then scatter on the cube boundaries and with probability pF enter the adjacent cube. 

In model (c), we simulate the role of the band bending close to the nanotube surfaces using 

an approximate potential (8.1). In model (d), we then study a role of charged surface defects 

which is described by potential (8.2). We also consider a combination of the above models 

to explain the shape of the mobility spectra. 
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where Q is the charge of the defects, ri is the position vector of i-th defect, r is the position 

vector of mobile carrier and k0 is the screening parameter. For k0 = 0, there is no 

screening and influence of each surface defect is thus described by the Coulomb 

potential. In such case, however, the application of Gauss's law of electrostatics implies 

that the potential inside the nanotube wall approaches zero for higher defect densities. 

8.3.2 Effective properties of the TiO2 nanotube layer 

 Here, we use the effective medium theory to account for the influence of the structure 

morphology. We thus transform the microscopic parameters of the nanotube walls 

(equilibrium permittivity εp, absorption coefficient αp, photoconductivity Δσp) and the 

surrounding air/vacuum into the effective parameters of the structure.  

 For a given model discretized structure, we employ the finite-element method 

described in [37]. First, the structure is approximated by unstructured triangular meshes. Then, 

the local electric field profile )(rE


 in the structure is calculated as the solution of quasi-static 

Maxwell equations with periodic boundary conditions. In the end, the effective permittivity 

εeff is determined from the energy density 
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where εloc is spatially dependent local permittivity (depending on r


, either εloc = εp or εloc = 1) 

and E is the volume average of the electric field. The effective optical absorption coefficient 

αeff can be calculated in a similar way, we only need to express the permittivities (εeff and εp) 

in terms of the corresponding absorption coefficients (αeff and αp) 

  peff,peff, Im
2





 , (8.5) 

where λ is the wavelength of the radiation used for photoexcitation. As we mentioned in the 

previous section, the dispersion of anatase permittivity εp is negligible in the THz spectral 

range. The effective steady-state THz response of the nanotube layer can be then characterized 

just by a single value of effective permittivity εeff. The attenuation of the pump beam 

(λ = 266 nm) in the structured layer is described by a single value of effective absorption 

coefficient αeff.  

 Upon photoexcitation, individual nanotubes exhibit a local photoconductivity Δσp. The 

effective photoconductivity Δσeff is then evaluated using the VBD model (3.3). Since the 

permittivity of anatase is real and practically non-dispersive, the pertinent morphology 
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parameters V, B and D are real constants which were determined from fitting the calculated 

dependence of the photo-induced effective permittivity change Δεeff = iΔσeff/(ωε0) on purely 

imaginary local permittivity change Δεp = iΔσp/(ωε0) with VBD model (3.3). 

 The effective properties of the nanotube layer are expected to strongly depend on the 

level of percolation between individual nanotubes. We thus examined several model structures 

of the nanotube layers (in Tab. 8.2, we show the results for the long nanotubes) with varying 

percolation degrees, including two non-percolated structures consisting of isolated nanotubes 

separated by different air/vacuum gap widths (structures N1 and N2), a structure where the 

nanotubes are conductively connected by small contacts (structure P1), and finally a structure 

where the nanotubes touch each other (structure P2). The calculated steady-state effective 

permittivities εeff significantly increase with enhanced percolation (Tab. 8.2). Comparison with 

the experimental results then allows us to discuss the morphology of the sample and estimate 

the V, B and D coefficients required for the exctraction of local photoconductivity Δσp from 

the transient transmission spectra. 

8.3.3 THz wave propagation in the nanotube layer 

 For unphotoexcited free-standing layers (i.e. for long nanotubes), we directly measure 

the complex transmittance T. For the studied samples, the internal Fabry-Pérot reflections 

overlap and the transmittance T thus reads [58] 

Structure s (%) εeff  αp/αeff V B D 

N1 

 

39 4.4 7.7 0 0.05 0.019 

N2 

 

43 5.6 6.1 0 0.09 0.015 

P1 

 

44 8.4 4.8 0.24 0.0028 0.027 

P2 

 

49 10.4 4.0 0.32 0.0005 0.032 

 

Tab. 8.2. Calculated effective properties of model geometries of the long TiO2 nanotubes (black 

areas: TiO2 in anatase phase, white areas: air/vacuum). Several models with different 

connectivity between the nanotubes are considered: N1 and N2 are isolated nanotubes with 

different air gaps between them, P1 are percolated nanotubes connected by small contacts and 

P2 are percolated nanotubes directly touching each other. s is the filling factor of TiO2. The 

effective permittivity εeff, the effective absorption coefficient αeff  and the morphologic 

parameters V, B and D (defined by (3.3)) were assessed using the finite-element method from 

Section 7.2.2. Following parameters were considered: εp = 30 [156], np(266 nm) = 3 [157], 

αp(266 nm) = 7×105 cm-1 [157]. 
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where n is the effective refractive index of the nanotube layer. The numerical solution of the 

above equation then yields the steady-state effective permittivity εeff of the nanotubes 

(n2 = εeff). We note, that analogous approach can be derived also for the short TiO2 nanotubes 

which are placed on the fused silica substrate. However, precise evaluation of εeff is not feasible 

in this case. This is mainly due to the uncertainty in the optical thickness which we can 

determine with the precision of ~ 1 μm. This is comparable with the real optical thickness of 

short TiO2 nanotubes and the calculated effective permittivity would thus exhibit too large 

experimental errors. 

 In optical pump-THz probe experiments, a transient transmittance spectrum ΔT/T is 

measured. To link ΔT/T (or equivalenty the normalized transient transmission ΔTnorm (3.27)) 

to the local conductivity in the nanotube walls, we use the results from Section 3.2. There we 

discussed possible photoexcitation fluence-dependence of ΔTnorm. If the shape of the measured  

ΔTnorm spectra depends significantly on the fluence, the nanotube layers are non-percolated 

(i.e. plasmonic resonance builds up in the response). In such case, ΔTnorm follows the general 

equation (3.40). If the measured ΔTnorm does not depend on the fluence, two options are 

possible: 

 Nanotubes are percolated. In such case, V ≫ B (Tab. 8.2). The non-percolated term of 

the VBD model (3.3) can be then neglected and the response is dominated by the 

percolated parts. The normalized transient transmission ΔTnorm then follows the 

relations from Section 3.2.1. 

 Nanotubes are non-percolated, but the D-term in the VBD model is small 

(i.e. |DΔσp/(ωε0)| ≪ 1) which would be typically due to low local photoconductivity of 

the nanotubes Δσp (for a good-quality anatase crystal, the dc mobility of 20 cm2V-1s-1 

was reported in [164]). ΔTnorm is then described by the same equations as in the 

percolated case, we just replace the morphologic coefficient V with B (compare the 

wave equations (3.30) and (3.38)). 

The properties of the nanotube layers (Tab. 8.1) then allow us to use appropriate simplified 

relations instead of the general ones. For the short nanotubes, the limits of thin sample and 

strong optical absorption are satisfied. For the long nanotubes, we can apply the temporal 

windowing. 

8.4 Experimental results and discussion 

8.4.1 Steady-state effective permittivity and percolation of samples 

8.4.1.a) Short nanotubes 

 As we already discussed, we cannot assess the morphology of the short TiO2 nanotubes 

(sample identifiers H105 (anatase phase) and H141 (amorphous phase)) from the steady-state 
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measurements. The degree of electrical connectivity of the nanotubes is thus uncertain. To 

estimate the pertinent morphologic (V, B) and optical (αeff) parameters, we employed the 

finite-element calculations for a model structures analogous to those from Tab. 8.2. Based on 

the SEM images (Fig. 8.1) and the photoconductivity measurements (Section 8.4.2), we 

assume that the nanotubes are interconnected by contacts of limited area. We then found the 

following values of morphologic parameters: V ~ 0.15–0.27, B ~ 0.01, D ~ 0.02 and αp/αeff ~ 3. 

8.4.1.b) Long nanotubes 

 The measured steady-state effective permittivity of both anatase (sample identifier 

H172) and amorphous (H178) long TiO2 nanotubes layers is ~ 8–9 (Fig. 8.6). These values are 

comparable to the calculated permittivity of model structure P1 and much higher than the 

values calculated for the non-percolated model structures N1 and N2 (Tab. 8.2). Indicating that 

the individual nanotubes are to some extent electrically interconnected. This is further 

supported by the fact that the layers do not disintegrate spontaneously during manipulation. 

At the same time, the measured steady-state permittivity is considerably lower than the 

calculated permittivity of the model structure P2 where the nanotubes overlap. Therefore, the 

contact area cannot be very large compared to the total outer surface of the nanotubes. We thus 

conclude that the nanotubes are on average weakly connected. 

 It is now necessary to elaborate on a comparison with the SEM images (Fig. 8.2), where 

the nanotubes seems to be closely packed. However, a detailed inspection of the top part 

 

Fig. 8.6. Measured spectra of steady-state effective permittivity εeff of the long TiO2 

nanotubes in anatase and amorphous phases. Closed symbols: real part; open symbols: 

imaginary part. The horizontal dot-dashed lines indicate the real parts of the effective 

permittivities of the model structures from Tab. 8.2. Comparison of the measured and 

calculated data then implies that the nanotubes are conductively interconnected by small 

contact areas. 
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(Fig. 8.2(a)) reveals that there are narrow gaps between many of the nanotubes. A similar 

conclusion can be drawn also from the images of the cross-sections (Figs. 8.2(b)-(e)). To avoid 

difficult calculations accounting for the presence of both the isolated and interconnected 

nanotubes, we thus represent the layers of the long TiO2 nanotubes by the simplified model 

structure P1 (characterized by a weak average connectivity). In this sense, the morphology 

of long TiO2 nanotubes inferred from the THz measurements correlates with the limited 

contacting observed in the SEM images. 

 We note that a single value of the effective permittivity cannot completely describe the 

real morphology – it provides just an estimate of an average connectivity. Nevertheless, this 

knowledge is crucial for the analysis of the transient photoconductivity of the nanotube 

layers – it allows us to estimate the morphology parameters V and B and the effective optical 

absorption coefficient αeff. For the long TiO2 nanotubes, we thus consider V ~ 0.24 and 

αp/αeff ~ 4.8 (model structure P1 from Tab. 8.2). Since V ≫ B, we neglect the B-term in our 

analysis of transient photoconductivity. 

8.4.2 THz photoconductivity spectra and dynamics 

8.4.2.a) Short nanotubes 

 In Fig. 8.7, we show the normalized transient transmission spectra ΔTnorm measured for 

the short TiO2 nanotubes in anatase (Fig. 8.7(a)) and amorphous (Fig. 8.7(b)) phase. For both 

samples, the measured signal does not depend significantly on the photoexcitation fluence. 

Since the D-term is not negligible (|DΔσp/(ωε0)| ~ 0.34 for the photoexcitation fluence 

1.7×1014 photons/cm2 and 1 THz), the nanotubes should then be percolated. In addition, the 

limits of a thin sample and strong optical absorption are satisfied and the normalized transient 

transmission ΔTnorm (3.33) is thus directly proportional to the quantum yield-mobility 

product ξμ(ω). We further consider that each photon generates an electron-hole pair, i.e. ξ = 1 

shortly after photoexcitation. The mobility spectrum exhibits features typical for the response 

of confined carriers (Section 5.1): the real part is positive and slightly increases with frequency 

while the imaginary part is negative (at least for low frequencies). 

 In the Monte-Carlo calculations, it is sufficient to assume that the carrier movement is 

restricted just by the nanotube walls (Fig. 8.5(a); no further interactions are needed to 

reproduce shape of the spectra). Then, we use (3.33) to calculate the corresponding normalized 

transient transmission spectrum ΔTnorm. A good match between the calculated and measured 

spectra is found for the scattering time τs = 0.3 fs (Fig. 8.7), which corresponds to the Drude 

mobility 0.5 cm2V-1s-1 (the accuracy of these values is limited by the uncertainties in the 

V factor (Section 8.4.1) and the carrier effective mass (Section 8.3.1)). Since the band bending 

and repelling charged surface defects would further confine the charges and thus change the 

shape of the THz spectra (see the response of the long nanotubes in Section 8.4.2b)), we 

conclude that these effects are marginal and the charges are confined just by the physical 

boundaries of nanotube walls. 

 The charge mobility in the short nanotubes is comparable to that in anatase 

nanoparticles [165] and in mesoporous anatase structures [37]. However, it is considerably 
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lower than in high-quality intrinsic or niobium-doped bulk anatase [164],[166]. We thus 

conclude that the studied nanotubes contain a large density of defects which are responsible 

for strong scattering of carriers. Therefore, there is still a potential for improving the 

crystallinity and the charge transport properties of the nanotubes. We note that the estimated 

scattering time of 0.3 fs corresponds to a mean free path ~ 0.035 Å. Although this means that 

the charges interact too frequently to follow the Drude view of ballistic charge motion 

interrupted by scattering events, we still believe that the estimated mobility characterizes well 

the efficiency of the charge transport in the nanotubes. 

 Surprisingly, the normalized transient transmission ΔTnorm is slighter higher for the 

amorphous nanotubes (Fig. 8.7). Even though we cannot say whether this is due to a better 

connectivity (higher value of V) or a higher mobility, the presented results imply that the THz 

mobilities (i.e. the charge mobility on the nanoscale distances) in short anatase and amorphous 

nanotubes are comparable. Similar conclusion was also drawn for mesoporous TiO2 

structures [37]. 

 We now briefly address the charge dynamics in the short nanotubes (Fig. 8.8). Shortly 

after photoexcitation, the THz photoconductivities of both the anatase and amorphous samples 

are similar. Subsequently, trapping of charges occurs which reduces the THz 

photoconductivity. The estimated time-scale for trapping from Fig. 8.8 is then ~ 1 ns in the 

amorphous nanotubes and somewhat longer in the anatase nanotubes. The anatase nanotubes 

are thus more suitable for photovoltaic applications where long-range charge transport is 

 

Fig. 8.7. Normalized transient transmission spectra  ΔTnorm of the short TiO2 nanotubes in 

anatase (a) and amorphous (b) phase (Tab. 8.1). Experimental data (points) were obtained 

for the pump-probe delay of 10 ps. Lines: results of Monte-Carlo calculations for charge 

mobility 0.5 cm2V-1s-1. Only confinement by the nanotube walls was considered in the 

calculations  (Fig. 8.5(a)). Solid lines and closed symbols: real part; dashed lines and open 

symbols: imaginary part. 
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required (in correlation with the incident photon-to-electron conversion efficiency which was 

in detail discussed in [152]). 

8.4.2.b) Long nanotubes 

 Since the samples of long TiO2 nanotubes were free-standing layers, we could 

photoexcite them both from the open top part and the closed bottom part, respectively. The 

examples of the measured normalized transmission spectra ΔTnorm are shown in Fig. 8.9(a). A 

significant response was observed just for the anatase nanotubes photoexcited from their open 

tops. The observed transient photoconductivity is long-lived: the initial decay rate is on the 

time scale of hundreds of picoseconds and it even seems to slow down after ~ 500 ps 

(Fig. 8.9(c)). The response of the long anatase nanotubes photoexcited from the bottom part 

(|ΔTnorm| ~ 0.05 cm2V-1s-1) is close to the detection limit of our setup. The difference from the 

response of the photoexcited top part is not surprising: the bottom part of the nanotube lies in 

the area where the anodic oxidation of titanium substrates takes place. Therefore, it exhibits 

different properties than the top of the nanotube wall where the oxidation process is already 

completed. For the amorphous nanotubes, we observe no measurable signal even at the shortest 

pump-probe delay (~ 1 ps) which implies that |ΔTnorm| ≲ 0.02 cm2V-1s-1. 

 From now on, we discuss just the response of the long anatase nanotubes photoexcited 

from the top part. It is evident that the normalized transient transmission ΔTnorm does not 

depend significantly on the photoexcitation fluence (Fig. 8.9(a)). Since the D-term in the VBD 

model is not negligible (for the photoexcitation fluence 5.7×1013 photons/cm2 and 1 THz, we 

estimate |DΔσp/(ωε0)| ~ 0.34), the nanotubes should be percolated (see the discussion 

in  Section 8.3.3) which further supports our conclusion from the steady-state measurements 

(Section 8.4.1). Due to the optical thickness of the samples, we can also apply the temporal 

windowing and thus we use Eq. (3.35) to retrieve the mobility spectra of the nanotubes. 

 

Fig. 8.8. Decay of the average THz photoconductivity in the short TiO2 nanotubes 

(photoexcitation fluence was 2.7 × 1013 photons/cm2). The curves are normalized to the 

peak value. 
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 The measured spectra of normalized transient transmission ΔTnorm exhibit a 

resonant-like behavior (Fig. 8.9(a)). In [57], a similar feature was observed and attributed to 

the response of excitons. However, a precise analysis reveals that in our spectra it is an 

interference maximum in a 30-μm thick nanotube layer. The spectrum of charge mobility 

retrieved from ΔTnorm using (3.35) (this equation correctly accounts for the interferences) is 

indeed smooth and without any sharp resonances (Fig. 8.9(b)). Similar complicated 

 

Fig. 8.9. (a) The measured normalized transient transmission spectra ΔTnorm of the long 

TiO2 nanotube layers in anatase (sample H172) and amorphous (sample H178) phase (Tab. 

8.1). The layers were photoexcited from top (i.e. open nanotubes) and from the bottom (i.e. 

closed nanotubes) parts, respectively. The spectra were measured 10 ps after 

photoexcitation. (b) Spectra of the product V×ξμ calculated using Eq. (3.35) for the anatase 

nanotubes photoexcited from the top part. (c) Dynamics of the average THz 

photoconductivity in anatase nanotubes photoexcited from the top part. Lines in panels (a) 

and (b) serve as guides for the eye only. Closed symbols: real parts of the spectra, open 

symbols: imaginary parts. 
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interference patterns were also observed and deconvoluted in nanocrystalline Si samples with 

thickness ~ 200 μm [56]. We note that the errors in the mobility spectra retrieved from ΔTnorm 

are amplified in the vicinity of the interference maxima (these involve e.g. the noise in the 

measured spectra and the uncertainty in the sample thickness). The mobility spectra are thus 

reliably obtained in a narrower range of frequencies than the measured ΔTnorm spectra (compare 

Figs. 8.9(a) and 8.9(b)). 

 The mobility spectra retrieved from the experiments (Fig. 8.9(b)) exhibit typical 

signatures of charge confinement (Section 5.1). In the simplest case when the charges are 

confined just by the nanotube walls, however, the calculated spectra are not compatible with 

those measured (case a = ∞ in Fig. 8.10). The calculated real part increases too slowly with 

frequency and the calculated imaginary part has maximum at lower frequency than that 

observed experimentally. Since the peak frequency is inversely proportional to the 

confinement length ([27], Section 5), the charges must then be confined more strongly than 

just by the nanotube wall. To confirm this, we consider the models introduced in Section 8.3.1. 

 First, we investigate the role of possible internal structure of the nanotube wall 

(Fig. 8.5(b)). For this, we employed the Monte-Carlo calculations for several sizes a of the 

nanoregions forming the wall. A particularly good match is obtained for a = 10 nm (Fig. 8.10). 

The probability of the charge transfer into an adjacent region is then pF ~ 2.5%. This implies 

that the nanotubes may be composed by such small anatase grains. The pronounced increase 

of the real part of the mobility spectrum can be achieved only for longer scattering times 

(τs = 15 fs). This corresponds to a rather high Drude mobility ~ 30 cm2V-1s-1 (this value is just 

an order of magnitude estimate mainly due to the ambiguity of the carrier effective mass 

entering the Monte-Carlo calculations, and, to some extent, also due to the uncertainty of the 

adjustable parameters τs and a) which is comparable with that in high-quality intrinsic or 

niobium-doped bulk anatase [164],[166]. The amplitude of the measured signal, however, is 

low compared to such high value of Drude mobility. This implies a low yield of mobile carriers 

(by amplitude fitting, we estimate ξ = 10%), which we attribute to a high density of deep traps 

at the nanotube wall surfaces. Furthermore, the used short-wavelength photoexcitation (for 

λ = 266 nm, the penetration depth in anatase is ~ 15 nm) generates a considerable number of 

carriers close to the surface which may also reduce the overall yield of mobile carriers. 

Similarly low yield of mobile photoexcited charges was observed also in InP nanowires and 

ascribed to the photoabsorption in localized defect states [92]. 

 We now try to explain the response of the long TiO2 nanotubes considering the two 

remaining proposed confining mechanisms introduced in Section 8.3.1 – band bending at the 

nanotube wall surface and the repelling potential of charged surface defects (Figs.  8.5(c),(d)). 

First, we investigate how these potentials individually influence the mobility spectrum 

(Fig. 8.11(a)). The band bending confines the motion of charges either into a central area of the 

nanotube wall (central charges), or to the vicinity of the nanotube wall surfaces (peripheral 

charges). Here, we consider f0 = 3 THz for which the bending energy reaches ~ 0.1 eV. 

For central charges, the real part of the mobility spectrum exhibits more pronounced increase 

than for the confinement just by the nanotube walls (Fig. 8.11(a)). At the same time, the 

imaginary part remains negative in a broader frequency range. In contrast, the response of 
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peripheral charges is much weaker and completely flat. This stems from the highly 

non-parabolic potential shape in which the peripheral charges move: we can understand it as 

a motion in a potential well with a very broad distribution of eigenfrequencies, which sums up 

to a flat spectrum. The response of charges moving just in the repelling potential of surface 

defects (8.2) (there were 20 defects on the inner nanotube wall surface and 30 defects on the 

outer surface; screening parameter k0 = 108 m-1) is very weak (Fig. 8.11(a)), although it 

exhibits a dispersion comparable with that of electrons in the band bending potential (8.1). 

 Neither of the two models considered above, however, reproduces the shape of the 

mobility spectrum obtained from experiments (Fig. 8.11(b)). The comparison implies that the 

charges should be confined even more strongly. We thus examined a combined influence of 

band bending and of additional charged surface defects. However, no significant improvement 

of the match between the calculated and measured results was observed. We thus conclude 

that the charge confinement by nanoregions forming the nanotube wall is dominant effect in 

the studied long anatase TiO2 nanotubes. 

 

 

Fig. 8.10. Lines: charge mobility spectra in the model structure from Fig. 8.5(b) (a nanotube 

wall composed of cube nanoregions with dimension a) obtained by the Monte-Carlo 

calculations (lines). Symbols show the mobility spectrum measured for long anatase 

nanotubes (photoexcitation fluence ϕ = 5.7 × 1013 photons/cm2). The values of the 

quantum yield ξ, scattering time τs and the probability pF of the charge transfer between 

adjacent nanoregions were optimized to find the best match between the calculated and 

measured data: values of  ξ and τs are summarized in the legend, pF = 2.5% for all the shown 

spectra. The spectrum for a = ∞ corresponds to the homogeneous nanotube walls 

(i.e. without nanoregions). 
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8.4.2.c) Comparison with previous studies 

 The THz photoconductivity of the studied short and long TiO2 nanotubes strikingly 

differ. For the short nanotubes, we observed an extremely small mobility (Drude 

mobility ~ 0.5 cm2V-1s-1) with the spectra characteristic for weakly localized charges. For the 

long nanotubes, much stronger confinement occurs and the mobility is also considerably higher 

(Drude mobility ~ 30 cm2V-1s-1). 

 These results are also quite striking while compared with the previous studies of THz 

conductivity on TiO2 nanotubes. In nanotubes similar to ours, Wehrenfennig et al. reported a 

Drude-like mobility spectra with the dc mobility comparable to that in TiO2 nanoparticles 

[136]. In contrast, Richter and Schmuttenmaer reported a power-law conductivity with an 

excitonic resonance for Ru-N3-sensitized nanotubes [57]. These strikingly different results 

 

Fig. 8.11. (a) Influence of band bending and repelling potential of surface charges on THz 

mobility spectra of the long TiO2 nanotubes. The spectra were obtained using the 

Monte-Carlo calculations based on Kubo formalism (Section 2.1).  Following parameters 

were assumed: scattering time τs = 15 fs, harmonic frequency of the band bending potential 

f0 = 3 THz, screening parameter k0 = 108 m-1. There were 20 surface defects on the inner 

surface of the nanotube wall and 30 defects on the outer surface. (b) Comparison of the 

calculated (lines) and measured (symbols) data (long anatase nanotubes, photoexcitation 

fluence ϕ = 5.7 × 1013 photons/cm2). In the calculations, we considered the potentials from 

panel (a) and also their combinations. The values of the quantum yield ξ (summarized in the 

legend) were optimized to find the best match between the calculated and measured data. 
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shows that the charge transport properties of TiO2 nanotube layers depend strongly on the 

fabrication process. 

8.5 Conclusions 

 Time-domain THz spectroscopy was employed to characterize various self-organized 

TiO2 nanotube layers. A careful analysis of the measured spectra was required to reliably 

determine the effective THz permittivity and the effective THz photoconductivity of the 

nanotubes. In particular, we showed that the apparent resonance in the transient transmission 

spectra of the long TiO2 nanotubes is caused by Fabry-Pérot interferences in the layer, and not 

by a low-energy excitation. 

 The analysis of the measured steady-state permittivity allowed us to assess the in-plane 

electrical connectivity of individual nanotubes. We found a good correlation with the 

geometrical connectivity of the nanotubes observed in SEM images. The THz 

photoconductivity strongly depends on the fabrication process: 

 For short nanotubes, we observed very small conductivity (Drude mobility 

~ 0.5 cm2V-1s-1) with spectra characteristic for weakly localized charges. This implies 

that the carriers are confined just by the physical boundaries of the nanotube wall. 

 For long nanotubes, the THz photoconductivity spectra show pronounced dispersion. 

This implies a confinement of charges on distances ~ 10 nm, i.e. there are obstacles for 

charge motion along the circumference of the nanotube wall. The mobility of charges 

within these confinement areas is comparable to that in high-quality anatase crystals. 

These results imply that the anodization process could be further optimized to provide a 

material with excellent long-distance charge mobility. 

 Transient photoconductivity of the nanotubes is long-lived. For short nanotubes, the 

estimated time-scale for trapping is ≳ 1 ns. For long nanotubes, we observe a slowly decaying 

component with mean life-time of several hundreds of picosecond. 
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Conclusions 

 THz conductivity spectra contain information on charge transport mechanisms 

on nanometer distances. In semiconductor nanostructures, a considerable departure from 

the bulk response can occur due to the charge confinement suppressing the long-range 

transport. The recent developments of high-field THz sources then open also a possibility for 

the investigation of charge transport in intense electric fields: additional nonlinearity due to the 

confinement in an anharmonic potential is anticipated. In this thesis, we focused on the 

investigation of three inter-related topics: theoretical studies of fundamental properties 

of linear conductivity of confined electron gas, combined theoretical and experimental analysis 

of TiO2 nanotube layers, and development of a theoretical framework for calculations of the 

nonlinear response of semiconductor nanostructures. 

Linear conductivity of confined electron gas 

 Even though the linear THz conductivity of inhomegeneous media is thoroughly 

analyzed in the literature, we still provide new results of fundamental importance. We focused 

on a toy model where the carriers move (almost) ballistically with a uniform (Fermi) velocity 

(i.e. degenerate electron gas and long scattering times): 

 For structures with a rectangular geometry, the conductivity spectra exhibit a series of 

geometrical resonances which are directly associated with the frequency of the 

bouncing of charges moving with the Fermi velocity and its higher harmonics. The 

presence of "higher harmonics" peaks reflects the anharmonic character of the charge 

motion despite the fact that we are in the linear regime. When the structure surface is 

round, the THz conductivity spectra exhibit complex patterns related to quasi-periodic 

trajectories. 

 In mutually isolated nanoelements, a plasmonic resonance develops and couples with 

the observed geometrical resonances (their frequency depends on the Fermi velocity 

and thus also on the charge density). The character of this coupling differs with the 

dimensionality of the structure. In 3D nanostructures, the plasmonic mode dominates 

the response only at high carrier densities. Analogical behavior was already observed 

for non-degenerate electron gases in isolated nanostructures. In 1D systems, the 

plasmonic resonance then dominates in the spectra only at low enough carrier 

concentrations. The 2D nanostructures are then specific as the character of the resulting 

mixed mode does not depend on the charge density. 

Our conclusions provide a link between the quantum mechanics and the commonly observed 

experimental results. In a quantum-mechanical view (expected for nanostructures), the 

conductivity spectrum consists of a series of peaks related to transitions between defined states 

of the system. For large enough structures containing degenerate electron gas, we showed that 

these peaks can be identified with a classical (quasi-)periodic motion of charges. Under 

common experimental conditions, the ensemble of mobile charges can be characterized as 

a non-degenerate electron gas: a broad distribution of charge velocities (and to a lesser extent 

also the bulk scattering and distribution of nanoelement sizes) then smears the sharp lines 
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corresponding to quantum transitions into a single broad resonance frequently associated with 

the phenomenological Drude-Smith model. 

THz spectroscopy of TiO2 nanotubes 

 We used time-domain THz spectroscopy to study the dielectric, percolation and 

photoconductive properties of various self-organized TiO2 nanotube layers prepared by the 

anodization of titanium. The SEM images reveal that the nanotubes do not fully overlap, but 

are rather connected by contacts of limited extent. The percolation properties inferred from 

steady-state THz measurements then confirm a limited (but existing) electrical connectivity 

between the nanotubes. The photoconductive properties of the nanotube walls then strongly 

depend on the fabrication process: 

 For short nanotubes (length ~ 1 μm), the conductivity spectra show a very weak 

dispersion which is characteristic for weakly localized charges. Monte-Carlo 

calculations then revealed that the charges are confined just by the physical boundaries 

of the nanotube wall. The Drude mobility of charges ~ 0.5 cm2V-1s-1 is then very small 

compared to a high-quality anatase crystals.  

 For long nanotubes (~ 30 μm), the THz photoconductivity spectra show pronounced 

dispersion. This implies that there are some obstacles for charge motion along the 

circumference of the nanotube wall. Using Monte-Carlo calculations, we estimated that 

the confinement of charges takes place on distances ~ 10 nm. The Drude mobility 

of charges within these confinement areas (~ 30 cm2V-1s-1) is comparable to that 

in high-quality anatase crystals. 

Nonlinear THz response of semiconductor nanostructures 

 The nonlinear THz response of nanostructures has been a completely unexplored field. 

Therefore, we had to develop a pertinent theoretical framework (oriented on thin samples) 

from the scratch. Our theory covers the following issues: 

 We introduced a phenomenological description of the nonlinear THz conductivity. This 

is not as straightforward as in nonlinear optics: the phase-matching condition is 

suppressed for thin samples in the THz range, therefore frequency mixing between all 

spectral components of the broadband THz pulses contributes to the transmitted 

spectrum. Additionally, the observed nonlinear THz response is often highly 

non-perturbative. The nonlinear THz conductivity describing the response to 

a monochromatic  wave is thus more naturally expanded into a series of resulting 

harmonic frequencies in which we disregard the dependence on the exponent of electric 

field. 

 To assess the THz nonlinear conductivity on the microscopic level, we developed 

non-perturbative Monte-Carlo calculations. These allow us to evaluate the response of 

confined carriers in the presence of a strong arbitrarily shaped electric field. The main 

output of these calculations is a field-dependent electric current density. If we employ 
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the calculations for several different electric field amplitudes, we can also determine the 

individual nonlinear (photo)conductivities of different orders. 

 Semiconductor nanostructures are inherently inhomogeneous which causes 

complications for the evaluation of their response. Firstly, it is important to realize and 

account for the difference between the electric field incident on the sample and the local 

fields in the nonlinear constituents of the inhomogeneous structure. Then, we derived 

a nonlinear effective medium theory to homogenize the problem, i.e. to transform the 

complex spatial distribution of local nonlinear electric current densities or 

photoconductivies into a spatially homogeneous effective electric current density 

or photoconductivity, respectively. 

 Finally, we analytically solved the nonlinear wave equation for a thin homogenized 

sample. This allows us to link the nonlinear electric current density (i.e. output 

of Monte-Carlo calculations) or nonlinear photoconductivity with the expected 

measurable signals. We pointed out that due to the inherent frequency mixing, it is 

generally impossible to get rid of the instrumental response functions in the measurable 

nonlinear signals. In this sense, the nonlinear experiments are expected to be much more 

complex than e.g. the linear transient transmission measurements where the instrumental 

response functions cancel out. In the THz range, the instrumental response functions are 

complex and frequency-dependent, therefore they severely influence the measurable 

broadband signals in a non-trivial way. 

 The nonlinear response of confined charges is highly non-perturbative even in 

moderate electric fields: we resolved an efficient high harmonics generation due to charge 

confinement already for fields ≳ 10 kV/cm. The character of the nonlinearities then strikingly 

differs depending on the equilibrium distribution of thermal velocities: 

 The nonlinear THz response of non-degenerate electron gas is qualitatively compatible 

with the response of an anharmonic oscillator. With increasing electric field, the charge 

mean velocity increases and nonlinear THz conductivity spectra thus blueshift. 

 For degenerate electron gases, the nonlinear THz response is very complicated. For 

very low electric fields, the nonlinear spectra exhibit peaks located at the harmonic 

frequencies corresponding to the bouncing of charges moving with Fermi velocity. 

With increasing electric field, we observe a splitting of the peaks into multiplets and 

emergence of other features due to the resonant character of the carrier motion. 

 We theoretically evaluated the measurable nonlinear signals for various semiconductor 

nanostructures which can be fabricated by current nanotechnologies. To obtain a high 

nonlinear local conductivity, several issues have to be considered: 

 The nanostructures should be formed by a semiconducting material with high carrier 

mobility (e.g. gallium arsenide) to enhance the interaction of charges with the THz 

radiation and the nanostructure boundaries. 

 The strength of the nonlinearity non-trivially depends on the nanostructure dimensions 

and the target THz frequencies. Generally, the confinement strongly limits the mobility 

amplitude for small dimensions. For too large dimensions, the confinement is 
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suppressed and thus all corresponding nonlinearities vanish. For GaAs nanostructures 

and driving THz pulses with frequencies around ~ 1 THz, the amplitude of nonlinear 

mobility exhibits a flat maximum for nanostructure size ~ 250-300 nm.  

Per unit charge, the nonlinearities due to charge confinement are 20 times larger than the 

nonlinearities observed in doped unstructured graphene which has been believed to be the most 

nonlinear material in the THz range. 

 The strength of the measurable nonlinear signals is also strongly influenced by the 

nanostructure layout. In conventional semiconductor-air nanostructures, a large permittivity 

contrast limits the nonlinear signal (screening of the local electric field, weak effective 

response) and pushes the measurable signal close to the edge of detectability. We thus 

investigated also semiconductor-metal nanostructures where the metallic parts act as short 

circuit concentrating the electric field into the embedded semiconductor nanoelement. This 

provides sufficient enhancement of both the local field in the nanostructure and the resulting 

measurable nonlinear signal; the enhancement further scales with the reciprocal value of the 

semiconductor filling factor. Based on these findings, we identified a metallic nanoslits 

structure filled with GaAs nanobars as the most promising structure for experimental 

observation of nonlinearities due to charge confinement. Thanks to the enhancement of the 

effective nonlinear response, the nonlinearities should be easily observable in common 

low-field THz setups. 

 Our results achieved in the field of THz nonlinearities provide an inspiration for further 

research. The qualitative explanation of nonlinear response of confined degenerate electron 

gas is still an open problem. Development of a simple analytical model describing the response 

could bring more light on the physics of resonant systems. Further, we plan the fabrication of 

the metallic nanoslits filled with GaAs nanobars. Such structure should enable 

a straightforward experimental observation of nonlinear THz conductivity even in the 

low-field experimental setup employing optical rectification in ZnTe (delivering fields 

~ 5 kV/cm) which is well established in our lab. Finally, the reported nonlinearities due to 

charge confinement in GaAs nanostructures are among the strongest known THz nonlinearities 

in solid state physics. The combination of this mechanism with the strong "bulk" nonlinearities 

in doped graphene could then spark a development of an ultimately nonlinear material.  
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Appendices 

A. Transient transmission of an inhomogeneous sample 

with background conductivity 

 In Section 3.2, we discussed the solution of wave equation for samples without free 

charges in the equilibrium state. Here, we provide generalized relations for a sample with 

a spatially homogeneous background local conductivity (this situation may occur e.g. in doped 

semiconductor nanoparticles). These formulas were derived to explain the THz response of 

TiO2 nanotubes. However, a thorough analysis of the measured data (Section 8) did not 

confirm a presence of background conductivity. 

 In the ground state, we assume that each photoconductive part of the sample exhibits 

a conductivity σB. Upon photoexcitation, the local conductivity becomes depth-dependent and 

changes to 

 )exp()( effpBp zz  , (A.1) 

where the factor exp(−αeffz) accounts for the attenuation of the excitation beam. The effective 

conductivity Δσeff(z) is then given by the VBD model (3.3). We then use the general solution 

of the wave equation (3.20) for the transmission change ΔET(Δσeff(z)) of the sample for 

arbitrary depth-profile of effective conductivity [34] 
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where ET(0) is the field transmitted through unexcited sample without the background 

conductivity. 

 Similarly as for undoped samples, we wish to evaluate the transient transmission ΔT/T 

defined as the transmission change normalized by the transmission in the unexcited sample: 
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where ET(σB) is the THz field transmitted through the sample in equilibrium and 

ET(σB + Δσp(z)) is the wave transmitted through the photoexcited sample. The above relation 

can be equivalently expressed in terms of transient transmissions formally normalized by the 

field ET(0) 
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where ΔET(σ) = ET(σ) − ET(0). The above relation links the measured transient transmission 

ΔT/T of a photoexcited doped sample with the material parameters since ΔET(σB,Δσp)/ET(0) 

and ΔET(σB)/ET(0) can be evaluated from (A.2). To find the unknown Δσp from optical 

pump-THz probe measurements, however, we additionaly need to determine the background 

conductivity σB, e.g. from separate steady-state experiments (i.e. comparison with the 

propagation in free space). In the rest of this appendix, we will consider σB to be known without 

any further assumptions.  

 We now evaluate (A.4) for a two-component system described by VBD model (3.3). 

The character of considered equations allows us to treat the percolated and non-percolated 

terms separately. 

 We start with the percolated term for which the effective photoconductivity Δσeff(z) 

reads 

 photoexcited:  Beffpeff )exp()(  zVz   (A.5.1)

 equilibrium: Beff )(  Vz .  (A.5.2) 

The additivity of the integrals in (A.2) then ensures that the terms with σB cancel each other 

out in the numerator of (A.4) and we thus find  
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The numerator of the above relation is given by (3.31). Trivial integration then yields the term 

ΔET(σB)/ET(0) in the denominator: 
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 For non-percolated term, the situation becomes more complicated as the effective 

photoconductivity reads 
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The evaluation of (A.2) and (A.4) requires the knowledge of the following integrals [56],[59] 
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where we retain the notation introduced in Section 3.2.2. Upon integration, we find the 

following form of terms in (A.4): 
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The integrals Ij read 
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where X and Y0 are 

 
0

i



D

X  (A.13.1) 

 
B

0

0
1 




X

X
Y . (A.13.2) 

 

 

 

 

 

 

 

 

 

  



 

153 

 

B. Derivation of mobility of classical anharmonic oscillator 

 Here, we derive formulae (6.7) for nonlinear mobilities μ(α). These relations stem from 

nonlinear Lorentz model where electrons move classicaly in an anharmonic potential. This 

system can be treated in a perturbative way which was used in [28] to determine the first to 

third order susceptibilities. We will follow this derivation and we further expand it to the 

nonlinearities of the fifth order. 

 For our purpose, we focus on a 1D oscillator and centrosymmetric media where even 

order nonlinearities vanish. The restoring force acting on the electron then reads 

 532

osc)( mcxmbxxmxF  , (B.1) 

where x is the electron displacement, Ωosc is the oscillator frequency and b and c are parameters 

characterizing the strength of the nonlinearity. This force is then associated with a binding 

potential 
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where necessarily c < 0 to ensure that the electron always remains bound. 

 The equation of motion of the bound electron is 
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where γ is a damping rate and the electric field E(t) is monochromatic and reads 
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An analytical solution of equation (B.3) with electric field (B.4) in terms of elementary 

mathemathical functions does not exist. However, a perturbative approach can be applied when 

the nonlinear displacement bx3 + cx5 is much lower than the linear contribution Ω
2
oscx (i.e. for 

low enough electric fields). Under this assumption, we replace electric field E(t) with λE(t), 

where λ is a parameter ranging continuously between zero and one. The equation of motion 

(B.3) thus changes to 
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e
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and we assume its solution in the form of power series 
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1 xxxx , (B.6) 

where we omitted the even order contributions as they necessarily vanish due to the symmetry 

reasons.  
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 Expansion (B.6) is the solution of equation (B.5) if the terms proportional to the field 

strengths λ, λ3, λ5, etc., satisfy the equation separately. For the lowest-order contributions xi, 

this leads to the equations 
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 The equation (B.7.1) for the linear electron displacement x1 is essentialy the same as 

the one encountered in the linear Lorentz model. Its solution has the form of a harmonic wave 
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Its substition into (B.7.1) then yields the amplitude x1(ω0) 
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where we have introduced 
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 To solve the equation (B.7.2) for the third-order correction x3, it is necessary to 

substitute for x1 raised to the third power which leads to two frequency components oscillating 

at the fundamental frequency ω0 and its third harmonics 3ω0  
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We thus assume x3(t) in the form 
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where the amplitudes x3,3(3ω0) and x3,1(ω0) are related to the third harmonics generation and 

the nonlinear index of refraction, respectively. After the substitution into (B.7.2), we get 
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The denominators in the above expressions reflect the underlying nonlinear processes which 

result in the frequencies 3ω0 = ω0 + ω0 + ω0 and ω0 = ω0 − ω0 + ω0, respectively – the leftmost 
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N-term represents the resulting frequency while the other N-terms represent the interacting 

frequency components. In Tab. B1, we introduce a schematical notation in which these 

processes read ω0 + ω0 + ω0 → 3ω0 and ω0 − ω0 + ω0 → ω0, respectively. 

 Results (B.9) and (B.13) were already derived in [28]. Now, we provide the expansions 

for the fifth order nonlinearity. To do this, it is necessary to substitute for x1 and x3 in (B.7.3). 

The pertinent expressions then read 
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The fifth-order response thus contains three spectral components at frequencies ω0, 3ω0 and 

5ω0. The solution of (B.7.3) thus takes the form 

Order Equation Denominator Interactions 

1 (B.9) N(ω0) ω0 → ω0 

3 
(B.13.1) N(3ω0)N 3(3ω0)  ω0 + ω0 + ω0 → 3ω0 

(B.13.2) N(ω0)N 2(ω0)N(−ω0)  ω0 − ω0 + ω0 → ω0 

5 

(B.16.1) N(5ω0)N 5(ω0)  ω0 + ω0 + ω0 + ω0 + ω0 → 5ω0 

(B.16.2) N(3ω0)N 4(ω0)N(−ω0)  ω0 − ω0 + ω0 + ω0 + ω0 → 3ω0 

(B.16.3) N(ω0)N 3(ω0)N 2(−ω0)  ω0 − ω0 + ω0 − ω0 + ω0 → 5ω0 

(B.16.1) N(5ω0)N 2(ω0)N(5ω0)N 3(ω0) (ω0 + ω0 + ω0) + ω0 + ω0 → 3ω0 + ω0 + ω0 → 5ω0 

(B.16.2) 
N(3ω0)N 2(ω0)N(ω0)N 2(ω0)N(−ω0) (ω0 − ω0 + ω0) + ω0 + ω0 → ω0 + ω0 + ω0 → 3ω0 

N(3ω0)N(ω0)N(−ω0)N(3ω0)N 3(ω0) (ω0 + ω0 + ω0) − ω0 + ω0 → 3ω0 − ω0 + ω0 → 3ω0 

(B.16.3) 
N(ω0)N 2(−ω0)N(3ω0)N 3(ω0)  (ω0 + ω0 + ω0) − ω0 − ω0 → 3ω0 − ω0 − ω0 → ω0 

N(ω0)N 2(ω0)N(−ω0) N 2(ω0)N(−ω0)  (ω0 − ω0 + ω0) − ω0 + ω0 → ω0 − ω0 + ω0 → ω0 
 

Tab. B1. Summary of the denominators in Eqs. (B.13) and (B.16). Their structure reflects the 

underlying nonlinear interactions (schematically captured in the rightmost column). In certain 

cases, two succesive third-order interaction have to be considered (schematically represented 

by two arrows). Permutations of interacting spectral components are accounted for by the 

numerical coefficients in the pertinent equations. 
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where the amplitudes x5,5(5ω0), x5,3(3ω0) and x5,1(ω0) are  
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The c-terms in the square brackets reflect nonlinear interactions of the fifth order between the 

spectral components at the fundamental frequency ω0. The b-terms then account for two 

successive third-order interactions which in the end result in the correct frequency. The 

underlying processes can be identified from the structure of the individual denominators and 

are summarized in Tab. B1. 

 Now, we link the displacement amplitudes xα with pertinent physical quantitites. The 

linear polarization P(1)(ω0) is directly proportional to the electric field 

 )()()( 000

)1(

00

)1(  EP , (B.17) 

where χ(1)(ω0) is the linear susceptibility. At the same time, the linear polarization originates 

from the electron displacement x1 and thus reads 

 )()( 0100
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where N is the concetration of atoms. Comparison of (B.17) with (B.18) and subsequent 

substitution of (B.9) yield 
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In the third-order nonlinearity, we have to carefully distinguish the processes resulting in 

frequencies 3ω0 (i.e. third harmonics generation) and ω0, respectively. We thus identify two 

contributions to the third-order polarization which satisfy 
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The substitution for the displacements then yields the expressions for third-order 

susceptibilities χ(3)(ω0,ω0,ω0) and χ(3)(ω0,−ω0,ω0), respectively 
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Analogically, the fifth-order polarization contains three spectral components 
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The fifth-order susceptibilities then directly stem from the above relations and read 
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 Nonlinear susceptibilities (B.19), (B.21) and (B.23) are further linked with the 

nonlinear conductivities σ(α). This relation stems from the equivalence of current density and 

the time-derivative of the polarization in the Maxwell's equation for the rotation of magnetic 

field (i.e. Ampère's circuital law) and it reads 
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where ωNL is the resulting frequency of the underlying (nonlinear) process. Substition of Eq. 

(1.20) from the main text into the above relation then links together the nonlinear susceptibility 

χ(α) and the nonlinear mobility μ(α) 

 
Ne0

)(

NL

)( )(
i)(







. (B.25) 

Substitution of (B.19), (B.21) and (B.23) into (B.25) then yields the relations (6.7) for the 

mobilities of classical anharmonic oscillator. 
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C. Nonlinear response of 1D confined degenerate electron gas 

 Here, we show the real and imaginary parts of the harmonic mobility μ[m] 

corresponding to the amplitudes shown in Fig. 6.7 in the main text. 
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Fig. C1. Real and imaginary parts of the harmonic mobility μ[m] obtained by the 

non-perturbative Monte-Carlo calculations for 1D degenerate electron gas confined in an 

infinitely deep rectangular potential well and subjected to a monochromatic electric field. 

The spectra correspond to the amplitudes shown in Fig. 6.7 in the main text. Following 

parameters were considered in the calculations: vF = 106 m/s, EF = 0.2 eV, T = 4 K, τs = 1 ps,  

m = 0.07me, l = 100 nm.  
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D. Nonlinear response of GaAs nanobars under broadband THz pulses 

 In Fig. D1, we show the real and imaginary parts of the electric current density in GaAs 

nanobars induced by the broadband high-field THz pulses (Fig. 7.1(a)) with peak amplitde 

100 kV/cm. These spectra correspond to the amplitudes shown in Fig. 7.7(a)-(c) in the main 

text. 

 

 

  

 

Fig. D1. Real and imaginary parts of the electric current density induced inside GaAs 

nanobars by the incident THz pulse from Fig. 7.1(a) with peak amplitude of 100 kV/cm for 

various carrier concentrations N calculated using the non-perturbative Monte-Carlo 

calculations. Clear departure from the linear response jx
(1)

 and presence of tail in the 

nonlinear component jx
NL

 above incident frequencies (gray areas) are observed for  

N ≤ 1016 cm-3. For the linear component  jx
(1)

, the data above the incident frequencies are 

just a noise originating from the calculations. The corresponding amplitudes are shown in 

Fig. 7.7 in the main text. We note, that the normalized electric current density jx/(e0N) 

represents the velocity of carriers. The Fourier transform then reduces the unit of velocity 

from meters per second just to meters. 
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E. Nonlinear response of GaAs nanowires under broadband THz pulses 

 In Fig. E1, we show the real and imaginary parts of the electric current density in GaAs 

nanowires induced by the high-field broadband THz pulses (Fig. 7.1(a)) with peak amplitde 

100 kV/cm. These spectra correspond to the amplitudes shown in Fig. 7.7(d)-(f) in the main 

text. 

 

 

 

 

 

Fig. E1. Real and imaginary parts of the electric current density induced inside GaAs 

nanowires by the incident THz pulse from Fig. 7.1(a) with peak amplitude of 100 kV/cm 

for various carrier concentrations N calculated using the non-perturbative Monte-Carlo 

calculations. Clear departure from the linear response jx
(1)

 and presence of tail in the 

nonlinear component  jx
NL

 above incident frequencies (gray areas) are observed for 

N ≤ 3×1017 cm-3. For the linear component  jx
(1)

, the data above the incident frequencies are 

just a noise originating from the calculations. The corresponding amplitudes are shown in 

Fig. 7.7 in the main text. We note, that the normalized electric current density jx/(e0N) 

represents the velocity of carriers. The Fourier transform then reduces the unit of velocity 

from meters per second just to meters. 
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List of symbols 

A. Latin symbols 

a  .....................  in Section 3.2: coefficient describing multiple internal reflections of the  

   THz wave in a sample, defined by Eq. (3.18) 

  .....................  in Section 5.4: period of a curvature for periodically perturbed boundaries 

  .....................  in Section 5.4: period of a hexagonal Lorentz gas potential 

  .....................  in Section 8: size of cubic nanoregions which form a nanotube wall 

Ainc   ....................  peak spectral amplitude of the FELBE pulses incident on a structure 

Ap, Apeak  ................  peak spectral amplitude of the FELBE pulses 

b  .....................  parameter characterizing anharmonicity of binding potential 

B  .....................  weight of non-percolated parts in the VBD model of effective medium  

  .....................  for two-component systems 

c  .....................  in Section 5.1: parameter describing the localization of charges in  

   Drude-Smith model 

  .....................  in Section 6.1.4 and Appendix B: parameter characterizing anharmonicity  

   of binding potential 

  .....................  elsewhere: speed of light (c = 2.998×108 m/s) 

C, Ch, Cp  ..............  capacitances of capacitors used for the derivation of brick-wall effective  

   medium model 

d  .....................  inner diamater of a nanotube wall 

dh  .....................  width of the insulating block in two-component system consisting of  

   periodically alterating conductive and insulating blocks 

dp  .....................  width of the conducting block in two-component system consisting of  

   periodically alterating conductive and insulating blocks 

D  .....................  in Sections 2 and 5: dimension 

  .....................  elsewhere: morphologic parameter of the VBD model of effective medium  

   linked directly to a dominant depolarization factor 

D (ω)  .....................  instrumental function describing the detector response 

Ddiff  .....................  diffusion constant 

e


  .....................  unit vector pointing in a direction of probing electric field 

e0  .....................  elementary charge 

E  .....................  in Sections 2.1, 5.2: energy 

  .....................  elsewhere: THz electric field in a sample/slab 

Ei  .....................  in Section 5.2: energy of state i 

Eeff  .....................  effective THz electric field in an inhomogeneous sample 

EF  .....................  Fermi energy 

Eh  .....................  local THz electric field in insulating parts (matrix) of a two-component 

   system 

Einc  .....................  THz electric field incident on a sample 

Ep  .....................  local electric field in photoconductive consituents of a two-component 

   system 
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Ep,0   ....................  local monochromatic electric field in photoconductive consituents  

   of a two-component system 

ER  ....................  THz electric field reflected from a sample in equilibrium 

Es  ....................  THz electric field propagating through a sample/slab in equilibrium 

ET  ....................  THz electric field transmitted through a sample in equilibrium 

ET(σ)  ....................  THz electric field transmitted through a sample with conductivity σ 

E(t)  ....................  time-varying THz electric field 

E(ω)  ....................  complex spectrum of the THz electric field 

Epeak  ....................  peak electric field of the FELBE pulses 

Eα  ....................  in Section 2.1: energy of state α 

E0  ....................  in Section 7.1-7.4: peak electric field amplitude of of FELBE pulses 

  ....................  elsewhere: amplitude of a monochromatic THz electric field 

Ee
kin

   ...................  kinetic energy of the electrons at the FELBE facility 

ΔE  ....................  THz electric field induced in a photoexcited sample/slab 

ΔE(1)  ....................  linear component of the transient THz electric field leaving the output  

   surface of a sample 

ΔENL  ....................  nonlinear component of the transient THz electric field leaving the output  

   surface of a sample 

ΔEm  ....................  THz electric field induced in a photoexcited sample/slab at the m-th  

   harmonic frequency mω0 

ΔER  ....................  transient THz electric field leaving the input surface of a sample 

ΔET  ....................  (total) transient THz electric field leaving the output surface of a sample 

ΔE
R
m  ....................  transient THz electric field at the m-th harmonic frequency leaving  

   the input surface of a sample 

ΔE
T
m  ....................  transient THz electric field at the m-th harmonic frequency leaving the  

   output surface of a sample 

ΔET/ET ..................  (total) transient transmission 

ΔE(1)/ET ................  linear component of the total transient transmission ΔET/ET 

ΔENL/ET ................  nonlinear component of the total transient transmission ΔET/ET 

ΔENL/ET,peak  ..........  nonlinear transient transmission outside the bandwidth of the field ET  

   transmitted through a sample in equilibrium 

erf  ....................  error function 

erfcx  ....................  scaled complementary error function 

f  ....................  linear frequency of the electromagnetic wave 

fi  ....................  in Section 5.2.2: occupancy of quantum state i 

fij  ....................  linear frequency corresponding to a transition between quantum staes i  

   and j 

fpeak  ....................  frequency of peak in linear response of confined charges 

f*
peak  ....................  frequency of peak in nonlinear response of confined charges 

   at the fundamental frequency f0 

fpl  ....................  plasma frequency 

fr  ....................  linear frequency corresponding to the round-trip time tr (fr = 1/tr) 

frep  ....................  repetition rate of laser 
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f0  .....................  in Sections 7.1-7.4: central frequency of the FELBE pulses 

  .....................  in Section 8: harmonic resonance frequency of approximate band bending  

   potential 

  .....................  elsewhere: linear frequency of a monochromatic wave 

F  .....................  in Sections 2, 5: statistical distribution function 

  .....................  in Section 3: normalized Gaussian hypergeometric function 2F1 

  .....................  in Appendix B: restoring force acting on electrons 

2F1  .....................  Gaussian hypergeometric function [59] 

g  .....................  third-order nonlinear coefficient of the nonlinearities due to charge  

   confinement 

G(E)  .....................  density of states 

G(z)  .....................  particular solution of wave equation (3.20) 

h  .....................  Planck constant (h = 6.626×10-34 J/s) 

ħ  .....................  reduced Planck constant (ħ = h/(2π) 1.054×10-34 J/s) 

ΔH  .....................  THz magnetic field induced in a photoexcited sample/slab 

ΔHm  .....................  THz magnetic field induced in a photoexcited sample/slab at the m-th  

   harmonic frequency mω0 

ΔH
R
m  .....................  m-th harmonic transient THz magnetic field leaving the input surface  

   of a sample 

ΔH
T
m  .....................  m-th harmonic transient THz magnetic field leaving the output surface  

   of a sample 

j  .....................  in Section 4.1: electric current density of free charges 

j[E]  .....................  electric current density as a functional of an electric field E 

j[m], j[m](mω0) .........  harmonic electric current density of the m-th order (i.e. response at the  

   m-th harmonic frequency mω0) 

j(α), j(α)(t), j(α)(ω) ....  nonlinear electric current density of α-th order (i.e. directly  

   proportional to Eα) 

jeff  .....................  effective electric current density in an inhomogeneous system 

je
(
f
1
f
)
   ....................  linear component of the effective electric current density jeff 

je
N
f
L
f  .....................  nonlinear component of the effective electric current density jeff 

jexc[E] ....................  electric current density induced in a photoexcited slab 

jp  .....................  local electric current density (in the photoconductive parts of  

   a two-component system) 

j(t)  .....................  electric current density in the time-domain (both linear and nonlinear) 

j(ω)  .....................  complex spectrum of the electric current density (both linear and  

   nonlinear) 

j(z)  .....................  spatially dependent photoinduced electric current density 

jp
(1)

  .....................  linear component of the local electric current density jp 

jp
NL

  .....................  nonlinear component of the local electric current density jp 

k  .....................  wave vector in a sample (k = nskvac) 

kB  .....................  Boltzmann constant (kB = 1.38×10-23 J/K) 

km  .....................  wave vector in a sample corresponding to the m-th harmonic (km = mnskvac) 
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kvac  ....................  wave vector in the vacuum 

k0  ....................  screening parameter 

K  ....................  shape factor in the Maxwell-Garnett effective medium theory 

Krms   ....................  undulator parameter 

l  ....................  several largely equivalent meanings depending on a context: size of 

   a nanostructure confining, distance between two parallel planes, potential  

   well width 

L  ....................  in Section 3.1: depolarization factor of non-percolated clusters  

  ....................  elsewhere: sample thickness 

L0  ....................  depolarization factor dominant in the spectral function 

Ln  ....................  principal value of complex logarithm 

m  ....................  carrier effective mass 

  ....................  index denoting the order of generated harmonics 

me  ....................  electron rest mass (me = 9.109×10-31 kg) 

n  ....................  in Section 5.2: charge density 

  ....................  in Section 5.3: number of charges per unit length, surface and volume 

  ....................  in Section 7.5: real part of complex refractive index 

  ....................  in Section 8: effective refractive index of the nanotube layer 

ncross   ....................  crossover charge density where coupling between geometrical and  

   plasmonic resonances occurs 

np  ....................  refractive index of the photoexcited material 

ns  ....................  refractive index of a sample 

n1  ....................  refractive index of substrate 

n2  ....................  refractive index of superstrate 

N  ....................  concentration of (photoexcited) carriers 

   in Section 5.3: average number of charges per unit block 

NC  ....................  doping carrier concentration in graphene 

N(ω0)   .................  symbol defined by the Eq. (B.10) 

p̂   ....................  momentum operator 

pF  ....................  probability that carrier is scattered on a nanoregion boundary and enters  

   an adjacent within a nanotube wall in the Monte-Carlo calculations 

pj  ....................  probabilities of the initial states considered for Monte-Carlo calculations 

prel   ....................  probability that carrier reflects elastically and speluarly from     

   a nanoparticle boundary in Monte-Carlo calculations 

pt   ....................  probability that carrier passes through a nanoparticle boundary in  

   Monte-Carlo calculations 

P  ....................  average power of the FELBE pulses 

P (ω)  ....................  instrumental function describing the propagation of THz pulses  

   behind the sample 

P(1)(ω) ...................  linear polarization 

P(α)(βω)  ................  nonlinear polarization of the α-th order at the resulting frequency βω  

   (β = 1,3,5,…) 

Pinc  ....................  average power of the FELBE pulses incident on a sample 
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q  .....................  pitch of a motion between two periodically perturbed parallel planes 

Q  .....................  in Section 8: charge of the surface defects 

  .....................  elsewhere: field-enhancement factor for an unphotoexcited  

   two-component structure 

Qexc  .....................  field-enhancement factor for a photoexcited two-component structure 

r  .....................  in Section 5.4: radius of the cylinders forming hexagonal Lorentz gas  

   potential 

  .....................  in Section 7: radius of a spot 

   in Section 8: distance from a nanotube center (equivalent to the position 

   vector of mobile carriers) 

𝑟  .....................  charge position vector 

rj  .....................  in Section 8: position vector the j-th charge surface defect 

  .....................  reflection Fresnel coefficient at the sample input (j = 1) or output (j = 2) 

   surface 

r0  .....................  distance of the middle of a nanotube wall from the nanotube center 

RSIPS[m]  ...............  relative spectrally integrated power signal of the m-th harmonics  

s  .....................  volume filling factor of the photoconductive material in nanostructures 

Sm  .....................  particular solution of the nonlinear wave equation (4.6) 

ST  .....................  THz signal measured for the sample in equilibrium 

ΔST  .....................  transient THz signal measured for the photoexcited sample 

ΔSm
T
  .....................  transient THz signal detected at the m-th harmonic frequency  

t  .....................  time 

tj  .....................  transmission Fresnel coefficient at the sample input (j = 1) or output (j = 2) 

   surface 

tr  .....................  in Section 5.2: round-trip time of carriers bouncing between two straight   

   parallel planes 

t1,2  .....................  times at which the carrier reaches wall of a potential well in model   

   developed in Section 6.2 

T  .....................  in Section 8: complex transmittance for unphotoexcited nanotube layers 

  .....................  elsewhere: temperature 

ΔTnorm ....................  normalized transient transmission (used only for linear response in this   

   work) 

ΔT
P
norm ...................  normalized transient transmission for percolated parts of a two-component  

   system 

ΔT
N
norm ...................  normalized transient transmission for the non-percolated parts of   

   a two-component system 

ΔT/T  .....................  transient transmission in the linear regime 

v(t)  .....................  charge velocity in the time-domain 

v(ω)  .....................  complex spectrum of the charge velocity 

v(L)  .....................  spectral functions weighting the influence of non-percolated clusters  

   in Bergman spectral representation 

vdrift  .....................  drift charge velocity 

vx,y,z  .....................  components of the velocity vector 
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vF  ....................  Fermi velocity 

vth  ....................  thermal velocity 

v0  ....................  initial correction to Fermi velocity considered in the model developed 

   in Section 6.2 

v1,2  ....................  components of the carrier velocity acquired during a half-period  

   of movement in a potential well (in the model developed in Section 6.2) 

v[m](mω0) ...............  harmonic velocity characterizing the response at the m-th harmonic  

   frequency mω0 

v(α)(ω1,ω2,…,ωα) ...  nonlinear velocity of the α-th order 

V  ....................  percolation strength of the photoconductive constituents in  

   two-component  systems (Bergman spectral representation, VBD model 

   of effective medium) 

V(r)  ....................  in Section 2.2: local potential influencing movement of charges 

  ....................  in Section 8: approximate band bending and screened Coulomb potentials 

V(x)  ....................  anharmonic binding potential 

V  ....................  volume of a nanocrystal 

Vh  ....................  percolation strength of the insulating constituents (matrix) in 

   two-component systems (Bergman spectral representation, VBD model of  

   effective medium) 

Vp  ....................  percolation strength of the photoconductive constituents in    

   two-component systems (Bergman spectral representation, VBD model of 

   effective medium) 

w  ....................  thickness of a nanotube wall 

x  ....................  in Section 6.1.4 and Appendix B: electron displacement 

  ....................  elsewhere: spatial coordinate 

x1  ....................  linear electron displacement in nonlinear Lorentz model (i.e. anharmonic  

   oscillator) 

x3, x5   ...................  third- and fifth-order corrections to electron displecement in the nonlinear 

   Lorentz model (i.e. anharmonic oscillator)  

y  ....................  spatial coordinate 

Y, Y0   ...................  in Section 3: symbols introduced by Eq. (3.41) 

  ....................  in Appendix A: symbols introduced by Eq. (A.13.2)  

z  ....................  spatial coordinate along the direction of THz wave propagation,  

   i.e. perpendicular to the sample surface 

Z0  ....................  vacuum impedance (376.73 Ω) 
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B. Greek symbols 

α  .....................  in Section 6: empirical factor related to shape of confining potential and  

   distribution of thermal velocity 

  .....................  in Section 7.5: absorption coefficient 

αp  .....................  local absorption coefficient (i.e. absorption coefficient of the  

   photoconducting material in inhomogeneous systems) 

αeff  .....................  effective absorption coefficient of an inhomogeneous system 

α0  .....................  absorption coefficient for low THz fields 

α(E)  .....................  THz field-dependent absorption coefficient  

β  .....................  empirical factor related to nanoparticle geometry and exact shape  

   distribution of thermal velocity 

γ  .....................  in Section 3.2: coefficient of the solution of homogeneous linear wave  

   equation (3.20) 

  .....................  in Section 5: scattering rate (γ = 1/τs) 

  .....................  in Section 6.1.4: oscillator damping rate 

γm  .....................  m-th order coefficient of the solution of homogeneous nonlinear wave  

   equation (4.6) 

δ  .....................  in Section 3.2: coefficient of the solution of homogeneous linear wave  

   equation (3.20) 

  .....................  elsewhere: delta function (Section 1.2, Section 5.2) 

δm  .....................  m-th order coefficient of the solution of homogeneous nonlinear wave  

   equation (4.6) 

ε  .....................  linear permittivity of a homogeneous slab 

εloc  .....................  spatially dependent local permittivity 

εeff  .....................  effective linear permittivity of an inhomogeneous sample 

εh  .....................  linear permittivity of insulating material (matrix) in a two-component 

   system 

εp  .....................  linear permittivity of photoconductive material in a two-component  

   system 

ε0  .....................  permittivity of vacuum (8.854×10-12 F/m) 

η1  .....................  density of the nanowires 

η2  .....................  density of the nanosheets 

θ  .....................  polar angle 

λ  .....................  in Section 8: wavelength of the radiation used for photoexcitation 

  .....................  in Appendix B: a parameter ranging continuously between zero and one 

  .....................  elsewhere: wavelength of the THz radiation 

Λ(x)  .....................  triangle function oscillating between +1 and −1 with period 1 

μ(ω)  .....................  complex spectrum of the (linear) charge mobility 

μ[m](mω0) ...............  harmonic mobility characterizing the response at the m-th harmonic  

   frequency mω0 

μNL  .....................  nonlinear component of the charge mobility 

μ(α)(ω1,ω2,…,ωα) ...  nonlinear mobility of the α-th order 
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μ(1)  ....................  linear component of the charge mobility 

μgen  ....................  generalized mobility of charges 

μjk  ....................  linear mobility tensor 

μ0  ....................  permeability of vacuum (4π×10-7 H/m) 

ξ  ....................  quantum yield of photogenerated mobile carriers 

σ(t)  ....................  linear conductivity of the material in the time-domain 

σ(ω)  ....................  complex spectrum of the linear conductivity 

σL  ....................  linear part of conductivity 

σNL  ....................  nonlinear part of conductivity 

σB  ....................  background conductivity of a doped photoconductive material 

σdc  ....................  dc conductivity 

σFWHM  ..................  full width at half maximum of the FELBE pulses 

στ  ....................  electron pulse lengths at the FELBE facility 
)( klij (t1,t2,…,tα) ....  (α + 1)-rank tensor of nonlinear conductivity of the α-th order  

   in the time-domain 

σ(α)(ω1,ω2,…,ωα) ...  nonlinear conductivity of the α-th order in the frequency-domain 

Δσ(ω) ....................  complex spectrum of the linear photoconductivity 

Δσeff  ....................  effective linear photoconductivity of an inhomogeneous sample 

Δσe
(
f
α
f
)
(ω1,ω2,…,ωα) 

  ....................  nonlinear effective photoconductivity of the α-th order  

   in the frequency-domain 

Δσp  ....................  linear photoconductivity of the photoconductive material  

   in a two-component system 

Δσp
(α)

(ω1,ω2,…,ωα)   

  ....................  nonlinear photoconductivity of the α-th order of the photoconductive  

   material in a two-component system 

ΔΣeff  ....................  transient sheet conductivity 

τ'  ....................  effective scattering time in modified Drude-Smith model 

τdiff  ....................  diffusion time (i.e. how long does the carrier need to diffuse across the  

   nanoparticle) 

τDS  ....................  Drude-Smith scattering time 

τs  ....................  mean bulk scattering time 

φ  ....................  azimuthal angle 

φ0  ....................  initial phase shift between electric field and carrier motion in the model  

   developed in Section 6.2 

ϕ  ....................  photoexcitation fluence (expressed in photons per unit area) 

χ, χ(1)(ω0) ..............  linear susceptibility 

χ(3)  ....................  third-order susceptibility corresponding to general four-wave mixing  

χ(α)(ω1,ω2,…,ωα)  .....  nonlinear susceptibility of the α-th order 
)3(

eff    ....................  third-order susceptibility corresponding to the third harmonics generation  

   in graphene 

ψi  ....................  wave function corresponding to state i 
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ω  .....................  angular frequency (ω = 2πf) 

ωij  .....................  angular frequency corresponding to a transition between quantum staes i  

   and j 

ωNL  .....................  resulting frequency of a nonlinear process 

ω0  .....................  angular frequency of a monochromatic wave (ω0 = 2πf0) 

Ωosc   .....................  resonant oscillator angular frequency 


