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Autor: Ing. Filip Dominec
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Klı́čová slova metamateriály, fotonické krystaly, terahertzová tech-
nologie, elektrodynamické simulace, homogenisace
efektivnı́ch prostředı́
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Abstrakt

Při interakci elektromagnetických vln s periodickými strukturami lze pozorovat
neobvyklé jevy, jako jsou záporný index lomu, fotonický zakázaný pás nebo silná
prostorová disperze. Tyto struktury lze navrhnout tak, aby se chovaly žádoucı́m
způsobem, a označujı́ se jako metamateriály nebo jako fotonické krystaly. Část z je-
jich navrhovaných využitı́ je v technice terahertzových vln, kde můžou překlenout
poměrně slabé možnosti klasických součástek.

Teoretický základ práce vycházı́ z elektrodynamiky prostředı́ s frekvenčnı́ dis-
perzı́, která je dále zobecněna na prostředı́ s prostorovou disperzı́ a na Blochovu-
Floquetovu teorii vln v periodických strukturách. Závěr teoretické části se pokoušı́
vyjasnit pojmy použı́vané v literatuře a ukázat, že myšlenky metamateriálů i foto-
nických krystalů jsou ve skutečnosti staršı́, než se často uvádı́.

Obecná teorie je doplněna přı́klady terahertzového chovánı́ různorodých pe-
riodických struktur, které bylo vypočteno metodou konečných diferencı́ v časové
doméně (FDTD). V některých přı́padech byly jejı́ výsledky podloženy jinými sim-
ulačnı́mi algoritmy nebo měřenı́mi pomocı́ terahertzové spektroskopie v časové
doméně.

Srovnánı́ různých struktur si klade za cı́l srozumitelnou formou prezentovat a
vysvětlit nejpodstatnějšı́ principy. Podobné srovnánı́ zřejmě v dosavadnı́ literatuře
chybělo. Klı́čové výsledky spočı́vajı́ v popisu přechodu mezi režimy metamateriálu
a fotonického krystalu v periodickém poli dielektrických tyčinek a v důkazech toho,
že k popisu chovánı́ řady uvedených struktur je zcela nezbytné uvažovat pros-
torovou dispersi. V neposlednı́ řadě práce dokládá možnosti simulačnı́ch skriptů,
které autor vyvinul a uveřejnil na internetu s úmyslem podpořit dalšı́ výzkum
v této oblasti.





Abstract

Unusual phenomena such as negative index of refraction, photonic band gaps, or
strong spatial dispersion are observed when electromagnetic waves interact with
periodic structures. These can be designed to manipulate the wave in an advan-
tageous way, and are known either as metamaterials or photonic crystals. Part of
their proposed applications are for the terahertz technology, where they may ad-
dress relatively poor performance of classical components.

The theoretical background is derived from the electrodynamics of media with
classical dispersion, which is later generalized to spatially dispersive media and to
the Bloch-Floquet theory of waves in periodic structures. The end of the theoretical
part attempts to clarify the terminology used in the literature, and to show that the
concepts of metamaterials and photonic crystals are in fact older than is sometimes
assumed.

The general theory is complemented with examples of the behaviour of diverse
periodic structures in the terahertz range, which was numerically simulated by the
finite-difference time-domain method. In some cases, the results of this simula-
tion method were supported by other simulation algorithms or by the experimental
measurement by the terahertz time-domain spectroscopy.

The comparison of different structures encompassed in this thesis attempts to
present and explain most relevant principles in a didactic way. Arguably, such a
comparison was missing in the previous literature. The key results are in the de-
scription of the transition between metamaterial and photonic crystal regimes in a
periodic array of dielectric rods, and in the demonstration of the fact that consid-
ering spatial dispersion is essential for the description of the behaviour of many
periodic structures. Last but not least, the thesis demonstrates the capabilities of
the simulation environment which the author developed and completely published
online to stimulate further research in this field.
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the value in proper handling of the theoretical background, which later proved es-
sential for explaining the results of the thesis. During my stay in France in 2013, the
collaboration with Dr. Mathias Vanwolleghem not only greatly contributed to my
experience with the numerical simulations, but presented also a great motivation
for me.

Almost surprisingly, all my scientific aspirations found a permanent and selfless
support from all my family members, who always had patience with my focusing
on abstract problems instead of the more practical aims and with my stubborn atti-
tude towards some of their good advices.

The numerical results presented in the thesis could be hardly obtained with-
out the work of hundreds of volunteers contributing to the open-source scientific
software: Most of the plots were made using the Matplotlib library [1] and compu-
tations were based on MEEP [2] and MPB programs [3].

This work was financially supported by the Czech Science Foundation under
Grant No. 14-25639S.





Contents

1 Introduction 9
1.1 Electromagnetic waves in periodic structures . . . . . . . . . . . . . . 9
1.2 Motivation for terahertz photonics . . . . . . . . . . . . . . . . . . . . 10
1.3 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Conventions used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theory 15
2.1 Electrodynamics of local homogeneous media . . . . . . . . . . . . . 15

2.1.1 Electromagnetic wave in vacuum . . . . . . . . . . . . . . . . . 15
2.1.2 Local response of media to the electromagnetic field . . . . . . 18
2.1.3 Dispersion relations in local Lorentz media . . . . . . . . . . . 23

2.2 Electrodynamics of nonlocal homogeneous media . . . . . . . . . . . 31
2.2.1 Nonlocal response . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Dispersion relations in nonlocal homogeneous media . . . . . 36
2.2.3 Reflectance and transmittance at an interface of two local media 40
2.2.4 Phase, group, energy and signal velocities . . . . . . . . . . . 42

2.3 Electromagnetic waves in periodic structures . . . . . . . . . . . . . . 44
2.3.1 Periodic structures and the Bloch’s theorem . . . . . . . . . . . 44
2.3.2 Dispersion in periodic structures . . . . . . . . . . . . . . . . . 50
2.3.3 Band gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Historical notes on metamaterials and photonic crystals . . . . . . . . 56
2.4.1 One history of three paradigms . . . . . . . . . . . . . . . . . . 56
2.4.2 Photonic band-gap structures . . . . . . . . . . . . . . . . . . . 56
2.4.3 Homogeneous media with uncommon parameters . . . . . . 58
2.4.4 Artificial dielectrics and metamaterials . . . . . . . . . . . . . 61
2.4.5 First unification: metamaterials with uncommon parameters . 62
2.4.6 Second unification: metamaterials with photonic crystals . . . 65

2.5 The boundary between photonic crystals and metamaterials . . . . . 66

3 Numerical methods 70
3.1 Numerical simulation algorithms . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Finite-difference time-domain method . . . . . . . . . . . . . . 70
3.1.2 Finite-difference frequency-domain method . . . . . . . . . . 79
3.1.3 Plane-wave expansion method . . . . . . . . . . . . . . . . . . 81

3.2 Simulation set-ups for metamaterial homogenisation . . . . . . . . . 81

7



3.2.1 Retrieval of the scattering parameters . . . . . . . . . . . . . . 82
3.2.2 Current-driven homogenisation . . . . . . . . . . . . . . . . . 95
3.2.3 Other effective parameter retrieval methods . . . . . . . . . . 99

4 Experimental methods 102
4.1 Short review of the terahertz technology . . . . . . . . . . . . . . . . . 102

4.1.1 Terahertz sources . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.2 Terahertz detectors . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Terahertz time-domain spectroscopy . . . . . . . . . . . . . . . . . . . 108
4.2.1 Simultaneous reflectance and transmittance measurement . . 110

4.3 Preparation of the titanium dioxide microspheres . . . . . . . . . . . 112
4.4 Optical determination of microparticle statistics . . . . . . . . . . . . 117
4.5 Laser cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Results 121
5.1 Dielectric slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Wire medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 Cut wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 Split-ring resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 Combined electric and magnetic resonator . . . . . . . . . . . . . . . 143
5.6 Dielectric spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.7 Dielectric rods parallel to the magnetic field . . . . . . . . . . . . . . . 158
5.8 Dielectric rods parallel to the electric field . . . . . . . . . . . . . . . . 160
5.9 Metallic sheet with slits . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.10 Fishnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Conclusion 181

8



Chapter 1

Introduction

1.1 Electromagnetic waves in periodic structures

The peculiar behaviour of light in periodic structures has attracted human attention
for ages, long before anybody perceived that light is an electromagnetic wave or that
it is the periodicity which is responsible for the brilliant and irreproducible colours
of opal gemstones and many living creatures, such as various beetles, butterflies or
peacocks.

The scientific community started to rigorously study the underlying phenom-
ena in the late 19th century. Simultaneous theoretical and technological progress
through the 20th century allowed to design custom structures that interact with
electromagnetic waves in a desired way. In analogy with the rapidly growing field
of electronics, the term of photonics was coined for the design of optical fibres and
other waveguides, sources, filters, detectors etc. The rapid development in this
field was enabled by the modern technology of microfabrication, along with the
unprecedented power of computers used for numerical simulations. Nowadays,
photonics-based devices play a vital role in the high-bandwidth telecommunica-
tion, science and industry.

Out of all structures studied in photonics, particularly detailed theoretical stud-
ies were devoted to structures that are periodic. Three paradigms related to the
physics of periodic structures developed independently. While photonic crystals
were inspired by the electron waves, metamaterials were inspired by the electromag-
netic waves in crystals. Early treatises on electrodynamics of media with negative or
unusual parameters did not assume any structuring or other way of how these pa-
rameters should be achieved. As a result of a natural development, the paradigms
unified into one, and this thesis tries to describe them in an unified manner.

The essential concept is that the electromagnetic properties of a periodic struc-
ture can be, at least partially, understood as those of a homogeneous medium, but
in fact they are determined predominantly by the spatial arrangement of the struc-
ture’s unit cell. The actual constituent materials can be relatively freely chosen.
While it is unlikely that a radically new homogeneous material will be invented
for construction of optical elements, periodic structuring of ordinary materials pro-
vides unprecedented freedom in tuning the electromagnetic properties and even
enables to obtain phenomena unusual in homogeneous materials.
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1.2 Motivation for terahertz photonics

This work focuses on the electromagnetic behaviour of periodic structures operat-
ing in the terahertz (THz) spectral range, which spans roughly from 100 GHz to
10 THz. While the electrodynamic theory presented in this work is scale-invariant
and can be used in the whole electromagnetic spectrum, the selected frequency
range defines the properties of available constituent materials and technological
processes. Compared to the well established optical technology (400—700 THz), the
range of materials suitable for THz frequencies gives additional possibilities, such
as the use of superconductors, extremely high-permittivity dielectrics and tunable
ferroelectrics. Additionally, the much longer wavelength of terahertz waves, e.g.
300 µm for 1 THz in free space, also enables much easier fabrication of relevant
structures. On the other hand, materials such as glass and most plastics, commonly
used in other spectral ranges, must be avoided, since they exhibit excessively high
losses in the terahertz range.

The terahertz range is located in the electromagnetic spectrum at the boundary
between the microwave region where most often the approaches of high-frequency
electronics are used, and the infrared and optical region where the classical optics
is used [4]. At THz frequencies, both approaches are often seamlessly used to-
gether: waves emitted from lumped semiconductor components can be collimated
by lenses, picosecond pulses generated in nonlinear crystals can be detected by
photoconductive sampling, etc.

Yet none of these two approaches is optimal for the THz applications; from the
electronic point of view, there is still demand for fast-enough semiconductor de-
vices and also the microstrip circuits become too lossy at high frequencies. The
optical approach is often burdened by the strong wave-optics phenomena such as
diffraction, and moreover some light-matter interactions are weaker than at the op-
tical frequencies, limiting the possibilities for e.g. amplitude modulation by the
Pockels effect.

These deficiencies provide additional reasons to search for the new possibili-
ties opened by photonic devices and periodic structures operating in the terahertz
range.

1.3 Goals of the thesis

1. During the preparation of the thesis, its author realized that it is difficult to
find a focused, accessible, yet rigorous enough tutorial covering the neces-
sary theory. The main aim of the theoretical section therefore lies in bridging
the fundamental electrodynamics with the concepts used for a description of
metamaterials and photonic crystals.

2. The importance of the more general spatially-dispersive electrodynamics is em-
phasized, although it is unfortunately often neglected in the literature in fa-
vour of the simpler local electrodynamics. Both approaches are compared
throughout the thesis.
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3. The third aim of this thesis is to promote the unification of paradigms, i.e.
photonic crystals, metamaterials, by showing that they can – and should – be de-
scribed by the same theoretical approaches. This is supported by elaborating
the concept of spatial dispersion in the theoretical section and by providing
historical review of the surprisingly long parallel development of such struc-
tures.

4. A overview of the electromagnetic behaviour of diverse periodic structures
is provided in the Results section, taking into account also the properties of
materials available for THz photonics, with the realistic level of absorption in
particular. This section is more than just results – proceeding from simpler
structures to the more complex ones, it aims to explain all observed phenom-
ena in a didactic manner. Some of the simulations are verified against the
experimental results from the terahertz measurements.

5. Last but not least, the numerical results present a small demonstration of the
use of the extensive simulation scripts, which were developed during the doc-
toral project and were published online for the scientific community. The basic
concepts of the numerical simulations are described to help others in adapting
the simulations for their further research.

1.4 Thesis outline

Theory The theoretical chapter starts with a review of linear electrodynamics of con-
tinuous media; the concepts of harmonic oscillators, dispersion curves, isofrequency
contours and the generalized index of refraction are introduced, and it is demon-
strated how the wave refraction depends on the shape of isofrequency contours.

The electrodynamic theory is generalized to account for the nonlocal response, or
equivalently spatial dispersion, in the medium – a phenomenon which can be usually
neglected in natural media, but is of key importance in any conscientious treatise on
electrodynamics of periodic structures. The more general Landau-Lifshitz formula-
tion of nonlocal medium parameters is also introduced and shown to be compatible
with the customary model.

The third part of the theoretical section is dedicated to periodic structures, start-
ing with the Bloch theorem that enables one to transfer some of the concepts from
continuous optics even to waves propagating in periodic structures. Its impact on
the form of dispersion curves and on the ambiguity of the wave vector is shown.

The distinction of two widely recognized types of periodic structures, namely
metamaterials and photonic crystals, is discussed from historical aspects, with an em-
phasis on the author’s view that the theoretical approaches used for each field can
be unified and used for the other field as well.

Experimental methods As a part of the research several experiments in the tera-
hertz laboratory were performed. This section is opened by a systematic review
of the terahertz sources and detectors, followed by the description of the terahertz
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time-domain spectroscopy setup used in our laboratory for characterisation of the
samples.

The fabrication and characterisation of the titanium dioxide microspheres sam-
ples is described in detail, with particular emphasis on the newly developed tech-
nique of acoustic-wave assisted sorting on anisotropic sieves. The section is con-
cluded by the description of laser micromachining of the sieves and of the metallic
meshes, which were used as electromagnetic filters.

Numerical methods This section describes the tools and methods used to calcu-
late the electromagnetic behaviour of periodic structures and, even more impor-
tantly, to understand the physical nature of the predicted phenomena. Its structure
reflects the separation between the algorithms that solve the Maxwell equations as
a purely numerical problem, and between their particular application.

Its first part provides a comparison of the finite-difference time-domain simu-
lation (FDTD), its frequency-domain modification (FDFD) and the plane-wave ex-
pansion methods (PWEM). We point out the capabilities of each of them and we
also briefly review multiple other methods that were not used here. Defining nu-
merically stable FDTD simulations with realistic materials, one encounters several
pitfalls. They were painstakingly resolved during the preparation of the thesis, and
are also presented here.

The second part describes the setups of the ”numerical experiments” that are
built atop the algorithms. The time-domain simulation is first used in conjunc-
tion with the scattering-parameter retrieval setup, which is based on transmitting
a broadband pulse towards a metamaterial unit cell and recovering its effective
parameters from the reflected and transmitted fields. While this setup is shown to
give mostly realistic results, however, it has its limitations which are also presented.
Although the scattering-parameter retrieval seems by far the most commonly used,
different setups were described in the literature which are briefly noted. One of
such simulation setups of the current-driven homogenisation is presented in de-
tails, and it is shown that its weaker prior assumptions on the structure behaviour
lead to higher reliability.

Results, conclusion and appendices The Results section puts the common meta-
material types into a perspective, pointing out what they have in common and how
they differ. While the space of all imaginable structures can never be covered, most
metamaterials fall into one of several classes, of which each can be demonstrated
by few examples. Another aim of this section is to demonstrate the capabilities of
the simulation scripts used.

The scale of the simulated structures is chosen for the structures to operate in
the terahertz range. Thanks to the scale invariance of Maxwell equations, many of
the designs and observations can be transposed also into other spectral regions, be
it microwave or infrared. However, one has to bear in mind that the properties of
the constituent materials may be different in other spectral regions. Naturally, also
the techniques of fabrication and characterisation may be different.

12



Some of the structures discussed were also fabricated and experimentally char-
acterized during this PhD project. The results from the simulations were verified
against experimental data and analytic models.

At the end of the thesis, somewhat critical conclusions from the above results
are drawn, along with directions in which the research could be pursued in future.

1.5 Conventions used

Throughout the thesis, a single or double apostrophe (x′, x′′) refers to the real and
imaginary part of a complex number (x). Italic symbols represent the magnitudes of
vectors, which are denoted by respective bold symbols (e.g. k = |k|). Components
of vectors are denoted by small indices, such as kx, ky, kz. The index and lists of
symbols and abbreviations are included at the end of the thesis.

An important note shall be made on the sign convention for the complex wave,
as introduced in Eq. (2.9). The ‘engineering’ convention of time dependence of the
complex exponential e+iωt is used, but this is only due to the author’s feeling that it
is more natural when the wave phase grows in time. Such a convention is shared
with roughly a half of the literature, e.g. [5, p. 9], [6, pp. 21 and 99], [7, Chapters
1-4, 6, 9 and 10]. In the remaining part, e.g. [7, chapters 5, 7, 8], [8], [9], [10], [11],
[12, p. 5], the opposite, ‘optical’, convention is used with time dependence of e−iωt.
The choice of e+iωt or e−iωt determines the sign of the imaginary part in virtually all
complex quantities discussed in this thesis, but with correct interpretation it makes
no difference in the physical conclusions. In the real world, observable fields do not
have any imaginary component so the real part of the result has to be taken.

In the e+iωt convention, many parameters of a passive (lossy) system are re-
stricted to have a negative imaginary part. An additional complication arises from
that a part of the authors using e+iωt convention still wish to represent the imagi-
nary part as positive, and they define complex quantities as, e.g., ε = ε′− iε′′, thus in
their case ε′′ ≡ −Im(ε). This is not the case of this thesis, and the real and imaginary
parts are represented naturally as ε := ε′ + iε′′.

The unit system differs across the literature, too. Some of the references, e.g.
[13, 14, 15] use the older centimetre-gram-second (CGS) system, which for instance
leaves out the dimension constants of ε0, µ0. The whole thesis uses consistently the
metre-kilogram-second (SI) system.

Having listed conventions we use, we should mention one convention we will
avoid using. The term transverse-magnetic (TM, or equivalently, p-polarized) wave
has its established meaning for oblique incidence on a homogeneous interface: it
means that the magnetic field is perpendicular to the plane of incidence, and thus
always parallel to the interface. The term transverse-electric (TE, or, s-polarized) de-
notes the opposite situation.

Unfortunately, the same notation is used by many papers also for a perpendic-
ular incidence on a grating or other structure with 1-D periodicity. In majority of
cases ”TM” denotes that the magnetic field is transverse to the translation axis of the
structure, the electric field parallel to it [16, 17]. Alas, in numerous other cases the
same term ”TM” denotes an opposite interpretation, i.e., that the magnetic field is
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perpendicular to the 2-D plane that represents the whole electromagnetic problem, and the
electric field component lies in this plane [18]. Even greater complication arises under
oblique illumination of a grating. These two different meanings of apparently iden-
tical terms can either come into a confusing discrepancy (TE+TM), an even more
confusing agreement (TE+TE or TM+TM), or may also become inapplicable under
general geometry of the wave or its polarisation.
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Chapter 2

Theory

“There is nothing more practical than a good theory.” — probably K. Lewin

2.1 Electrodynamics of local homogeneous media

2.1.1 Electromagnetic wave in vacuum

Maxwell equations In the realm of classical physics, the electromagnetic phenom-
ena are governed by the Maxwell equations in the following form. We assume here
that no free charges and no sources of currents are present:

∇ ·D = 0, (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B

∂t
, (2.3)

∇×H =
∂D

∂t
, (2.4)

where E and H are the electric and magnetic vector fields, and D and B are the
electric and magnetic displacements, respectively. These two pairs of field and dis-
placement are related in a similar way as a force is related to the deformation. The
constitutive relations depend on the properties of the medium the wave propagates
in, and in vacuum they take the simplest possible form:

D = ε0E, B = µ0H, (2.5)

ε0 ≈ 8.85 · 10−12 F/m being the vacuum permittivity and µ0 = 4π · 10−7 ≈ 1.25 · 10−6

H/m the vacuum permeability. Pages 16–187 of this thesis will be concerned with
computation, interpretation, and experimental verification of the solutions of Eq.
(2.1–2.4) for specific choices of constitutive relations.
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Wave equation in vacuum The pair of first-order differential equations (2.3, 2.4)
can be converted to a single second-order differential equation. To this end, we
apply an extra curl operator ∇× from the left, and substituting one equation into
the another, we obtain two curl operators on the left hand side and two derivatives
on the right hand side:

∇× (∇× E) = ∇×
(
−∂B

∂t

)
= −µ0

∂

∂t
(∇×H) = −µ0

∂2D

∂t2
= −µ0ε0

∂2E

∂t2
. (2.6)

Using the vector calculus identity

∇× (∇× E) ≡ ∇(∇ · E)−∇2E, (2.7)

we obtain the wave equation for the electric field in vacuum:

∇(∇ · E)−∇2E = −µ0ε0
∂2E

∂t2
. (2.8)

Starting with Eq. (2.4) instead of (2.3), an analogous result can also be easily ob-
tained for the magnetic field H.

Plane wave The solutions of the linear wave equation (2.8) can be decomposed
into a sum of harmonic plane waves, where harmonic means that the amplitude de-
pends on the time t as a harmonic function (e.g. sin(ωt) or eiωt). As a plane wave we
denote a spatial shape of the fields that is a function of a single scalar parameter
k · r, where k is an arbitrary vector and r is the position vector. Assuming the wave
propagates with a nonzero constant velocity, it follows that also the spatial depen-
dence of the fields is harmonic. Any other complicated shape of the fields can be
decomposed into a linear superposition of more such waves and treated separately
[9].

The electromagnetic field can be described as a complex exponential, i.e. as a
superposition of two waves differing by a quarter-period phase shift, one defining
the real part, one the imaginary part of the field. In comparison with the straight-
forward description of a plane wave in terms of a cosine (or sine) function, the
complex notation formally simplifies some mathematical operations, namely, it al-
lows one to identify easily the phase of a wave (divided by the imaginary unit) with
the exponent.

We define the electric field as a function of time t and position in space r, corre-
sponding to a plane wave in the complex notation:

E(t, r) := E0 e
iωt−ik·r (2.9)

The plane wave is fully characterised by its amplitude vector E0, frequency f or angular
frequency ω = 2πf and wave vector k. Note that no restrictions were put to the
amplitude vector E0 so far, thus Eq. (2.9) can describe both transverse wave of any
polarization, with E0 ⊥ k, and longitudinal wave with E0||k. As discussed in the
introduction, the time dependence of complex fields with positive evolution in time
(e+iωt) was chosen without any impact on the physical conclusions.
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Dispersion relations in vacuum Only some combinations of (E0, ω,k) provide a
physical solution of the wave equation (2.8). In vacuum, the allowed solutions can
be obtained by first substituting the differential operators by their equivalents for a
particular plane wave:

∇ → −ik,
∂

∂t
→ iω, (2.10)

so the wave equation (2.8) can be modified in the following way:

∇(∇ · E)−∇2E = −µ0ε0
∂2E

∂t2
,

−ik(−ik · E)− (−ik · −ik)E = −µ0ε0(iω)2E,

−k(k · E) + k2E = +µ0ε0ω
2E,

⊥k E =
µ0ε0ω

2

k2
E. (2.11)

The linear operation ⊥k of the left hand side can be geometrically interpreted as
taking the transverse component of the field E, that is, perpendicular to the wave-
vector k.

⊥k E := −k(k · E)

k2
+ E ≡ −k× (k× E)

k2
(2.12)

Rewriting it explicitly, in this thesis we define the wavefront projection tensor that will
be useful in the following chapters, too:

⊥k=
1

k2




k2y + k2z −kxky −kxkz
−kykx k2x + k2z −kykz
−kzkx −kzky k2x + k2y


 or equivalently, (⊥k)ij = −kikj

k2
+ δij.

(2.13)
The solutions of Eq. (2.11) for a harmonic plane wave in vacuum can be divided
into two groups:

1. Transverse electromagnetic waves, with the electric field and wave vector being
perpendicular, i.e. (k · E) = 0 and thus ⊥k E = E. Therefore, the dispersion
relation for a transverse plane wave in vacuum is linear:

k =
√
µ0ε0 ω =

ω

c
, (2.14)

where we defined the light velocity c := 1√
µ0ε0

. The corresponding solution
is plotted in Fig. 2.1, independent of the orientation of the wavevector k.
As an unanimously accepted convention, the pseudovector H is chosen to
be oriented so that the perpendicular right-handed triplet E,H,k can be easily
indicated with the thumb, index and middle finger of the right hand (cf. Fig.
3.7). Vacuum is thus an example of the broad group of right-handed media.

2. Longitudinal electromagnetic waves, with k ||±E and⊥k E = 0, require the right
side of Eq. (2.11) to be zero. In vacuum, there is no such a solution, except for
a homogeneous static electric field (k = 0, ω = 0), but they will be shown to
exist in dispersive media.
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Figure 2.1: Left panel shows the permittivity ε′r and permeability µ′r of vacuum being equal
to 1; as a result, the dispersion curve for a transverse wave in vacuum forms a straight
line in the right panel. As in the case of similar plots later, both axes of the right panel
are normalized to an arbitrary frequency of ω0, because the characteristic curve shapes are
independent of the scale.
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2.1.2 Local response of media to the electromagnetic field

Local response definition In the whole chapter, we expect the medium properties
to be time-invariant, linear, and homogeneous (i.e. independent of time, field am-
plitude and position in space, respectively). In this section, we focus on the special
case when the response of the medium in point r is not influenced by the electric
field in any other point ρ 6= r. The medium is then said to be local. For most media
found in nature, this approximation is very close to reality, except for optics on the
nanometric scale [19]. Hence, most electrodynamics textbooks omit the discussion
of nonlocal effects. However, using the local theory to a Bloch’s wave propagating
through periodic structures has a priori no justification and may lead to completely
wrong results. The local theory presented here will serve as a basis for the nonlocal
theory developed in following chapters.

When an electric field E is applied, the medium responds by a change of the
electric displacement D in a characteristic way. The immediate linear relation be-
tween E and D observed in vacuum, appearing at the right side of the constitutive
equations (2.5), remains unchanged, but the response of the matter complements it
with a new term called electric polarisation. The polarisation is not instantaneous, so
it is generally expressed as a convolution of the response function χe with the values
of electric field in the previous time τ :

D(t, r) = ε0E(t, r) + ε0

∫ t

−∞
χe(t− τ) E(τ, r) dτ. (2.15)

Let us assume that a harmonic plane wave propagates through the medium, so
E(t, r) := E0 e

iωt−ik·r, as given by Eq. (2.9). This can be inserted in the above equa-
tion:

D(t, r) = ε0E0 e
iωt−ik·r + ε0

∫ t

−∞
χe(t− τ) E0 e

iωτ−ik·r dτ. (2.16)
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Substituting T := t− τ , the exponent can be separated into two parts: one of which
factors out from the integral, and one which turns the convolution into a temporal
Fourier transform of the medium response:

D(t, r) = ε0E0 e
iωt−ik·r + ε0

∫ 0

−∞
χe(T ) E0 e

iω(t−T )−ik·r dT,

D(t, r) = ε0E0 e
iωt−ik·r + ε0

(∫ 0

−∞
χe(T ) e−iωT dT

)
E0 e

iωt−ik·r.

This can be viewed as an application of the convolution theorem: convolution in
the time domain is equivalent to multiplication in the frequency domain. Con-
sequently, we may introduce the local relative permittivity, or also dielectric function,
εr(ω) as a function of frequency. It is a property of the medium that determines how
strongly it develops the electric displacement D in response to the electric field E of
a harmonic wave. From Eq. (2.5) it is clear that in vacuum, εr = 1. In the medium,
the permittivity may be obtained as

εr(ω) =
D(t, r)

ε0E(t, r)

∣∣∣∣
E(t,r):=E0 eiωt−ik·r

= 1 +

∫ 0

−∞
e−iωT χe(T ) dT. (2.17)

In general, the function εr(ω) is complex to account for possible phase delay be-
tween the harmonic driving field and the medium response. Phase delay different
than 0 (or integer multiple of π) corresponds to energy being dissipated in the me-
dium. Let us note that the definition of the Fourier transform is never subject to the
sign change, even when the convention of eiωt is exchanged for e−iωt.

Response of a harmonic oscillator The response function χe(T,R) of usual media
is composed of different phenomena. Each of them may react on a different time
scale, thus the response of the medium usually has a relatively complicated shape
in the time domain. However, to a reasonable degree of approximation, each of the
contributions can be treated separately, as it is demonstrated in the following.

Linear physical systems with an inertial load, friction force and a restoring force
are known as damped harmonic oscillators. Under weak fields, this theory applies
well to the electrons elastically bound to an atomic nucleus, as well as to the atoms
elastically bound to their equilibrium positions in the lattice. The molecular rota-
tions can also be modelled as (possibly overdamped) harmonic oscillators. Even
free electrons in conductive media can fit into the model of a harmonic oscillator
provided the restoring force is set to nearly zero. The response of a harmonic os-
cillator is easy to describe both in time and frequency domains, even without the
explicit use of the Fourier transform from Eq. (2.17). The harmonic oscillator model
thus becomes a convenient starting point to approximate the response of materials.

A damped harmonic oscillator is described by a second-order differential equa-
tion:

α
∂2x(t)

∂t2
+ β

∂x(t)

∂t
+ ζx(t) = f(t). (2.18)

Provided the driving term on the right hand side is harmonic, f(t) = e+iωt, the sys-
tem response is also a harmonic function, x(t) = χ(ω)e+iωt. The differential equation
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Figure 2.2: (a) Illustration of how a simplified medium responds to an electric field impulse
in the shape of Dirac delta function E(t) = δ(t). The response is composed from an in-
stantaneous part from vacuum, δ(t), and from a delayed ringdown of one damped harmonic
oscillator, described by χe(t) := 2π sin(2πt) e−x/2; (b) The corresponding local permittivity
εr(ω), computed by the Fourier transform of the response. Note that the imaginary part of
permittivity is negative due to the fact that the material is lossy (it dissipates energy) and
that the eiωt convention is used.
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(2.18) can be easily solved to show that the complex amplitude of the driven oscilla-
tions, χ(ω), depends on the angular frequency and on the positive real parameters
α, β and ζ in the following way:

χ(ω) ≡ x(t)

f(t)
=

1

ζ − αω2 + iωβ
=

α−1

ζ
α
− ω2 + iω β

α

. (2.19)

The physical meaning of α, β and ζ is of little importance in this text, but without
loss of generality the result of Eq. (2.19) can be rewritten into

χ(ω) =
F

ω2
0 − ω2 + iωγ

, (2.20)

where the physical interpretation of the three (real and positive) parameters is as
follows:

• ω0 =
√
ζ/α is the angular resonant frequency, at which the response is purely

imaginary and usually its modulus |χ(ω = ω0)| is near its maximum.

• γ = β/α is the damping rate. In time domain, it determines the time constant
of exponential amplitude decay.

• F = α−1 is the oscillator strength, determining the amplitude of the response
function.
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Permittivity of Lorentz media Within the approximation of relatively weak fields,
the oscillators act independently of each other. The response of usual media in fre-
quency domain can thus be decomposed with acceptable precision into a sum of Q
independent harmonic oscillators, each q-th oscillator having the angular resonant
frequency ω0q, damping rate γq and strength Fq. The permittivity function of the
material is a solution of the differential equation of a damped harmonic oscillator,
driven by a harmonic source:

εr(ω) = 1 +

Q∑

q=1

Fq
ω2
0q − ω2 + iωγq

. (2.21)

Advancing from the general formulation in Eq. (2.17) to the Lorentz oscillator
model in Eq. (2.21) is of great importance for theoretical interpretation of the mate-
rial response, and it has also become a framework for description of periodic struc-
tures even in the presence of spatial dispersion. A sample time- and frequency-
domain response of a medium with one harmonic oscillator is shown in Fig. 2.2.

One can see that each oscillator increases the real part of the low-frequency per-
mittivity, but in the high-frequency limit the contribution of the oscillator vanishes.
This can be understood intuitively as that at low frequencies ω � ω0, the system
reacts fast enough to simultaneously follow the driving force, whereas at very high
frequencies ω � ω0, the system cannot respond to the driving force.

The contribution of one oscillator to the low-frequency permittivity ∆εr(0), is
inversely proportional to the oscillator restoring force, which links it to the inverse
square of the resonant frequency:

∆ε′r(ω → 0) =
F

ω2
0

. (2.22)

A more detailed treatment of the permittivity spectra εr(ω) may be found in many
textbooks, e.g. [8, p. 454], [20].

We will return to the Lorentz oscillator model also in the Chapter 3.1.1, where
it appears to be essential for realistic definition of materials for accurate numeri-
cal simulations. The chapter also describes how a Debye relaxator (e.g. from over-
damped molecular rotation) and the Drude termDrude term (from unbound motion
of free charges) can be represented using correct parameters of an oscillator.

Permeability In a manner very similar to the above derivation of the local permit-
tivity, the local permeability can be introduced by means of a response of the medium
to the magnetic field:

µr(ω) = 1 + χm(ω) =
B(t, r)

µ0H(t, r)

∣∣∣∣
H(t,r):=H0 eiωt−ik·r

= 1 +

∫ 0

−∞
e−iωT χm(T ) dT, (2.23)

where χm(T ) is the magnetic response function of the medium and H0 is the amplitude
of the magnetic field. This obviously results in an analogous expression for the local
permeability in the frequency domain:

µr(ω) = 1 +

Q∑

q=1

Fq
ω2
0q − ω2 + iωγq

, (2.24)
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Figure 2.3: Illustration of how a real causal function f(t) can be decomposed into the odd
and even parts, which then yield pure imaginary and pure real functions in the spectrum,
respectively. Mathematically this is expressed in Eqs. (2.25–2.30).

−10 0 10
time

−0.5
0.0

0.5

1.0

1.5

2.0

am
pl

itu
de

Re(f)
Im(f)

−1 0 1
frequency

−0.1
0.0

0.1

0.2

0.3

sp
ec

tr
al

am
pl

itu
de Re(F )

Im(F )

−10 0 10
time

−0.5
0.0

0.5

1.0

1.5

2.0

am
pl

itu
de

Re(fodd)
Im(fodd)

−1 0 1
frequency

−0.1
0.0

0.1

0.2

0.3

sp
ec

tr
al

am
pl

itu
de Re(Fodd)

Im(Fodd)

−10 0 10
time

−0.5
0.0

0.5

1.0

1.5

2.0

am
pl

itu
de

Re(feven)
Im(feven)

−1 0 1
frequency

−0.1
0.0

0.1

0.2

0.3

sp
ec

tr
al

am
pl

itu
de

FT FT

= +

+ =
Re(Feven)
Im(Feven)

where formally the same notation was used as in Eq. (2.21): ω0q, γq and Fq are
here the magnetic oscillator’s angular frequency, damping frequency and strength.
Unlike the electric response, most ordinary media have either almost no response
to the magnetic field or their response is limited to low frequencies.

Kramers-Kronig relations in local media Causality prevents any medium from
reacting to the future electric (or magnetic) field, so the integration in Eq. (2.15)
goes up to the current time only, τ ∈ (−∞, t). The response of the medium to a
real-valued field must moreover be also real, no matter that the computations are
often done with complex field amplitude [Eq. (2.9)] for sake of convenience.

Thus, the basic physical laws impose relatively strict constraints on the time-
domain response function f(t), which translate into other constraints for the possi-
ble shape of the response in frequency domain F (ω). The intuitive physical deriva-
tion is based on the fact that any time-domain response function can be trivially
separated into its odd and even parts, as shown in Fig. 2.3.

f(t) = fodd(t) + feven(t) = −fodd(−t) + feven(−t) (2.25)

The Fourier transform of a real odd function is an imaginary function:

Fodd(ω) =

∫ +∞

−∞
e−iωtfodd(t) dt =

∫ +∞

−∞

e−iωt

2
fodd(t) dt+

∫ +∞

−∞

e−iω(−t)

2
[−fodd(−t)] dt

=

∫ +∞

−∞

e−iωt − e+iωt

2
fodd(t) dt = −i

∫ +∞

−∞
sin(ωt) fodd(t) dt

︸ ︷︷ ︸
∈ R

,

(2.26)
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whereas the Fourier transform of a real even function yields a real function:

Feven(ω) = . . . =

∫ +∞

−∞

e−iωt + e+iωt

2
feven(t) dt =

∫ +∞

−∞
cos(ωt) feven(t) dt

︸ ︷︷ ︸
∈ R

.
(2.27)

The odd and even components of the time-domain response function correspond
to the imaginary and real part of the response spectrum, respectively:

Fodd(ω) + Feven(ω) = F (ω), where Fodd(ω) = F ′′(ω) and Feven(ω) = F ′(ω). (2.28)

At the same time, feven(t) and fodd(t) are related to each other by having the opposite
sign for t < 0 and the same sign for t > 0, that is

feven(t) = sign(t) fodd(t). (2.29)

The multiplication in the time domain translates into a convolution in the frequency
domain

F ′(ω) =

∫ +∞

−∞

−2i

ω − Ω
F ′′(ω) dΩ ≡

[−2i

ω

]
∗ F ′′(ω), (2.30)

where we used the knowledge that the −2i/ω function is the Fourier transform of
sign(t). Convolution with this function is also known as the Hilbert transform.

Obviously, Eq. (2.29) can also be converted to fodd(t) = sign(t) feven(t), thus the
relation between the real and imaginary parts of the response spectrum also holds
when Fodd(ω) and Feven(ω) are exchanged in Eq. (2.30).

A related mathematical proof of the Kramers-Kronig relations can be derived
from the analyticity of the response function in the complex plane of frequency. [8,
p. 125]

2.1.3 Dispersion relations in local Lorentz media

Lower and upper polariton branches of transverse waves Returning to the
derivation of dispersion relations, we start with modifying the constitutive
relations (2.5) to a plane wave propagating in a medium:

D := ε0εr(ω)E, B := µ0µr(ω)H, (2.31)

with the relative permittivity εr(ω) and permeability µr(ω) being two dimensionless
functions of frequency, defined in Eq. (2.21, 2.24). The wave equation (2.11) then
changes to

⊥k E = ε0µ0εr(ω)µr(ω)
ω2

k2
E. (2.32)

For transverse waves in isotropic media, the electric field is perpendicular to the
wave vector (⊥k E = E), and Eq. (2.32) can be simplified to

k(ω) =
√
ε0µ0

√
εr(ω)µr(ω) ω =

√
εr(ω)µr(ω)

ω

c
, (2.33)
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Figure 2.4: Influence of a single resonance in the real part of relative permittivity ε′r(ω) (ma-
genta line in the left panel) to the shape of dispersion curves in the right panel (dashed green
line, computed using Eq. (2.33). The lower and upper polariton branches are separated
by a spectral region ω ∈ (0.3, 0.65), where the wave does not propagate on an appreciable
distance.
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with the added frequency-dispersive term responsible for the deviation of the curve
in Fig. 2.4 from the original straight light line in Fig. 2.1.

In the simplest example of a single electric resonance with negligible losses, as
shown in Fig. 2.4, the curve is divided into two separate branches. The lower po-
lariton branch is below the angular resonant frequency ω0 and it is characterized by
the Lorentz oscillator being in phase with the electric field. Above ω0, the dipoles
of the Lorentz oscillator can no more follow the electric field and point in the oppo-
site direction. With further increase of the frequency, the permittivity crosses zero
at the frequency ωL where the upper polariton branch starts. In case of a single (or
well-isolated) Lorentz oscillator, the difference ωL − ω0 can be computed from the
magnitude of the oscillator (using the Lydanne-Sachs-Teller relation) [8].

The same behaviour is observed for a single resonance in the permeability µr(ω),
and will be typical also of the spectra of resonances of macroscopic structures de-
scribed later.

Note that the formation of upper and lower polariton branches can be also in-
terpreted [13] using the theory of coupled oscillators as the result of anticrossing, or
also avoided crossing, between the oscillator at the frequency ω0 (forming a horizon-
tal line) and the photon branch (forming a straight growing light-line).

When losses are present, the lower and upper polariton branches (in Fig. 2.4)
are connected by a smooth line of anomalous dispersion and very high losses.

Longitudinal waves in dispersive media The wave equation in local dispersive
media (2.32) also allows the existence of longitudinal waves with electric field par-
allel to the wave vector E||k. It was shown earlier that there is no solution for
longitudinal waves in vacuum except for a static homogeneous field.

If a local medium is assumed, and the wavenumber k is nonzero, such waves
can have a solution with nonzero E when εr(ω)′ = 0, or with nonzero H when
µr(ω)′ = 0. Therefore, the corresponding dispersion curve for a longitudinal wave
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is a horizontal line at ω = ωL, independent of k. This would be equivalent to a
standing oscillation that maintains the spatial amplitude envelope that was origi-
nally excited.

Different physical phenomena can lead to εr(ω)′ = 0, some of which introduce
relatively low losses at the corresponding ωL; namely lattice vibrations in noncon-
ductive crystals or electrons in inductive media (like metals and dilute plasma).

At the interface of two media with differing signs of permittivity, another type of
waves can be excited with an intermediate frequency ω < ωL that cannot propagate
in either of the bulk medium. The dispersion curve of such waves is not flat, al-
lowing them to propagate along the interface. Depending on the mechanism, they
are known as surface plasmons or surface phonon-polaritons [8, p. 87], respectively.
Accordingly, surface magnons should be observed at interfaces where µ changes its
sign.

Anisotropy of permittivity It shall be noted here that the permittivity εr was in-
troduced as a scalar, assuming that the vector of electric field E and electric induc-
tion D are always parallel:

D = ε0εr(ω)E ≡ ε0




εr(ω) 0 0
0 εr(ω) 0
0 0 εr(ω)


 · E (2.34)

In some media with a lower rotational symmetry (such as many crystals, or liquids
under static electric field), the medium response depends on the electric or magnetic
field direction, and the medium is denoted as anisotropic. At the beginning of the
chapter we assumed the fields to be relatively weak, which enables one to describe
the medium as linear. Whatever the linear relation of D := L(E), it must obey the
rule

D1 + D2 = L(E1) + L(E2) = L(E1 + E2)

for any vectors E1,E2. Such a relation can be fully described by a tensor of permittiv-
ity

D = ε0εr(ω)E ≡ ε0




εrxx(ω) εrxy(ω) εrxz(ω)
εryx(ω) εryy(ω) εryz(ω)
εrzx(ω) εrzy(ω) εrzz(ω)


 · E. (2.35)

An elaborate discussion on all possible forms of this tensor and their physical in-
terpretations can be found e.g. in [11, pp. 678–686]. An analogous treatment can be
applied to the magnetic permeability, though it is less often needed.

Dispersion relations in anisotropic local media If the medium response depends
on the direction of the field, the dispersion relations cannot be directly obtained by
substitution into the wave equation as in Eq. (2.33). The dispersion relation can
however still be solved [11, pp. 667] as a set of three linear algebraic equations
based on Eq. (2.32). For simplicity, we assume here that the relative permeability
µr = 1; the extension to other cases is possible, too. A solution of Eq. (2.11) can exist
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Figure 2.5: Relation between a dispersion
curve for one photonic branch and the cor-
responding isofrequency contours. At a se-
lected frequency, all points in the kx-ky plane
are drawn for which a nonzero solution of
Maxwell equations exists. For transverse
waves in local media, this is equivalent to
finding a solution to the dispersion equation
(2.33).
Multiple frequencies can be plotted to describe
the frequency dependence. For illustration, an
isotropic medium was used, thus all IFCs take
the form of a circle. To save space, only one
quarter of the circle was plotted here.

with nonzero E if and only if the determinant of the set of three linear equations is
zero:

det


⊥k −

µ0ε0ω
2

k2




εr11(ω) εr21(ω) εr31(ω)
εr12(ω) εr22(ω) εr32(ω)
εr13(ω) εr23(ω) εr33(ω)




 = 0, (2.36)

The search for dispersion curves in an anisotropic medium is thus transformed into
finding zeroes of this function of four scalar variables, kx, ky, kz and ω. In the most
general case, it can be solved by means of numerical algebra software.

Isofrequency contours It is often important to describe the dispersion curves also
for different wave angles, which is the best accomplished by plotting the frequency
ω as the function of wave vector k. In three dimensions, this would require mapping
a function of three independent variables, ω(k) = ω(kx, ky, kz). However, in most
cases the projection of two selected components of k is sufficient to understand all
relevant phenomena, and naturally it is much easier to visualize.

Such plots are known as isofrequency contours (IFC), or also equifrequency con-
tours (EFC), and they allow intuitive geometrical analysis [21] of various phenom-
ena such as light refraction, beam walk-off, total internal reflection etc. The relation
between a dispersion curve for one photonic branch and the corresponding isofre-
quency contours in an isotropic medium is illustrated in Fig. 2.5.

The limitation is, however, that IFC plots do not show the imaginary part and
thus are applicable to plot the dispersion in media with no or negligible losses only.
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Each photonic branch also has to be plotted in a separate plot to prevent the con-
tours from overlapping (see the right panel of Fig. 2.4). Moreover, in every single
photonic band, Eq. (2.36) yields two solutions for two possible polarisations of
transverse waves [8, p. 46]. The IFCs for these solutions are in general different in
anisotropic media, but we always restrict the discussion only to one polarisation in
the following figures for simplicity.

Figure 2.6: Isofrequency contours for three different frequencies: (a) IFCs in the isotropic
medium are circular and centered in the k = 0 point. (b) An anisotropic medium with the
optical axis perpendicular to the interface, where IFCs take the form of ellipses. (c) A similar
case of another anisotropic medium, with the orientation of the optical axis (drawn as the
dashed black line) that warrants introducing the index of refraction for the shown direction
of the wave vector k. Note that for clarity, the plots (b) and (c) show the IFCs only for one
wave polarisation.

IFCs are valuable for graphical prediction of wave refraction on interface of two
media [22, p. 118], [23]. Starting, e.g., by an isotropic medium in Fig. 2.6a, the
wavevectors are known for given frequencies (as three coloured arrows). The com-
ponent of wave vector parallel to the interface (chosen as kx here and indicated by
the vertical dashed lines) must be conserved upon refraction. This rule can be in-
tuitively deduced from the continuity of the wave phase at the interface, as well
as from the Noether theorem applied to the infinite translational symmetry of the
interface. Transferring the vertical dashed lines to an IFC plot of another medium
and finding the intersections with an IFC of the corresponding frequency, one can
find the new wavevector. In Fig. 2.6, we provide examples of IFCs for one isotropic
and two anisotropic media.

Index of refraction and its applicability With the background of the theory de-
veloped above, the notion of the index of refractionN can be properly introduced and
discussed. In the strictest sense, the index of refraction is defined only for isotropic
media. Then it is equivalent to the ratio of the wavenumber k(ω) ≡ |k| to the wave-
number in vacuum at the same frequency:

N(ω) := k(ω)
c

ω
≡
√
εr(ω)µr(ω), (2.37)

as directly follows from Eq. (2.33).
Starting with a harmonic plane wave with the frequency ω and the wave vector

k(1) refracting at an interface of two isotropic media, the projection of k(1) to the
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interface is given as
kx = k(1) sinα(1),

where α(1) is the angle between the wavevector in the first medium k(1) and the nor-
mal to the interface. In the second medium, a similar relation must apply. There-
fore, the wavenumber k(2) may be different and as a result, the angle in the second
medium is

α(2) = arcsin

(
k(1)

k(2)
sinα(1)

)
= arcsin

(
N1

N2

sinα(1)

)
, (2.38)

which is known as the Snell (or also Snell-Descartes) law.
The majority of (effective) media discussed in this thesis are, however, more or

less anisotropic, and somewhat surprisingly, the notion of effective index of refrac-
tion Neff seems to be widely used for them in the literature anyway. The author
thus feels there is a need for a conscientious extension of Neff for anisotropic cases,
too. An extremely loose definition of Neff could be based on computing the ratio
Neff(ω,k) := kc/ω for any medium. This could be formally done, but then the wa-
venumber k would also depend on the direction α, and the Snell law in Eq. (2.38)
would become an implicit equation, losing its original purpose of making the com-
putation explicit and notably simple.

The author proposes instead to restrict the term index of refraction to all cases
where IFCs are perpendicular to k. This covers not only all isotropic media, but
also those cases when the waves propagate close the optical axis of any anisotropic
media. Fig. 2.6c shows an example of such an anisotropic medium with its optical
axis oriented parallel to the light wave vector, thus enabling one to approximate the
IFC by an osculating circle and to use the Snell law to retrieve the correct angle of
refraction. This approximation, however, can be used for a narrow range of angles
only.

∂k

∂α
� k, (2.39)

We will show in the following that the prediction of the beam propagation is
more complex, because it is sensitive to the curvature of IFCs.

Group velocity So far, only the propagation and refraction of a plane harmonic
wave was discussed, and it was shown that it is determined by the shape of IFC at
the given frequency. Temporal modulation of the wave is equivalent to the wave
being formed by superposition of multiple frequency components in the frequency
domain, with their respective amplitudes given by the Fourier transform of the field
envelope. The temporal position of the envelope is determined by their mutual phase
difference, not by the absolute wave phase.

A similar argument can be made with regard to the spatial modulation of the
wave. Any wave shape other than the infinite plane wave can be expanded into a
superposition of waves with different wavevectors, and the direction of propaga-
tion of its spatial envelope is given by mutual phase difference of the constituent
waves.
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The velocity vector of the envelope propagation, denoted as the group velocity
vg, can be found [24] as the gradient of frequency by the wavevector:

vg :=
∂ω

∂k
≡




∂ω/∂kx
∂ω/∂ky
∂ω/∂kz


 (2.40)

In the IFC plot, the group velocity can be found visually as directing always per-
pendicular to the IFC, with a magnitude being proportional to the density of the
IFCs.

If the group velocity is different from the phase velocity, the envelope E0(t) is
maintained in time, but it continuously shifts against the underlying wave. Thus
the actual temporal shape of E(t) changes upon passing through a dispersive me-
dium. On the contrary, in vacuum or media with negligible dispersion, each fre-
quency component of the wave acquires an additional phase strictly proportional
to its frequency. Then the group velocity coincides with the phase velocity:

vg = kω/k2 (in nondispersive isotropic media).

Usually, in spectral regions near a resonance, also the quadratic or even higher
terms in the Taylor expansion of the ω(k) dependence shall be taken into account.
This effect is known as the group velocity dispersion as it is equivalent to the group ve-
locity vg(k) being dependent on the wavevector (or, if reformulated, on frequency).
It results in a temporal distortion of the wave envelope E0(t).

Beam propagation in anisotropic media The refraction of a beam is illustrated
in Fig. 2.7 by means of three slightly different wavevectors it is composed of. For
simplicity, a monochromatic wave was used, so brown, black and violet were cho-
sen for the three example wavevectors to prevent confusion with the rainbow-like
frequency colour map used in Fig. 2.6.

In the first plot, 2.7a, the case of an isotropic medium is illustrated. Upon refrac-
tion into a general anisotropic medium in Fig. 2.7b, each component must maintain
its wavevector projection to the interface, thus the wavevectors spread their direc-
tions. The resulting beam propagates along the group velocity that is different from
the central wavevector; this is also known as the spatial walk-off .

Fig. 2.7c shows again the special case of the anisotropic medium, where the
wave propagates near an optical axis, and thus where the Snell law can still be used
to determine the refraction of a plane wave, based the generalized notion of the
index of refraction. However, there is a pitfall if one tries to apply the Snell law for
prediction of how the beam will refract. The problem originates from the differen-
tial nature of the group velocity definition in Eq. (2.40). While the phase velocity
of a monochromatic wave at the frequency ω0 does not appreciably change upon a
small deviation of the angle α from the optical axis [cf. Eq. (2.39)], the group veloc-
ity direction does, because it has a nonzero linear component in its dependence on
the wavevector:

∂vg(k)

∂α
6= 0.
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Figure 2.7: Examples of IFCs similar to Fig. 2.6, but now at a single frequency and different
wavevectors, corresponding to a monochromatic beam refracting on the interface. (a) The
wavevectors in the isotropic medium lie on a circle. (b) Generally, anisotropic media exhibit
different orientations of the wave vector k and the beam propagation. (c) For the special
cases of propagation along the optical axis, the beam refracts similarly as in isotropic media.
(d) In anisotropic media with hyperbolic shape of the IFC, the beam refracts to the opposite
direction than the wave vector [21].

As a result, the group velocity in anisotropic media is always much more sensitive
to the angle than the phase velocity, and Snell law does not predict it correctly. It
can be regarded as a spatially-dependent manifestation of the group velocity dis-
persion.

In Fig. 2.7d, an extreme case of spatial walk-off is shown on the example of a
hyperbolic medium with different signs of the permittivity along different axes. The
normal to its IFC is nearly perpendicular to the wavevector, and accordingly, the
beam refracts in opposite angle with regard to the incident wave. The kx component
of the wave vector is however still maintained. Further geometrical treatise of the
beam refraction is in Ref. [8, p. 46].

The sign of the phase and group velocities In the discussion of refraction both
in Fig. 2.6 and 2.7, the solution of the vertical wave vector component ky pointing
downwards was always selected without justification. In fact, both upwards and
downwards pointing wave vectors provide a valid solution. The choice was made
so that in the first medium represented by the leftmost plots (Fig. 2.6a and 2.7a),
the incident wave propagates downwards to the interface, and it was assumed that
also the refracted wave will propagate downwards, from the interface.

A more complicated case occurs when the wave vector k and group velocity vg

point in opposite directions (or, more generally, when they have opposite projec-
tions on the normal to the interface). This manifests itself by the IFC radius decreas-
ing with frequency growing, as shown in Fig. 2.8b,c. Such a case can indeed occur
in natural or artificial media, as described in more detail below.

Whenever the wave vector k is nearly perpendicular to the isofrequency contour
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Figure 2.8: Frequency-dependent IFCs of (a) an ordinary medium, (b) an isotropic medium
with a negative index of refraction and (c) an anisotropic medium with a negative index of
refraction.
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the Snell law is still applicable and we then speak of a negative index of refraction. This
is typically, but not exclusively, observed in isotropic media or in media where the
wave vector points in a direction close to the optical axis. The refraction between
ordinary media and two examples involving negative-index media are plotted in
Fig. 2.8. It should be noted that the negative-index media always exhibits temporal
dispersion. Therefore, the refraction of temporally short pulses disperses different
frequencies into different angles, as can be seen from the wavevector orientation
dependent on frequency in Fig. 2.8b,c.

2.2 Electrodynamics of nonlocal homogeneous media

2.2.1 Nonlocal response

Definition of nonlocal media The previous two chapters that concerned local me-
dia can be generalized into the theory of nonlocal (or, spatially dispersive) media. The
downside of the spatial-dispersive model of media is that it is more complicated,
leading e.g. to an implicit dispersion equation. Its great advantage is however that
it provides a necessary level of generality for the description of periodic structures
discussed below.

Some phenomena observed in the frequency spectrum are in fact consequences
of the spatial dispersion [13, p. 359], which is the case, for example, of the Doppler
broadening of resonance lines in gases [25]. These phenomena are primarily depen-
dent on the wave vector k, and the apparent broadening on the frequency axis is
only due to the dispersion curve defining a simple relation between the frequency
broadening and wavevector broadening.

In this section, a general class of media is discussed, where the medium response
depends explicitly on the history of E(τ,ρ) in previous time τ < t and in all sur-
rounding points ρ, and therefore it is described by a spatio-temporal convolution:

D(t, r) = ε0E(t, r) + ε0

∫

V

∫ t

−∞
χe(t− τ, r− ρ) E(τ,ρ) dτ d3ρ. (2.41)
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Figure 2.9: Wavevector-dependent IFCs for one frequency, for the same examples of media
as in Fig. 2.8. At an interface of ordinary medium (a) with an isotropic medium of opposite
group and phase velocity (b), both wavevector and beam direction refract under negative
angle. The principle of refractive index can be applied to compute the wave vector of a wave
propagating along the optical axis of anisotropic media (c), but the beam refraction follows
a different rule as discussed in the text.

In a very similar manner as in the local theory above, we assume that a plane wave
E(t, r) := E0 e

iωt−ik·r propagates through the medium. This is without loss of gener-
ality, since it is possible to express any wave as a superposition of monochromatic
plane waves.

D(t, r) = ε0E0 e
iωt−ik·r + ε0

∫

V

∫ t

−∞
χe(t− τ, r− ρ) E0 e

iωτ−ik·ρ dτ d3ρ. (2.42)

After two substitutions, T := t− τ , R := r−ρ, the exponent can again be separated
into the original plane wave (which factors out), and a spatio-temporal Fourier
transform of the medium response:

D(t, r) = ε0E0 e
iωt−ik·r + ε0

∫

V

∫ 0

−∞
χe(T,R) E0 e

iω(t−T )−ik·(r−R) dT d3ρ,

D(t, r) = ε0E0 e
iωt−ik·r + ε0

(∫

V

∫ 0

−∞
χe(T,R) e−iωT+ik·R dT d3R

)
E0 e

iωt−ik·r.

The response of the medium to the electric field of any harmonic plane wave can
now be expressed as a function of frequency ω and wave vector k. It is defined as
the ratio between the electric displacement and the electric field:

εr(ω,k) =
D(t, r)

ε0E(t, r)

∣∣∣∣
E(t,r):=E0 eiωt−ik·r

= 1 +

∫

V

∫ 0

−∞
χe(T,R) e−iωT+ik·R dT d3R (2.43)
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Converting the problem from the spatio-temporal domain into the wavenumber-
frequency domain allows to express the relation between D and E by the permit-
tivity function εr(ω,k) and completely avoid the convolution from Eq. (2.42). Note
that both the response function χe and the permittivity εr may be either scalar func-
tions, or rank-2 tensor functions; the latter case accounts for possible anisotropy of
the medium.

The terms of nonlocality and of spatial dispersion are used interchangeably in the
literature. The difference seems to be related to the way one thinks about the me-
dium – while nonlocality is obviously related to the description in the real space [cf.
Eq. (2.41), spatial dispersion, in contrast, derives from that the response is not a con-
stant function in the reciprocal k-space. The term spatial dispersion is therefore of
a slightly narrower meaning, as it implies that an infinite plane wave of a defined
wavevector is being considered.

Power expansion of the medium parameters Assuming the permittivity εr(ω,k)
or permeability µr(ω,k) are smooth functions varying slowly with k, we can express
them in general as power series [13, p. 367]:

εr(ω,k) = 1 + χe(ω) + iγe(ω)k + [αe(ω)k]k + . . . ,

µr(ω,k) = 1 + χm(ω) + iγm(ω)k + [αm(ω)k]k + . . . ,

}
(in any media) (2.44)

where χe,m(ω) are second rank tensors, γe,m(ω) third rank tensors, αe,m(ω) fourth
rank, and similarly for possible higher orders of expansion. After the corresponding
number of matrix multiplication with k, they all yield rank-2 tensors that add up to
form the tensor of permittivity or permeability.

Note the response function for a local medium can be formally derived from its
nonlocal formulation by replacing the spatial dependence in Eq. (2.41) by a Dirac
delta function as follows:

χe(t− τ, r− ρ)→ δ3(r− ρ) χe(t− τ), (2.45)

which allows to simplify Eq. (2.41) so that in local media only the temporal convo-
lution has to be computed. Then the higher order terms including γe,m and αe,m in
Eqs. (2.44) vanish and

εr(ω,k) = 1 + χe(ω) = εr(ω),

µr(ω,k) = 1 + χm(ω) = µr(ω).

}
(in local media) (2.46)

Magnetic effects can be described by nonlocal permittivity Here, we will follow
the approach of Landau and Lifshitz [13] to show that the magnetic response of any
medium can be fully expressed by a certain form of permittivity dependence on
k. (For more details, see Refs. [14], [6, pp. 95-130] and [26, p. 19].) This leads to
introducing new Landau-Lifshitz permittivity εLL

r and permeability µLL
r , which are,

in general, different from those used in the more customary symmetric model:

εLL
r (ω,k) 6≡ εr(ω,k), 1 = µLL

r (ω,k) 6≡ µr(ω,k).
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The Maxwell equations (2.1-2.4) however still hold when these new parameters are
substituted for the original ones. Requiring the relative permeability to be unity
implies a trivial dependence of the magnetic field on the magnetic induction in this
model:

µ0H
LL = B.

The advantage is that the relative magnetic permeability is defined as a mere
constant of the magnetic response of vacuum µLL

r (ω,k) := 1, thus reducing the com-
plexity of the computation compared to the symmetric spatial-dispersive model.
Therefore, the Landau-Lifshitz model developed below is also denoted as the EDB-
model, since it allows the substitution into the Maxwell equations to avoid explicit
use of the magnetic field H.

Local medium in the Landau-Lifshitz model An important step towards using
the Landau-Lifshitz model is to derive how a classical, local medium with the mag-
netic response is represented. From the principle of correspondence, all local media
can be expressed with this model without any change in the dispersion curves pre-
dicted.

In the Landau-Lifshitz model, the new spatial-dispersive permittivity εLL
r (ω,k)

consists of

1. the component caused by the local electric response of matter,

2. a new component fully accounting for the local magnetic response of matter,
thanks to a particular shape of its spatial dispersion.

Later, higher-order expansion terms can be easily added to describe all sorts of the
nonlocal response.

Recalling the Maxwell equation (2.4) that links the magnetic field H with the
electric induction D,

∇×H =
∂D

∂t
, (2.4 again)

it is clear that if one defines a new pair of vector fields

HLL = H +
∂X

∂t
, (2.47)

DLL = D +∇×X, (2.48)

then Eq. (2.4) maintains exactly the same form with the new fields, for any differ-
entiable vector field X:

∇×HLL = ∇×H +

(
∇× ∂X

∂t

)
=
∂D

∂t
+
∂(∇×X)

∂t
=
∂DLL

∂t
, (2.49)

because for reasonably shaped functions the temporal and spatial derivatives com-
mute.

With the gauge freedom of choice of X, we impose the above mentioned require-
ment that whole magnetic response of the matter is expressed by the constitutive
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equation for permittivity. Therefore in the spatially dispersive theory, the constitu-
tive equation for magnetic induction is defined as the same as in vacuum, cf. Eq.
(2.5):

µ0H
LL := µ0µr(ω)H = B. (2.50)

When this equation is rearranged into the form similar to 2.47, we obtain a prescrip-
tion for the sought X:

HLL = H + (µr(ω)− 1)H = H +

(
µr(ω)− 1

µ0µr(ω)

)
B

︸ ︷︷ ︸
=: ∂X/∂t

Without loss of generality, we again restrict the discussion to a plane wave (2.9),
thus the time derivative equals to multiplication by iω.

X =
1

iω

(
µr(ω)− 1

µ0µr(ω)

)
B =

1

iωµ0

(
1− 1

µr(ω)

)
B. (2.51)

The new electric displacement DLL in the Landau-Lifshitz model, that also accounts
for magnetic phenomena, is obtained by substitution of Eq. (2.51) into Eq. (2.48):

DLL := D− ik×X = D− i
1

iωµ0

(
1− 1

µr(ω)

)
k×B (2.52)

By means of the other Maxwell equation (2.3), the magnetic induction B can be
substituted by k× E/ω to obtain an expression that contains the electric quantities
only.

DLL = D− 1

ω2µ0

(
1− 1

µr(ω)

)
k× (k× E). (2.53)

Double vector multiplication on the right hand side can be identified with the wave-
front projection tensor ⊥k, cf. Eqs. (2.7, 2.12):

DLL = D +
k2

ω2µ0

(
1− 1

µr(ω)

)
⊥k E, (2.54)

Tensor form of the Landau-Lifshitz permittivity of local isotropic media From
Eq. (2.53) we can derive the tensor form of spatial-dispersive permittivity εLL

r (ω,k):

εLL
r (ω,k) = 1 + χe(ω) + k2

ω2µ0

(
1− 1

µr(ω)

)
⊥k,

µLL
r (ω,k) = 1,



 (in local media) (2.55)

where we make use of the wavefront projection tensor defined as

⊥k=
1

k2




k2y + k2z −kxky −kxkz
−kykx k2x + k2z −kykz
−kzkx −kzky k2x + k2y


 or equivalently, (⊥k)ij = −kikj

k2
+ δij.

(2.13 again)
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Other formulations Let us note that the classical approach using symmetric pa-
rameters εr(ω,k), µr(ω,k), and the Landau-Lifshitz approach of gathering all me-
dium properties in the permittivity εLL

r (ω,k) are only two examples of all possible
gauge transformations of medium parameters under which the Maxwell equations
are invariant. Formally, one can distribute the medium electric and magnetic re-
sponses between these parameters arbitrarily – the distribution weight may be even
frequency dependent, leading to a physically realistic pair of parameters with cus-
tom spectral shape [27].

2.2.2 Dispersion relations in nonlocal homogeneous media

Dispersion relation as an implicit equation In the dispersion relation for local
media, Eq. (2.36), the wave vector could be found by solving a set of linear equa-
tions. In the particular case of isotropic local media, the computation has an even
simpler form of an explicit computation of one square root, see Eq. (2.33).

An intrinsic issue of spatial-dispersive media is that the permittivity εLL
r (ω,k) is

a function of the wavevector k on its own. The dispersion equation then becomes
an implicit equation similar to Eq. (2.36), but now with εLL

r dependent on k:

det


⊥k −

µ0ε0ω
2

k2




εLL
r 11(ω,k) εLL

r 21(ω,k) εLL
r 31(ω,k)

εLL
r 12(ω,k) εLL

r 22(ω,k) εLL
r 32(ω,k)

εLL
r 13(ω,k) εLL

r 23(ω,k) εLL
r 33(ω,k)




 = 0. (2.56)

If all tensor elements, εLL
r ij(ω,k), can be approximated in the form of a polynomial

expansion to a low order in k, the solution can again be found as roots of a char-
acteristic polynomial. The degree of this polynomial may be substantially higher
than in Eq. (2.36), the dispersion curves can nonetheless be found by a brute-force
numerical search.
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Figure 2.10: Dispersion curves for three different types of local media, comparing the lo-
cal and Landau-Lifshitz representations of constitutive parameters. Three rows show media
with (a) a resonance in permittivity, (b) in permeability, and (c) in both parameters simul-
taneously.
Left column: Local parameters εr(ω), µr(ω) as functions of frequency. Right column: Dis-
persion curves were computed either with the local parameters from Eq. (2.46), plotted as
dashed green lines, or with the Landau-Lifshitz parameters from Eq. (2.55), plotted as black
line. The Landau-Lifshitz permittivity εLL

r (ω,k) is colour shaded on the background.
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Dispersion in a local dielectric in the Landau-Lifshitz model The dispersion
curves predicted by the classical and Landau-Lifshitz representations of the con-
stitutive parameters for local media in Eq. (2.55) are mathematically identical. This
is illustrated in Fig. 2.10 on three examples: that of a medium with an electric res-
onance (2.10a), one with a magnetic resonance (2.10b) and with both resonances
overlapping (2.10c).

The plots in the left column of Fig. 2.10 show the local permittivity εr(ω) and per-
meability µr(ω). Its right column features a thin black contour connecting all points
where the dispersion equation (2.56) was found to hold by a numerical search. This
is complemented by the Landau-Lifshitz permittivity εLL

r (ω, k) as a background
colour map with blue tone for negative values and red for positive ones. Addi-
tionally, the original green dashed dispersion curve as in Fig. 2.4 is retained, as
computed using the classical approach based on the Eq. (2.33). It can thus be seen
that both models always predict exactly the same dispersion.

For a local isotropic medium with a single electric resonance in Fig. 2.10a, the
plotted curves are identical to Fig. 2.4. On the right panel, the Landau-Lifshitz
permittivity εLL

r (ω, k) follows a resonance curve in frequency, but is independent
of the wavenumber k (as long as the medium is local). With increasing frequency,
the lower polariton branch bends towards higher k, as εLL

r (ω, k) increases towards
the resonance at ω0, then a band of frequency follows where and no solution of
the wave equation [8] exists due to εLL

r (ω, k) being negative, and finally the upper
polariton branch starts when εLL

r (ω, k) crosses zero and becomes positive again.
A local medium with a single magnetic resonance, Fig. 2.10b, is predicted by

the symmetric model to exhibit similar dispersion curves. In the right panel of
Fig. 2.10b, the magnetic resonance is represented by the contribution that grows
proportionally to k2:

DLL = D +
k2

ω2µ0

(
1− 1

µr(ω)

)
⊥k E

︸ ︷︷ ︸
magnetic contribution

, (2.54 again)

and unlike the case of the electric resonance, the maximum magnitude of the mag-
netic contribution is located at the frequency ωmp where µr(ωmp) → 0. In the plot
2.10b, this is at ω/ω0 ≈ 1.3. This shape of εLL

r (ω, k) causes the lower polariton branch
to bend and approach a horizontal asymptote, which is again separated by a band
of no allowed wave from the upper polariton branch, starting at ωmp.

Finally, in Fig. 2.10c, both resonances are combined. The main difference from
the cases of isolated resonances occurs in the frequency range where originally
εLL
r (ω, k) was negative and no wave could propagate. However, the magnetic res-

onance increases εLL
r (ω, k) by a term proportional to k2, and consequently a new

photonic branch is formed with dω/dk < 0, that is, with opposite group and phase
velocities. IFCs for the new band then appear as sketched in Figs. 2.8b and 2.9b.

Dispersion in nonlocal media Further terms in the permittivity εLL
r (ω,k) expan-

sion in Eq. (2.55) make the dispersion curves deviate from those predicted for local
media. This corresponds to the black contours deviating from the green lines in
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Figure 2.11: Dispersion curves for two nonlocal media. They differ by the value of the
fourth-order expansion coefficient α(ω), which was plotted with a thin blue line. The left
and right columns of plots show the same information as in Fig. 2.10. The Landau-Lifshitz
permittivity εLL

r (ω,k) is colour shaded on the background.

(a)

−4 −2 0 2 4 6 8 10
relative permittivity εr and permeability µr

0.0

0.5

1.0

1.5

2.0

no
rm

al
iz

ed
fr

eq
ue

nc
y
ω
/ω

0 ε′r(ω/ω0)
µ′r(ω/ω0)

α′(ω/ω0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
normalized wavenumber kc/ω0

0.0

0.5

1.0

1.5

2.0

no
rm

al
iz

ed
fr

eq
ue

nc
y
ω
/ω

0

−20

−15

−10

−5

0

5

10

15

20

(b)

−4 −2 0 2 4 6 8 10
relative permittivity εr and permeability µr

0.0

0.5

1.0

1.5

2.0

no
rm

al
iz

ed
fr

eq
ue

nc
y
ω
/ω

0 ε′r(ω/ω0)
µ′r(ω/ω0)

α′(ω/ω0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
normalized wavenumber kc/ω0

0.0

0.5

1.0

1.5

2.0

no
rm

al
iz

ed
fr

eq
ue

nc
y
ω
/ω

0

−20

−15

−10

−5

0

5

10

15

20

Fig. 2.11. As the simplest example we add one scalar term α(ω)k4 to εLL
r (ω,k) in Eq.

(2.44). The shape of α(ω) was chosen as a weak Lorentz oscillator at the resonant
frequency of the ordinary electric response χe(ω). This term is shown by adding a
thin blue line in the left column of Fig. 2.11.

The choice of the same resonant frequency for χe(ω) and α(ω) is not arbitrary;
it is assumed that both terms arise from the same resonance mode that has a field
shape different from that of a simple dipole. The relation of higher-order expansion
terms of the Landau-Lifshitz permittivity to the multipole expansion of the field
shape is developed e.g. in Refs. [14], [28] and [26].

The choices of a positive amplitude (Fig. 2.11a) and a negative one (Fig. 2.11b)
have typical impacts on the dispersion curves. In the former case, both polariton
branches deviate one from another with growing frequency. In the latter case, they
come closer to each other with growing k. Eventually, in the upper right corner of
the right plot in Fig. 2.11b, they merge into one loop. The author, however, believes
this merging may not be observed in nature, and that its occurrence is only due to
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unrealistic values of the α(ω) coefficient or the absence of higher-order expansion
terms.

Existence of additional waves For both cases shown in Fig. 2.11, it follows that
the dispersion equations can allow multiple solutions with different wavenumbers
k at one frequency ω, even when the waves have the same orientation and polari-
sation. (Note that, conversely, multiple solutions with different ω for a given wa-
vevector k are commonly present, as a usual consequence of frequency dispersion
even in local media.)

The waves propagating with the higher wavenumber k are denoted as additional
[14, 29, 6, 30]. They were predicted by the works of Pekar et al. and also suggested
by experimental data of dispersion near exciton levels, e.g. in cadmium sulphide
[31].

The dispersion curves suggest the existence of additional waves around ω ∼
0.75ω0 in Fig. 2.11a and ω ∼ 1.75ω0 in Fig. 2.11b. In both cases, one of the two
solutions depicted has opposite signs of the wavevector and the group velocity
(|vg| = dω/dk < 0), predicting a negative refraction also in natural homogeneous
media.

Odd-power expansion terms and optical activity Returning to the power ex-
pansion of εLL

r (ω,k) in terms of k in Eq. (2.44), we can identify the term constant
in k with the electric dipole moment χe(ω), the term proportional to k2 with the
magnetic dipole moment χm(ω) (or, also the electric quadrupole moment), and the
recently discussed term proportional to k4 with an electric octupole or magnetic
quadrupole ([14, 29, 6]).

The odd-power expansion terms were not discussed yet, although they have an
important physical interpretation – their nonzero values break the spatial inversion
symmetry of the medium, and are thus related to optical activity [32]. In media with
nonzero odd-power terms, the corresponding eigenwaves are circularly polarized,
and they propagate with different velocity depending on the direction. Thus, the
two plots in the right column of Fig. 2.12 can also be viewed as the dispersion
curves of the same medium, for the left and right circularly polarized waves.

2.2.3 Reflectance and transmittance at an interface of two local me-
dia

Continuity requirements In the previous text, only the phase-related phenomena
were discussed. The dependence of the dispersion curves and IFCs were computed
as a result of the local or nonlocal response of the medium. Geometrical arguments
were then used to infer the angle of refraction at the interface of two media, showing
e.g. that a positive or negative refraction may occur. It was also shown that the
beam may refract in a different direction than the wave vector, and that, in some
cases, the notion of index of refraction can be used to simplify the problem to an
application of the Snell law.

The conservation of the wave phase at the interface is, however, not the only
constraint to the refraction and reflection problem. Assuming there is no surface
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Figure 2.12: Dispersion curves for two media with optical activity. The left and right
columns of plots show the same information as in Figs. 2.10 and 2.11. The frequency
dependence of the function γe(ω), which occurs in the term linearly proportional to k in the
expansion (2.44), is plotted in the left column as a thin red line.
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current nor surface charge, and that both media are local, the components of the
fields E, H parallel with regard to the interface must be continuous and the perpen-
dicular component of the displacements D, B is continuous, too. This rule can be
derived from the Maxwell equations in Eqs. (2.1–2.4) by integrating them over in-
finitesimally thin loops or surfaces that are symmetrically placed on the interface
[8, pp. 26-29].

Impedance The continuity requirement determines the amplitudes of the waves re-
flected and transmitted at the interface. Corresponding complex Fresnel coefficients
of reflectance r and transmittance t depend on the incidence angle and the polarisa-
tion of the wave [11, p. 38]. They are derived in many textbooks with different
levels of generalisation.

In the case of isotropic media, the medium is sufficiently described by the ratio
of permeability µr to permittivity εr, whose square root is denoted as the impedance
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of each medium
Z =

√
µr/εr. (2.57)

It shall be noted that most optics textbooks assume the media not to respond to the
magnetic field, µr = 1, in which case Z = 1/N =

√
1/εr and the Fresnel coefficients

then are be expressed as functions of N . This assumption is however not applicable
to most structures studied in this thesis.

Perpendicular incidence of two local media In the simplest case where the wave
perpendicularly impinges a single interface of two isotropic local media, described
by their respective impedances Z1, Z2, the reflectance r and transmittance t of the
interface are

r =
Z2 − Z1

Z2 + Z1

, t =
2Z2

Z2 + Z1

, (2.58)

Refraction on an interface with a nonlocal medium The task to compute the am-
plitudes of reflectance and transmittance for nonlocal media is substantially more
complicated than for the local media. The principal reason is related to the fact that
the definition of the medium response (2.41) contains a convolution over an infinite
space, which naturally does not account for the interface. For the problem to be
better formulated, the integral would have to be modified, either with the nonlo-
cal response of medium to extend also behind the interface, or with the medium
response sharply truncated at the interface. For a weak spatial dispersion, different
approaches to the problem are discussed in [33]; a similar problem for one example
of periodic structures is numerically analyzed in [34].

Strong enough spatial dispersion can also allow the plane wave to refract into a
superposition of two independent plane waves, which differ by their component of
the wavevector perpendicular to the interface. The respective amplitudes of these
components depend on the additional boundary conditions [14].

2.2.4 Phase, group, energy and signal velocities

Signs of the phase and group velocities The negative refraction in media shown
in Figs. 2.8b,c and 2.9b,c was a result of the requirement for the group velocity vg

to conserve its component perpendicular to the interface, and for the wave vector k
to conserve its projection onto the plane of interface.

It was assumed that the group velocity coincides with the energy or information
propagation, and therefore that it should always be ”positive”, that is, it should
propagate towards the interface in the first medium and outwards from it in the
second one. In the following paragraphs, this assumption will be challenged for
special cases of absorbing media, but it will be shown that in media with low losses
it is correct and the term of negative phase is used when it is opposite to the group
velocity. Note that since the phase velocity does not carry energy, it can be also
higher than the speed of light in vacuum.
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Signs of the group and energy velocities In the discussion of wave refraction on
an interface, it was assumed that the envelope (i.e. the modulation, carrying infor-
mation) of the wave approaches the interface in the first medium, then refracts and
propagates away from the interface in the second medium. The envelope propa-
gates with the group velocity vg as defined by Eq. (2.40). There is another quantity,
the Poynting vector S := E × H, describing the direction and density of the power
carried by the optical wave [8, p. 16].

The group velocity usually points in the same direction as the Poynting vector,
but this has not necessarily to be always true. A typical counterexample can be
found near resonances in lossy (local) media. Such a behaviour can be traced back
to Fig. 2.2, where the permittivity drops from high values to negative ones. Since
the medium is defined lossy in the figure, the curve of the wavenumber k(ω) is
continuous and smooth, and as a result the magnitude of the group velocity vg =
dω/dk is negative for a range of frequencies around the resonance for ω ∼ 2π,

It follows from this that the group velocity vg can also point in a direction op-
posite to the Poynting vector that represents propagation of the light beam energy,
S. This can be observed in narrow parts of the spectrum only, around the resonant
frequencies where the media have high losses, and also a strong group velocity dis-
persion. Assuming passivity and absence of sources in the second medium, it is
obviously the Poynting vector that has to conserve its perpendicular component
and that the group velocity has inevitably to point towards the interface also in the
second medium, which seems contradictory to causality. This result may however
be explained by a strong deformation of the envelope shape on a short distance.

A negative group velocity has been experimentally observed in a thin sample. It
manifested itself as a negative shift of the light envelope center-of-mass [35], com-
pared to the absence of the medium. Note that the negative group velocity is inde-
pendent of the sign of the phase velocity, which may be both positive and negative
[24].

Signal velocity The notion of signal or information propagation velocity is sometimes
identified with the group velocity, vg. However, this may be misleading, as the dif-
ferential definition of the group velocity in Eq. (2.40) enables one to define it for
slow-enough modulation only, as long as the span of frequencies is narrow and
the second derivative, corresponding to the group velocity dispersion, can be ne-
glected.

Assuming the information is carried by a wave modulation that is limited in
time (e. g. presence or absence of an optical pulse), one leaves the comfortable
approximation of narrow spectrum: from the convolution-multiplication theorem
already used in Eq. (2.30), it can be shown that any information carrying function
with a compact support has to span over an infinite spectrum. The simplified ver-
sion of the proof [36] can be based on the fact that under multiplication by a well
chosen compact-supported binary function, e.g.,

f(t)→ f(t) · sign2[f(t)],

the original function obviously does not change, yet the Fourier transform of this
binary function is nonzero over almost all frequencies.
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A temporally limited optical pulse will be always more or less distorted upon
propagation in a dispersive medium where the dispersion curves are not straight.
Then the information velocity becomes a problematic term. If the information could
be detected exactly in the first moment when the fields deviate from strict zero,
one would come to the surprising conclusion that, even in dispersive media, the
information would propagate with the speed of light. In the opposite example of a
highly noisy transmission, the pulse may be reliably detected only after most of its
energy already arrived, resulting in information propagation even slower than the
group velocity.

To conclude, the author is convinced that the notion of information velocity is
too vague unless its exact definition is provided first, and should not be directly
associated with the group velocity.

2.3 Electromagnetic waves in periodic structures

2.3.1 Periodic structures and the Bloch’s theorem

Inhomogeneity The previous sections discussed infinite media, with the only de-
viation from homogenity at an interface of two media, where refraction of the waves
is observed, and it was shown that the resulting orientation of the wave vector and
of the group velocity could be easily deduced on a geometrical basis. The am-
plitudes of the reflected and refracted waves can be also easily computed for local
media, whereas their computation for nonlocal media is much less straightforward.

There is a broader class of shapes for which analytical or semianalytical meth-
ods have been developed to compute their interactions with electromagnetic waves,
such as the Mie theory for scattering on dielectric or metallic spheres and cylinders,
propagation through arbitrary stacks of parallel layers, diffraction on narrow aper-
tures, resonances in orthogonal, cylindrical or spherical cavities, or wave guiding
in high-symmetry waveguides or optical fibres.

The interactions of electromagnetic waves with most of the possible shapes are
too complex to be expressed analytically, and they can only be accessed by numer-
ical methods, some of which are described in Chapter 3.1. However, when these
elementary shapes are arranged into an infinite array, any resulting periodic struc-
ture behaves in a way typical for the periodicity and its most important traits can
again be partially understood on an analytical basis. This chapter focuses on these
general properties shared by periodic structures, leaving the particular numerical
simulations to the Results section.

Periodicity Under the notion of periodicity we understand the existence of discrete
translational symmetries. In three dimensions, we can write

εr(ω, r) = εr(ω, r +m1a1 +m2a2 +m3a3) (2.59)

where m1,m2,m3 are integers and a1, a2, a3 are three linearly independent vectors.
The local permittivity, given by Eq. (2.21), was intuitively generalized to a function
of the position r. The constituent media are described by local quantities only, to
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avoid possible problems at the boundary when computing the spatial convolution
in nonlocal media, Eq. (2.43). The same periodicity is also imposed on the perme-
ability µr(ω, r).

The points generated by all combinations of possible translations of the unit cell
center by m1a1 + m2a2 + m3a3 form a periodic lattice. The volume defined as a
set of points closest to one given point of the lattice will be denoted as a unit cell
(similar to the Wigner-Seitz cell in solid-state physics). Obviously, the permittivity
or permeability in periodic structures needs only to be specified within one unit
cell.

The choice of lattice vectors a1,2,3 limits the set of the rotation or mirror sym-
metries of the structure. Based on the allowed symmetries, all lattices in three di-
mensions can be classified into six crystallographic systems, namely cubic, tetragonal,
ortorhombic, monoclinic, hexagonal-trigonal, all periodic structures can be classified
into 230 crystallographic space groups. Numerous crystal optics textbooks (e.g. [11, p.
678]) give more rigorous definitions.

Unless stated otherwise, we will assume that the cubic lattice is used, which
allows the highest possible symmetry. In the cubic lattice, the lattice vectors a1,2,3

are of the same magnitude a and mutually orthogonal.

The Bloch’s theorem The Bloch’s (or Bloch’s-Floquet’s) theorem states that while
the harmonic wave is no more a solution for the Maxwell equations in a periodic
structure that conforms to Eq. (2.59), a solution can always be found as a Bloch’s
wave – a product of a harmonic function and another periodic one:

E(t, r) = ue(r) eiωt−iK·r, where ue(r) = ue(r +m1a1 +m2a3 +m3a3), (2.60)

H(t, r) = um(r) eiωt−iK·r, where um(r) = um(r +m1a1 +m2a2 +m3a3). (2.61)

As a rule, in all linear systems, any sum of Bloch’s waves is also a proper solution,
but for simplicity we will focus on one Bloch’s wave at a time.

The functions ue(r) and um(r) have the same periodicity as the structure, and
will be denoted as the mode functions. They are, in general, complex vector func-
tions, so they not only alter the direction and magnitude of the electric and magnetic
fields, but can also introduce a phase modulation of the wave in each unit cell.

The remaining term, eiωt−iK·r, is analogous to that of a plane wave

E(t, r) := E0 e
iωt−ik·r, (2.9 again)

except for the capital K being used to distinguish the wave vector of the Bloch’s
wave envelope from the wave vector k in homogeneous media.

Note that the Bloch’s theorem does not determine the shape of ue(r), um(r), nor
the direction and magnitude of K, it only states a solution in the form of Eqs. (2.60,
2.61) can be found.

Proof of the Bloch’s theorem in one dimension This theorem is essential for un-
derstanding the electromagnetic behaviour of periodic structures, and it deserves a
proof. Originally, it was developed for the electron wave function ψ in crystals on
the basis of quantum mechanics. The outline of such a proof in one dimension is
based on the following:
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1. We assume ψ is an eigenfunction of the Hamiltonian: ∃h ∈ C : Ĥψ = hψ.

2. We also assume that the Hamiltonian operator Ĥ commutes with the operator
of discrete translation T̂ by the inter-atomic distance: ∀ψ : ĤT̂ψ = T̂ Ĥψ.

3. Then (T̂ψ) is an eigenfunction of H , because obviously Ĥ(T̂ψ)
1.
= T̂ Ĥψ

2.
=

T̂ hψ = h(T̂ψ).

4. From two eigenfunction relations, Ĥψ 2.
= hψ and Ĥ(T̂ψ)

3.
= h(T̂ψ), it also

follows that ψ and T̂ψ must either represent the very same physical eigenstate
of Ĥ that is uniquely related to its eigenvalue h, or otherwise that there must
exist two or more different degenerate states ψ1 6= ψ2 with the same eigenvalue
h.
The latter case of degeneracy is proven in many textbooks not to change the
conclusion that ψ must be also an eigenfunction of the translation operator,
that is,

∃K ∈ C : T̂ψ = e−iKaψ.

The physical consequence is that when the Hamiltonian operator is invariant to a
discrete translation, its eigenfunctions are also almost unchanged upon this particular
discrete translation, since they may differ only by a phase shift of −Ka. Setting a to
be the unit cell size, K becomes the wavenumber of the Bloch’s wave envelope.

The Bloch’s theorem proof in the electromagnetic formulation The steps can be
reformulated replacing the abstract Hamiltonian with an operator derived from the
Maxwell equations. In a periodic structure one can no longer assume the solution
in the form of a plane wave (2.9), but as long as the structure is time-invariant and
linear, the monochromatic electric and magnetic fields can still be decomposed into
a product of some complex function of space position, and a harmonic function of
time:

E(t, r) = E(r)eiωt,
H(t, r) = H(r)eiωt.

(2.62)

One thus only needs to prove the Bloch’s theorem for the time-invariant parts of
the fields, which will play the same role as the wavefunction ψ in the quantum-
mechanical formulation.

1. Assuming E(r) to be a valid solution of Maxwell equations in the periodic
structure at the angular frequency ω, it can be derived from the Maxwell Eqs.
(2.3, 2.4), taking into account the local medium response to the fields as de-
fined by Eq. (2.35) to the harmonic wave from Eq. (2.62), that

εr
−1(ω, r)∇×

[
µr
−1(ω, r)∇× E(r)

]
=
ω2

c2
E(r), (2.63)

In analogy with the quantum-mechanical proof, the left hand side of Eq. (2.63)
can be associated with the Hamiltonian Ĥψ, and the right hand side with its
eigenvalue hψ [37].

46



2. The translation operator acts by substitution of the position vector r in the
argument. For example, the translated electric field is

T̂ψ → E(r + a1). (2.64)

The commutation relation directly follows from the periodicity in Eq. (2.59),
thus the right terms in Eqs. (2.65) and (2.66) are identical by definition:

ĤT̂ψ → εr
−1(ω, r)∇×

[
µr
−1(ω, r)∇× E(r + a1)

]
(2.65)

T̂ Ĥψ → εr
−1(ω, r + a1)∇×

[
µr
−1(ω, r + a1)∇× E(r + a1)

]
. (2.66)

In three dimensions, this argument is valid for three different translation op-
erators that correspond to the displacements by the different lattice vectors,
a1, a2 and a3.

3. Then the wave translated by any of the lattice vectors is also a solution of the
Maxwell equations:

εr
−1(ω, r)∇×

[
µr
−1(ω, r)∇× E(r + a1,2,3)

]
=
ω2

c2
E(r + a1,2,3). (2.67)

4. In analogy with the fourth step in the Bloch’s theorem proof, there exists at
least one constant K1 for which

E(r + a1) = e−iK1a1E(r), (2.68)

where K1a1 represents the phase shift between the adjacent cells along the
direction of the lattice vector a1. In a similar manner, constants K2 and K3 can
be associated with the translations by the a2 and a3 vectors, respectively.

Bloch’s theorem in three dimensions The three constants K1,2,3 then define the
Bloch’s wave vector K in three dimensions:

K :=
2πK1(a2 × a3)

a1 · (a2 × a3)
+

2πK2(a3 × a1)

a2 · (a3 × a1)
+

2πK3(a1 × a2)

a3 · (a1 × a2)
. (2.69)

Each of three addends in Eq. (2.69) relates to one of the lattice vectors and is or-
thogonal to the two remaining lattice vectors. If the lattice vectors a1,2,3 form an
orthogonal triplet, Eq. (2.69) simplifies to

K :=
2πK1a1

a21
+

2πK2a2

a22
+

2πK3a3

a23
. (2.70)

Repeating the procedure for the magnetic field, a similar operator can be ob-
tained, where the multiplication by εr−1(ω, r) and µr

−1(ω, r) occurs in the opposite
order. Thus the same arguments, with the identical wave vector K, have to be valid
also for the magnetic field H(r), where the Hamiltonian is associated with an oper-
ator very similar to that of the electric field in Eq. (2.63):

µr
−1(ω, r)∇×

[
εr
−1(ω, r)∇×H(r)

]
=
ω2

c2
H(r). (2.71)

47



Virtual periodicity and ambiguity of the mode function Homogeneous media,
such as vacuum, naturally fulfill the definition of periodicity in Eq. (2.59). From the
principle of correspondence, the Bloch’s theorem must predict the already known
solution of a harmonic plane wave in vacuum

E(t, r) := E0 e
iωt−ik·r. (2.9 again)

The expected solution of the Bloch’s wave in vacuum can be directly found as a
formal modification of the dispersion relation,

E(t, r) = ue(r) eiωt−iK·r, where ue(r) := E0 and K := k. (2.72)

However, this is not the only possible representation of a plane wave as the Bloch’s
wave, as the Eqs. (2.60, 2.61) are mathematically ambiguous. For illustration, using
the fact that any lattice of periodic unit cells may be imagined in vacuum, one can
choose a cubic lattice with an arbitrary unit cell size a, for which the plane wave in
vacuum can be simultaneously represented by any of infinitely many other combi-
nations of

ue(r) := E0e
2πi

(
m1
a1·r

+
m2
a2·r

+
m3
a3·r

) }
∀m1,2,3 ∈ Z (2.73)

which all give the exactly same resulting plane wave.
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Figure 2.13: Folded and unfolded dispersion curves for free space and a periodic structure
viewed along one of its axes. The phase difference across a unit cell can be expressed either
by the wavenumber K, as it is in the unfolded plots (a) and (b), or it can be predominantly
absorbed into the periodic mode function u(r) as in the folded plots (c) and (d) with inac-
cessible K-values greyed out.
The lattice periodicity allows one to draw the dispersion curves of periodic structures using
natural scale-invariant units, with the Bloch’s wave number K divided by the spatial fre-
quency of the lattice 2π/a, and the angular frequency ω multiplied by the time needed for
the light to traverse the unit cell.
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2.3.2 Dispersion in periodic structures

Folding of the dispersion curves All possible dispersion curves for a Bloch’s wave
in vacuum with the K vector oriented along one lattice axis in vacuum are plotted
in Fig. 2.13a. The dispersion curve for the original forward wave from Eq. (2.72) is
plotted in blue; another solution exists for a wave propagating in the opposite direc-
tion which is plotted in red. All other solutions generated by Eq. (2.73) are plotted
in gray, for both forward and backward waves. Note that the actual physical shape
of the fields in space, E(r) and H(r), cannot be deduced from the dispersion curve.
To fully determine the fields, the dispersion curves would have to be complemented
by the mode functions ue(r) and um(r), which depend on the frequency.

The inherent ambiguity of the description on the basis of the Bloch’s wave can
be used to save space in the plot by showing the dispersion curves only for K ∈
〈−π/a, π/a〉, as shown in Fig. 2.13c. Plotting any other interval of equal width
would be equivalent [38, p. 177].

The space of the plot can be further halved, since all forward and backward
propagating solutions are symmetrical with respect to the vertical K = 0 axis, ex-
cept for structures with optical activity (cf. Fig. 2.12) or those breaking the time-
reversal symmetry (cf. Ref. [39]), which are not discussed in this thesis.

In many papers on periodic structures, all dispersion curves are plotted as folded
into the K ∈ 〈−π/a, π/a〉 region only [40, 41, 42], while some employ the symmetry
to fold all curves further into the K ∈ 〈0, π/a〉 range. In some other references, such
as [43] or [44], unfolded dispersion curves are used.

The mathematical interpretation of folding the dispersion curves in vacuum can
be found from Eq. (2.73):

1. For ω ∈ 〈0, πc/a〉, the mode function is constant in space, ue(r) := E0, and
K := ω/c.

2. At the first point of folding for K = π/a, the mode function changes to
ue(r) := E0e

2πir/a and the formal solution of the backward wave is used with
K := 2πr/a − ωr/c. The phase increase across one unit cell remains positive,
since the phase decrease of the backward-wave envelope is less than the phase
contribution of the mode function.

3. When the dispersion curve touches theK = 0 axis at the frequency ω = 2πc/a,
the mode function is not changed, but the dispersion curve continues again
along with the forward wave K := −2πr/a+ ωr/c.

In vacuum, this process repeats with higher orders of the mode function: ue(r) :=
E0e

4πir/a, ue(r) := E0e
6πir/a, etc.

We will show in the Results section on a particular example that some numerical
approaches provide rules for the selection of one particular dispersion curve in the
unfolded plot. The Results section also contains a physical interpretation of this
finding.

Fourier expansion of the mode function If the periodic structure is not homoge-
neous, that is, εr(ω, r) or µr(ω, r) depends on r, the mode functions uem(r) acquires
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more complex, anharmonic shape than assumed in Eq. (2.73). They however still
show the periodicity of the lattice, as dictated by the Bloch’s theorem in Eq. (2.60),
and their exact shapes can thus be decomposed into Fourier series, characteristic
for the structure and the frequency of operation, defining nonzero amplitudes for
all branches. The grey lines plotted in Fig. 2.13 then are no more hypothetical
solutions to be chosen from, but they all have real amplitudes, and are present si-
multaneously. Note this does not contradict the ambiguity of choice of the Bloch’s
wavevector K, which stems from the mathematical representation of the Bloch’s
wave.

Brillouin zones in the reciprocal space The periodically repeating interval ofK ∈
〈−π/a, π/a〉 can be viewed as the unit cell in the space of wave vectors, i.e. in the
reciprocal space. This unit cell is then denoted as the first Brillouin zone.

In two or three dimensions, any m-th Brillouin zone is defined as the set of all
points for which the center point K = 0 is the m-th closest point from the regular
lattice of all points where K = (2πm1/a, 2πm2/a, . . .) for m1, n2, . . . ∈ Z. All Bril-
louin zones have equal measure (i.e. length, area or volume), and moreover, they
can be transformed into the first one by simple translation.

In the 1-D case, the definition of higher Brillouin zones trivially consists in di-
viding the axis symetrically into equal intervals, such as

K ∈ 〈−2π/a,−π/a〉 ∪ 〈π/a, 2π/a〉

for the second one etc.
In two or three dimensions the shapes of higher Brillouin zones become much

more complex, and are unlike to each other [8, pp. 134–135]: in two dimensions,
all Brillouin zones are composed of polygons that are connected in their vertices
to enclose the previous Brillouin zone [38, p. 126]. Similarly, in three dimensions,
they are composed of polyhedra connected by their edges, and their shape roughly
resembles sphere shells.

The above illustration of how the plot space can be saved by folding the disper-
sion curves into the first Brillouin zone also applies to two- or three-dimensional
structures. The exact shapes of the Brillouin zones are determined by the crystal
family of the real-space lattice and its set of lattice vectors a1,2,3. As noted above,
the space occupied by the plot can be further reduced thanks to the symmetry of
the dispersion curves. This applies naturally to higher dimensions as well; the mini-
mum part of the Brillouin zone that contains all necessary information is denoted as
the irreducible Brillouin zone and is determined by the crystallographic point group
of the lattice.

A more detailed listing and comparison of Brillouin zone shapes is beyond the
scope of this thesis, but can be found in numerous solid-state textbooks, e.g. [8, pp.
96-99].

High-symmetry points of the Brillouin zones The fundamental difference be-
tween plotting one dispersion curve and the isofrequency contours (IFCs) is that
IFCs provide information about the dispersion for a two-dimensional subspace of
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Figure 2.14: High-symmetry points in the reciprocal K-space and the Brillouin zones for
(a) a two-dimensional square lattice and (b) a three-dimensional cubic lattice. For these
lattices, the first Brillouin zones have square and cubic shapes, respectively. In each figure,
one of the irreducible Brillouin zones is highlighted.
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the wave vector K, whereas the dispersion curve is limited to a 1-D scan along
some line in the K-space (cf. Fig. 2.5). The limitation is even more significant in the
case of three dimensions, where it is virtually impossible to visualize the frequency
ω(K) as a function of three components of K.

A hybrid approach can be taken, however, that maintains most of the physical
information about the dispersion in the two- or three-dimensional structures. It
consists in plotting the dispersion curves around the boundary or edges of one
selected irreducible Brillouin zone. It is expected that no important information is
lost by leaving out its inner surface.

The notation of high-symmetry points in the K-space is standardized. For the
square lattice in two dimensions, four high-symmetry points are named as follows:
”Γ” corresponds to the center, K = 0. Provided that the first lattice vector a1 is
parallel to the x-axis of the coordinate system, the point where K = (π/a, 0) is
denoted as ”X” and the point K = (0, π/a) as ”Y”. Finally, the diagonal point
of K = (π/a, π/a) is known as ”M”. In a two-dimensional case, the dispersion
curves are typically plotted along the triangle encircling the irreducible Brillouin
zone: Γ−X−M− Γ.

In three-dimensional cubic lattice, these points maintain their meaning in the
plane perpendicular to the z-axis [8, p. 99]. Additionally, ”R” denotes the spatial
diagonal of K = (π/a, π/a, π/a). Other lattices introduce more complex sets of the
high-symmetry points and the paths along which the dispersion curves are plotted
do not seem to be standardized.

Tight-binding model for the dispersion curves The notation of the
high-symmetry points in the Brillouin zone can outline a different way [45] of
understanding the origin of the dispersion, which can be drawn in analogy with
the tight-binding, or also hopping, model in solid-state physics.
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Analyzing one unit cell isolated in free space, one obtains its natural resonant
frequency. When the cell is surrounded by other cells in the periodic lattice, their
mutual coupling alters the resonant frequency [8, p. 75]; the actual sign of the cou-
pling effect does not seem to be determined by any simple general rule, however.

For a steady oscillatory solution to be obtained, the electromagnetic fields in
the surrounding cells must have the same modulus of oscillation amplitude, but
they do not need to share the phase. This is equivalent to a single Bloch’s wave
propagating in the structure.

Identical phase in all cells corresponds to a zero Bloch’s wave vector, K = 0, and
to the point Γ in the center of the Brillouin zone. Under the basic assumption that
the fields E,H are continuous and smooth vector functions, the requirement of an
identical phase of adjacent cells translates into

∂E

∂n
=
∂H

∂n
= 0 (Neumann boundary conditions). (2.74)

Here, the operator ∂/∂n denotes the derivative along the normal to the boundaries.
Other special cases are observed when K corresponds to some of the high-

symmetry points of the Brillouin zone. For the simple case of a two-dimensional
square lattice, the M-point corresponds to the adjacent cells having exactly oppo-
site phase of the fields. This requires that the field amplitudes at the boundary are
zero:

E = H = 0 (Dirichlet boundary conditions). (2.75)

The X and Y points are combination of the Dirichlet and Neumann boundary
conditions for two different directions. As a generalization of the above mentioned
criteria, the boundary conditions can be found for any point in the Brillouin zone,
provided that a correct phase difference between all opposite faces is conserved.

The stronger the coupling between the neighbouring cells, the bigger the dif-
ference between the resonant frequencies for the Γ and X points. Returning to the
definition of the group velocity in Eq. (2.40), one comes to the already expected fact
that the energy transfer is proportional to the strength of the inter-cell coupling.

2.3.3 Band gaps

Properties of band gaps In the plots of dispersion curves, one can identify ranges
of frequencies which are not associated with any dispersion curve. They can be ob-
served for a local dielectric (Figs. 2.4 and 2.10), for nonlocal dielectrics (Figs. 2.11,
2.12), as well as for periodic structures in Fig. 2.13. Such regions are denoted as
(electromagnetic) band gaps, or sometimes also stop-bands. They are a very com-
mon phenomenon both in dispersive homogeneous media and periodic structures.
While the wave propagation received due attention in the above, also the wave
”non-propagation” deserves to be commented.

The band-gap behaviour is the simplest to be described in isotropic media, anal-
ogously to the one-dimensional case: for a frequency within the band gap, no wa-
vevector K can be found with which the electromagnetic wave would propagate,
or more precisely, there is no real wavevector for which the (Bloch’s) wave would
be a solution of Maxwell equations.
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In the more complicated cases of a harmonic plane wave in anisotropic homoge-
neous media, or of a Bloch’s wave in any periodic structure, the band-gap proper-
ties depend on the field polarisation and on the direction in which the wave prop-
agates. Many such media, for example, exhibit a band gap for one polarisation and
only in some set of wave vector orientations.

Reflection from an interface with a band-gap medium A familiar scenario is that
a wave propagates through a transparent medium (e.g. glass) and impinges upon
an interface with a band-gap medium (e.g. metal). In the latter, it is not allowed
to propagate, and all its energy reflects back into the first medium. The Maxwell
equations however require that the fields do not end abruptly at the interface; in
particular, it follows from the linearity of the medium that a so-called evanescent
wave amplitude decays in the second medium in an exponential manner with the
distance below the interface.

If losses are present, a part of the impinging wave energy may be also dissipated.
Nonetheless, the exponential decay of the evanescent wave should not be confused
with the exponential nature of the Lambert-Beer law in absorbing media.

Radiating dipole inside a band-gap medium A less usual, but equally instruc-
tive, scenario is when a dipole source is embedded in an infinite medium and is
forced by some external mechanism to oscillate at some frequency inside the band
gap. Intuitively, one could expect such a forced dipole must inevitably radiate en-
ergy into the medium. In reality, the effect of the medium surrounding the dipole
will make the dipole act, with regard to the driving force, as a purely elastic or
inertial load.

In particular, if the dipole is realized as an antenna driven by a high-frequency
circuit, it will appear to the circuit as purely capacitive or inductive load. Thus, for
continuous oscillations, all energy will be returned to the driving mechanism. This
way, the environment can enhance or suppress the radiation from an excited atom
or molecule, which is known as the Purcell effect.

Band gaps stemming from individual resonances One common class of band
gaps is based on individual resonances in the medium or structure. These band gaps
are often observed in realistic natural media, where the resonances arise from vibra-
tions of electrons, atoms or molecules, as described above. Although realistic crys-
talline media are composed of a lattice of individual atoms, which would suggest
that even here the wave has to be described in the Bloch’s form of Eqs. (2.60) and
(2.61), the optical wavelengths are roughly 104 times larger than the inter-atomic
distances, and in Eq. (2.9) the electromagnetic wave can be satisfactorily approxi-
mated as a harmonic wave with a well-defined wavelength. To make this harmonic
approximation, it is important that these particles be small and close to each other
compared to the wavelength.

Periodic structures can similarly exhibit a resonance confined in the unit cell.
To the author’s knowledge, every possible shape formed from a dielectric or metal
has multiple resonance modes, characterized by a relatively high localisation of en-
ergy close to the structure. Arranging such resonant elements with a translational
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symmetry is a fundamental step in building a periodic structure with resonant be-
haviour. When such a structure is viewed as a homogeneous medium, its disper-
sion for the Bloch’s wave follows a resonance curve similar (but not exactly the
same) to that in Fig. 2.2. Sometimes the behaviour of the Bloch’s wave is described
as macroscopic, while the fields localized in the resonant elements as mesoscopic [46]
and finally the word microscopic is left for the much finer field in the constituent
atoms or molecules.

Another important characteristic of individual resonances consists in a qualita-
tive change in the field shape between the lower and upper edge of the band gap.
This is true for natural media as well as for lattices of individual resonators. Stipu-
lated by Eq. 2.19 for a harmonic oscillator, the dipoles are in a phase with the wave
at the lower band-gap edge, whereas they are in opposite phase at the upper edge.
The actual resonant frequency is located at some point inside the bandgap, as will
be shown on the examples of simple individual resonators, e.g. in Fig. 5.8c.

Yet another characteristic is whether the resonant-field shape in the structure
unit cell can be approximated as a point dipole or multipole, or their combination.
Further, the dipole moment may be electric, magnetic, zero or both simultaneously,
as given by symmetry of the field. Most types of structures exhibit multiple reso-
nances at different frequencies, each of them having usually either an electric or a
magnetic dipole. In structures of lower symmetry, one resonant mode may have
both nonzero dipole moments simultaneously; this leads to optical activity.

Other resonances have both dipole moments zero, due to higher-order rotational
symmetry of the fields. Their interaction with the electromagnetic waves is medi-
ated by the electric or magnetic quadrupole (or even higher multipole [47]) moment.
This interaction is usually weak, however it grows with the wavenumber k. Such
multipole moments often complement dipole resonances, and are responsible for
the spatial dispersion, see Chapter 2.2.2.

Bragg band gaps Band gaps of a different type, denoted as Bragg band gaps or also
as photonic band gaps (PBG), are observed exclusively in periodic structures when an
integer number of half-waves fits into the unit cell. In the above mentioned peri-
odic lattice of isolated particles, the Bragg band gap can therefore be understood as
a resonance of the electromagnetic wave in the space between the particles, in con-
trast with the individual resonances where most of the energy is localised inside the
particles – or at least very close to them.

The first Bragg band gap is observed in a periodic structure when the wavenum-
ber K reaches the X, Y or Z points of the Brillouin zone. For a wave propagating
parallel to any axis of a square or cubic lattice with unit cell size a, the rule for a
band gap is particularly simple:

K =
πm

a
, m ∈ Z. (2.76)

The Bragg band gaps exhibit a constant m over the whole band gap, without any
resonance-like shape of the Neff(f) curve observed for individual resonances.

In analogy with the solid-state physics the Bragg band gaps can be called direct
if the dispersion curves at the lower and upper band gap edges have the same
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wavenumber K. In contrast, the individual resonances are analogous to the indirect
band gaps, as the of phase increase over an unit cell is different for frequencies
below and above the individual resonance.

The width of the band gap depends on the scattering strength of the particles;
it can be described by the transfer-matrix formalism and analytically computed for
a one-dimensional layered system [48]. In the Results section, it is also shown that
for a particular choice of parameters the width of the Bragg band gap can vanish.

2.4 Historical notes on metamaterials and photonic
crystals

2.4.1 One history of three paradigms

The scientific progress rarely follows a straightforward, efficient way. Making a
brief historical review and following the development is therefore important to un-
derstand the current state of research, and possibly also the actual physical theory.

Moreover, the field covered by this thesis is also burdened by confusion due to
the used terminology: objects falling under the definition of periodic structures have
been denoted in the literature also as metamaterials, photonic crystals, nanostructured
electromagnetic materials or composites, photonic band-gap materials, artificial dielectrics
etc. Typically, these terms are used without a proper definition, and may and need
not [49] overlap in their meaning.

The split in terminology is apparently not only a formal issue, as it psychologi-
cally divides the scientific community and thus directs the future research. Physics,
and the field under discussion in particular, has developed rapidly in the recent
decades. Some of the seemingly novel concepts were in fact conceived much longer
ago, as indicated in the following. Sometimes a mere change in terminology seems
to have lead the community to disregard, and later re-invent concepts that were
already known [50],[8, p. 5].

Following the author’s personal view, the historical notes on metamaterials and
photonic crystals below are organized into three independent paradigms that de-
veloped in parallel, and only later they were unified. Each of them, on its own, once
might seem to already have given their fruits, but their unification appears to have
renewed the scientific interest and pushed the research further.

This chapter can in no way cover all relevant papers and ideas over the last
century; much better resources on the history of the field are in [51, 52, 53], at the
web pages of Moroz [54] etc. Also the actual designs of the periodic structures are
mentioned very briefly, since they will be the subject of the Results section.

2.4.2 Photonic band-gap structures

One-dimensional band gaps and dielectric mirrors In 1887, Lord Rayleigh [37]
noticed the light reflecting in the volume of a transparent crystal composed of thin
periodic layers of slightly different optical properties. X-ray scattering on crystals
was observed by Max von Laue [55] and explained by W. H. and W. L. Braggs in
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Figure 2.15: Two approaches for efficient fabrication of a photonic crystal: (a) dielectric
rods stacking into a woodpile structure, (b) top view and side view of soft X-ray litography
inscribing a yablonovite-like hole lattice into a negative photoresist. Both drawings adapted
from patent applications [58] and [59], respectively.

(a) Ho (1994) (b) Sweatt (2005)

the 1910s [56]. Both effects are enabled by the constructive interference of the waves
reflected from the macroscopic interfaces in the Rayleigh’s crystal, or directly from
the atomic layers in the X-ray case. This phenomenon became known as the Bragg
band gap.

The very same principle was later employed for the design and fabrication of
dielectric mirrors, which are made by stacking multiple layers of two alternating
dielectrics with different wave impedances and quarter-wavelength thicknesses.
They find a wide variety of applications, owing to their advantages over classical
metallic mirrors such as higher reflectance and angular and spectral selectivity.

Embedding one layer different from the others, a defect, into the middle of a
dielectric mirror can introduce a narrow transmittance window within its photonic
band gap. The corresponding defect mode is characterized by a strong concentration
of the electric field E in the defect, enabling one to construct narrow-band photonic
filters that can be tuned by the defect properties [57].

Photonic crystals The success in prohibiting the light to propagate along one di-
rection inspired the design of two- and three-dimensional photonic crystals, named
in analogy with the band gaps for the electron wave in natural crystals [16]. A non-
trivial accomplishment of manufacturing the first three-dimensional structure with
a delimited range of frequencies for which there exists no propagating wave in any
direction, a complete band gap, is attributed to Yablonovitch [60] in 1987.

The structure, known as yablonovite, was designed for microwaves, since it was
made by precise mechanical drilling into a plastic cube. Different technologies were
developed in the 1990s in attempts to fabricate photonic crystals operating effi-
ciently in the optical range, e.g. a similar approach based on X-ray nanolitography
(see Fig. 2.15a), stacking of structured layers (Fig. 2.15b), direct laser writing in a
resin or self-assembly of dielectric spheres into opal-like lattice.

The demands for achieving a complete three-dimensional band gap can be re-
duced when a singly or doubly periodic modulation is etched into an index-guiding
dielectric slab, as was developed by Zengerle in the 1970s and 1980s [61]. Planar
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structures are also much easier to fabricate using existing technologies such as pho-
tolitography.

Band gap used in fibres and waveguides Embedding a linear defect into a pho-
tonic crystal with a complete band gap forms a waveguide from which the wave
cannot escape, even when it is bent under sharp angles. Likewise, the planar band-
gap waveguide can be formed by a linear defect in a photonic crystal slab, which
restricts the light by the total internal reflection horizontally and by a means of the
two-dimensional band gap vertically. Such structures can form waveguides, beam-
splitters and filters in integrated optics.

The photonic-crystal fibre (PCF), conceived by Russel in 1991 [62], differs from
the standard index-guiding fibres in that the light is confined to its core by a pho-
tonic band gap in both lateral directions. Its special feature is the strong guiding
of waves even if its core is hollow, that is, with refractive index lower than the
cladding. Broad-band single mode operation can be achieved, and the high field
concentration can lead to very strong nonlinear interaction.

As a complementary concept, a one-dimensional photonic band-gap structure
can be inscribed into conventional index-guiding fibres, forming a distributed Bragg
reflector. Its filtering capabilities can be made extremely narrowband, which is em-
ployed in fibre lasers, telecommunication, sensing, etc.

Within the sole paradigm of band-gap engineering, new concepts emerge even
in the last decades: Obviously, a minor shift of the band gap has a strong impact on
whether the light can propagate. Such a shift can be introduced e.g. by static mag-
netic field in low symmetry PhCs, resulting in enhanced magneto-optic interaction
for one-dimensional light propagation [39].

2.4.3 Homogeneous media with uncommon parameters

Negative parameters By negative parameters we understand either a negative real
value of permittivity εr(ω), permeability µr(ω), or a negative index of refraction. In
transparent media without spatial dispersion, negative index of refraction N ′eff(ω)
requires εr(ω) and µr(ω) to be negative simultaneously, at least if its imaginary part
is supposed to be small [63]. Note that all theoretical papers cited in this subsec-
tion used the electrodynamics of a homogeneous medium, without imposing its mi-
croscopic periodicity nor any other technical way how such a medium should be
obtained.

Media with negative permittivity are in fact very common in the nature, includ-
ing metals, doped semiconductors and plasmas; additionally, negative permittivity
also results from lattice or electronic vibrations, forming the so called reststrahlen
bands. Reflection from metals has been explained as the opposite signs of εr(ω) and
µr(ω) causing the wave to become evanescent and rapidly decaying under the sur-
face. The same mechanism causing the radio wave reflection from the dilute plasma
in the Earth’s ionosphere was predicted as early as in 1839 by Gauss; its application
for over-the-horizon communication was suggested in 1901-1902 by Heaviside and
Kennelly.
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Negative permeability manifests itself similarly to the electrodynamic point of
view, but is observed much less often, typically above magnetic resonances,
magnons.

Theoretical investigation of electrodynamics in media with a negative index of
refraction, or slightly more generally, those with antiparallel group and phase veloc-
ities (cf. Chapter 2.2.4), can be traced back [14] to early discussions of anomalous
dispersion near resonances by Lamb or in a 1904 book from Schuster [64, 23]. Man-
delshtam’s lectures on optics illustrated negative refraction of light in the 1940s [65]
and were further complemented, among others, in 1957 by Sivukhin’s discussion of
energy concerns [66] and Pafomov’s notes about reversed Čerenkov radiation [67].

It was Veselago’s review of the negative-index homogeneous media from 1968
that received later significantly wider attention in the literature [10]. Veselago used
the term of left-handed media and speculated to what extent they might exist in the
nature, but he did not discuss the way of realizing such media, nor the more general
theory of the spatial dispersion which may also lead to natural negative refraction.

Terminology of media with unusual parameters In the literature, different terms
are used for a similar class of media. In most cases it appears [21] that it is a result
of disunited terminology rather than a need to distinguish fine nuances.

1. The most general term is negative-refraction media. However, negative refrac-
tion can occur due to a range of phenomena, for example, in the anisotropic
crystal of calcite under well-chosen incidence angle [14].

2. The aforementioned term is most probably supposed to mean
negative-refractive-index, or simply negative-index media, which by definition
behave as (approximately) isotropic at least in a limited range of incidence
angles, and therefore their index of refraction can be defined as it is
discussed in Sect. 2.1.3.

Isotropy also implies the phase and group velocities are parallel or
anti-parallel, which legitimates to call the latter group as backward-wave [21].

3. Yet a narrower group is defined by the terms of left-handed [10] or doubly-
negative media. Their etymology is based on the spatial orientation of the
vector triplet (E,H,K). In ordinary media with εr > 0, µr > 0, the pseu-
dovector H is chosen so that the triplet can be associated to the thumb, index
and middle finger of the right hand, in this order.

By simultaneous reversal the sign of both εr and µr, the electric and magnetic
induction change their sign to be antiparallel to the fields. The wavevector K
is reversed, associating the triplet with the left hand.

In the author’s view, both terms can therefore be associated exclusively with
a subset of the negative-index media, for which the local effective permittivity
εeff(f) and effective permeability µeff(f) make physical sense.
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Prediction of focusing effects by a negative-index slab As also discussed by
Veselago [10, p. 511] and a decade later by Silin [68], a plane-parallel slab with an
isotropic negative index of refraction and sufficient thickness would refract waves
emanated from a point source towards a new focus in its volume, and similar neg-
ative refraction forms a second focus behind the slab. It is thus often referred to as
a negative-index lens, although neither its focal point nor optical axis are defined as
in classical lenses.

Clearly, a negative-index slab would be free of spherical aberrations, allowing a
wide-angle and high numerical aperture for the imaging. To the knowledge of the
author, the papers from this time did not discuss its application for overcoming the
diffraction limit nor of amplification of evanescent waves.

Media with parameters close to zero Media where εr(ω) or µr(ω) have very low
values compared to vacuum form another class uncommon in nature. They are
often denoted as epsilon-near-zero (ENZ) and mu-near-zero (MNZ). The result of
εr(ω) ∼ 0 or µr(ω) ∼ 0 is also the index of refraction being close to zero, N(ω) ∼ 0,
particularly when both conditions are satisfied simultaneusly.

Although e.g. the physics of the ionosphere involves regions where the permit-
tivity transits from negative to positive values, the scientific interest in designing
such media significantly grew after the merging of the paradigm with metamateri-
als, and therefore such media are often denoted syncretically as zero-index metama-
terials. This is a somewhat confusing term, as the papers focusing on their peculiar
macroscopic properties [69] usually do not discuss any structuration and are thus
also applicable to fully homogeneous media of such properties.

A feature typical of this class of media is a very small wavevector K ∼ 0, which
can be approximated as the whole N ∼ 0 region oscillating in phase. The wave
entering from air into a N ∼ 0 medium at near-normal incidence refracts under
large angles from the normal; for angles higher than a small critical angle, the wave
undergoes the total external reflection [70].

Transformation optics and electromagnetic cloaks Slow spatial changes in the
refractive index cause the electromagnetic wave to follow a curved path, which can
be alternatively viewed as propagation through a particularly curved (transformed)
space filled with homogeneous medium. This is the basis of transformation optics.

The electromagnetic cloak is a hollow structure that guides the electromagnetic
waves around its core and reconstructs the wavefront behind it, so that it casts no
shadow, independent of the wave direction and of an obstacle present inside the
cloak. The curved path used to evade the obstacle is always longer than a line seg-
ment, however, so typically a medium with continuously varying Neff ∈ 〈0, 1〉must
be properly designed by transformation-optics calculations [52]. Electromagnetic
cloaking was considered in 1961 by Dollin [71] and later by Kerker [72].

The concept of cloaking was realized [73] in 2006 using a microwave metama-
terial, and followed by many others. All reported electromagnetic cloaks based on
N < 1 media are inevitably dispersive, which limits their band width; they are
also usually polarisation sensitive. The presence of any macroscopic cloak made
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of known materials is also revealed by its losses, at least at the infrared or opti-
cal frequencies. Obviously a great conceptual breakthrough would be needed to
overcome these issues.

A simplified task is to construct the carpet cloak which conceals the obstacle near
a surface [74]. The carpet cloak can be built with N < 1 media as in full-angle
cloaks, however for a single light polarisation, it can also be made of virtually loss-
less anisotropic dielectrics with quite usual values of parameters [75].

2.4.4 Artificial dielectrics and metamaterials

Analysis of nonresonant sub-wavelength structures The third independent pa-
radigm was based on arranging sub-wavelength particles into an optically dense
lattice to obtain some desired macroscopic behaviour of the light.

Its original source of inspiration can be traced to the late 19th century, when
the scientific community resolved the question of how the dipoles of individual
atoms in matter affect the macroscopic permittivity and permeability. The atomic
size is negligible compared to the optical wavelengths, so all optically transparent
natural media can be easily approximated as homogeneous. The explanation of the
diamagnetic behaviour of some materials was proposed in the form of each atom
behaving as a microscopic conductive loop in 1853 [76]. However, the inter-atomic
electric dipole interactions are not negligible, and except for gases they preclude
simple dipole averaging, so the explanation of the permittivity was formulated two
decades later using the Lorentz-Lorenz (or, Clausius-Mossoti) formula.

Theories of dielectric behaviour of composites having inhomogenities larger
than the atomic scale have been developed throughout the 20th century, among
which the Maxwell-Garnett (1904) and Bruggemann (1935) are most known among
multiple approaches. Their common assumption is that the wavelength is much
larger than the particles; furthermore, they suppose there are no internal resonances
in the embedded particles. More elaborate theories are needed when the particle
have unusual shapes, particularly near the so-called percolation threshold when
they become connected.

Synthesis of nonresonant sub-wavelength structures The design of inhomoge-
neous structures that could be treated as homogeneous with some desired proper-
ties has also a surprisingly long history. Inspired by the Lorentz-Lorenz formula,
Lord Rayleigh theoretically elaborated the wave propagation through a rectangu-
lar lattice of cylindrical or spherical particles in 1892. He also noted the analogy
between electromagnetic and acoustic waves [80, p. 498]. His thoughtful analysis
was however still limited to the static limit of frequencies well below any resonant
frequency of the particle, and to the long-wavelength limit well below the first pho-
tonic band gap.

Subwavelength wire arrays have been experimentally used at least since 1898 as
microwave polarisers. The concept of assembling a microwave polarisation rotator
from organic or metallic helices comes from that era, too [81, 82].

Periodic structures denoted as artificial dielectrics [83] found their use since the
1940s to engineer the broad-band permittivity tensor for the applications in light-
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Figure 2.16: Three examples of artificial dielectrics designs patented half a century ago: (a)
sheets containing cut wires of alternating orientation and resonant frequency, enabling one
to manipulate the microwave polarisation, (b) cross-section through a lightweight lens of 3
m diameter designed for 50-500 MHz radio waves, made of partially metallized plastic lay-
ers, (c) artificial dielectric made of non-resonant cut wires arranged into a nearly isotropic
3-D lattice. Drawings adapted from patent applications [77], [78] and [79], respectively.

(b) Anderson (1967)(a) Wickersham (1960)

(c) Hannan (1966)

weight lenses for microwave frequencies [84]. Initially, they were operated in the
static limit below any resonance. Usually the particles consisted of hollow metal
waveguides or spheres/disks which increased or reduced the wave phase velocity,
respectively.

2.4.5 First unification: metamaterials with uncommon parameters

Negative effective permittivity The 1950s brought the first step towards achiev-
ing negative effective parameters from man-made periodic structures: The geome-
try of the wire antennas was chosen to put the fundamental resonance of the electric
dipole below the frequency of operation [85, 23]. The spectrum of effective permittiv-
ity εeff(ω) of this structure had the shape similar to the Lorentz oscillator shown in
Fig. 2.2. It formed a frequency range of values that were negative or at least lower
than one. This feature lead to the occasional use of the term artificial plasma [86].

In all cases of εeff(ω) < 1, the effective refractive index Neff(ω) was also lower
than that of vacuum [87], but, as follows from

N(ω) := k(ω)
c

ω
≡
√
εr(ω)µr(ω), (2.37 again)

it could not become negative, since the effective permeability µ′eff(ω) > 0 was still
positive and its imaginary part µ′′eff(ω) was negligible. The unit cell size was kept
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much smaller than the wavelength, so the problem of homogenisation appeared as
settled and the nonlocal effects apparently did not cause much concern.

Negative effective permeability and negative refractive index The literature is
somewhat ambiguous, but a thorough search shows that the term metamaterial
(MM) was first used on conference by Walser in 1999. Although apparently
redundant to artificial dielectrics, which was used for decades before1, the new term
of metamaterial can be viewed as more fortunate as it does not imply whether the
structure is man made or not, nor whether its effective parameters mimic a
dielectric or, e.g., a metal.

It remains unclear whether there was an objective cause, or a semantic bias from
the term artificial dielectrics only, that the periodic structures with magnetic effects
received less attention than those with electric ones. Apparently the first theoreti-
cal studies thereof by Lewin [88] and Schelkunoff [89] date back to the 1940s, but
the first realisations of split-ring resonator arrays and other magnetically resonant
structures seem to have been published no earlier than in the 1980s. Further details
can be found in the Results chapter on pp. 135 and 150.

The research of artificial dielectrics, or newly, metamaterials, gained on signifi-
cant popularity after the papers from 1999 by Pendry [90] and from 2000 by Smith
[91]. The former outlined how a negative index of refraction can be obtained in
a structure composed of metallic wires introducing εeff < 0 and of small metal-
lic loops, known as split-ring resonators (SRR), introducing µeff < 0. The latter pa-
per described the experimental verification of negative refraction in the microwave
range. Thousands of papers followed suite which covered different spectral ranges,
demonstrated other MM designs, discussed theoretically when and how the meta-
material can be viewed as homogeneous, and sought for new applications.

Imaging beyond diffraction limit with metamaterials Arguably the most intense
excitement was caused by another Pendry’s paper [92] from 2000. It stated that a
flat lens made of a lossless local medium with a negative refractive index can not
only enable imaging, but it should do so with a resolution better than is allowed by
the diffraction limit, theoretically down to infinitely small details. This device for
subdiffraction imaging, denoted as the superlens, acquires this extraordinary feature
through the formation of high-amplitude evanescent waves at its rear surface. The
resulting extremely sharp image in some distance behind the superlens would then
be composed not only of negatively refracted propagating waves, but also of the
evanescent waves.

If a metamaterial is used as a negative-index medium, subwavelength imaging
requires the unit cells being finer than the finest details to be imaged. The require-
ment is in fact even stricter, as also the spatial dispersion has to be negligible for all
wavenumbers needed for the desired resolution. For the formation of highly con-
centrated evanescent waves at the rear surface, the small energy flow-through and

1An interesting search into the terminology usage by means of the Google Books Ngram Viewer
shows that the notion of artificial dielectrics has been the most used in the 1950s and early 1960s, and
then its usage declined, to be greatly exceeded by the usage of metamaterial in early 2000s. Simulta-
neously, the usage of photonic crystal has rose an order of magnitude higher.
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simultaneous high energy concentration require extremely low losses. In contrast,
down-scaling of the unit cells inherently requires a higher energy localisation, and
this is usually at the expense of the losses growing.

A related concept is the hyperlens, an inhomogeneous structure which employs
anisotropic negative-index media to couple near fields to waves radiated in the air,
thus enabling subdiffractive imaging in the far field. Again, the ultimate resolution
of the hyperlens is determined by the spatial dispersion of the metamaterial used.

The problems of dissipative losses in resonant periodic structures were not suffi-
ciently overcome yet. Some quantitative improvements can be easily done, namely
thickening the metallic structures and increasing the inductance-to-capacitance ra-
tios of the split-ring resonators (SRR) [93]. At the near-infrared and optical wave-
lengths, SRRs are overcome by perforated metallic sheets, so called fishnets, and it
may be favorable to substitute metals with certain types of oxides with metallic-
like permittivity in the optical range [94]. To the author’s knowledge, all demon-
strations of metamaterial sub-wavelength imaging were so far either only proof-
of-concept, microscopic devices, or were limited to the easier accessible microwave
region.

Metamaterials without unusual parameters and metasurfaces In spite of the me-
tamaterials being the most often associated with superlenses and cloaks, many MM
applications [95] do not involve negative or close-to-zero effective parameters [50,
p. 15]. Among these are novel antenna designs, sensors, light modulators or de-
vices making use of the enhanced nonlinear interaction. Strong interaction of res-
onant structures with electromagnetic waves enables one to efficiently manipulate
the surface impedance by two-dimensional periodic layers, so called metasurfaces.

A recently published paper [96], even if it is somewhat controversial [97], pre-
sents a metamaterial application where a strong chirality leads to reversing the
Casimir force between two close matematerial surfaces, which then becomes re-
pulsive.

Figure 2.17: Author’s view of the development in the metamaterial and photonic crystal
research over the past century

Media with neg-
ative parameters

Artificial dielectrics
and metamaterials

Photonic band-
gap structures

1950s
1st unification

2000s
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2.4.6 Second unification: metamaterials with photonic crystals

Experimental research Over the 20th century, the paradigms of metamaterials
(MM) and photonic crystals (PhC) apparently developed independent of each other.
The situation started to change in 2000s, when the metamaterial structures were
realized to operate at near-infrared or optical frequencies. As already stated, in-
creasing the operation frequency is intricate; not only is the contemporary three-
dimensional submicroscopic fabrication technology somewhat limited in its reso-
lution, but even more importantly, with any choice of available materials the dissi-
pative losses become a major issue at the optical frequencies, particularly when the
tight confinement of the field is required.

For both reasons, a compromise is usually made at the near-infrared and optical
frequencies: the particle size is chosen only few times smaller than the wavelength
of operation. Realized metamaterial structures can no more be viewed as deeply
subwavelength [98], and classifies at the boundary of metamaterials and photonic
crystals. This second unification of paradigms is sketched in Fig. 2.17.

Theoretical investigation of the structures on the MM-PhC boundary Along
with experiments, the interplay between the individual and Bragg-type resonances
was also studied on a theoretical basis. The former type of resonances is typical for
metamaterials, while the latter for photonic crystals. Typically, one either scans the
relative cell spacing (this can be done in simulations [45, 99] as well as in experi-
ments [100]), or tunes the individual resonant frequency keeping the lattice param-
eters unchanged (e.g. [42]). The frequencies of the individual and Bragg resonances
have different sensitivities to these parameters, and can thus be identified in the
spectra. One such study of a typical structure, the array of dielectric rods, is elabo-
rated in the Results section of this thesis.

In more abstract studies, the structure of the unit cell with its full electrodynamic
behaviour is substituted by a flat homogeneous layer characterized only by its ef-
fective parameters which may be negative at certain frequencies. This approach is
only an approximation, since usually the unit cell behaviour involves its coupling
with nonradiative fields, which can no more be taken into account when they are
replaced by a layer. The advantage is however in the possibility to use analytic
means for understanding of the factors forming the band diagram.

Such an unusual photonic crystal can exhibit a specific zero-order photonic band
gap [101, 102, 103] when the phase advance through the layer stack is zero, as has
been confirmed also on an experimental basis [104]. In contrast, the typical pho-
tonic band gaps in positive-index dielectric layers occur when the phase advance
is πM,M ∈ N [16]. The characteristic property of the zero-order band gap lies in its
insensitivity to the structure scaling. The band gap can thus be observed even when
the spacing of the hypothetical PhC is deeply subwavelength.

Another type of a band gap with a different field pattern was predicted [105] for
a case when layers with εr > 0, µr < 0 and εr < 0, µr > 0 are stacked.

The common property of structures operating at Bloch’s wavelengths of compa-
rable magnitude to the cell spacing (i.e. 2πa/K & 0.2) is the strong manifestation
of the spatial dispersion. The effective index of refraction then forms a typical reso-
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nance curve clipped by the closest pair of Brillouin zone boundaries. In most such
cases, the use of the local effective parameters εeff(ω) and µeff(ω) hinders the pos-
sibility to obtain physical insight. On the contrary, it leads to a deviation from the
expected Lorentz oscillator curves in εeff(ω) and µeff(ω) and formation of antireso-
nances [106, 107] and complex values of εeff and µeff even in lossless media [101].
These problems, however, appear to be only artifacts of using the local theory out-
side its applicability. Instead it is necessary to adopt the full theory of spatially
dispersive media, as sketched in Chapter 2.2 of this thesis.

2.5 The boundary between photonic crystals and me-
tamaterials

In the light of the previous historical review, it appears that the notions of MMs and
PhCs developed, for historical reasons, as different paradigms during the 20th cen-
tury. It was however argued above that these paradigms and research comumnities
are undergoing a process of unification, which raises the question whether there are
any objective rules to tell apart MMs and PhCs.

The wavelength criterion Originally, the determining parameter was surely the
ratio of the unit cell size to the wavelength of the electromagnetic wave (at the given
frequency of operation). Even some recent papers [108] define MMs as

(...) artificial periodic structures with features smaller than the vacuum wave-
length.

Studies of MMs and PhCs were both inspired by a wave propagating through
the lattice of a natural crystal. The difference was however that in the case of MMs,
it was an optical wave, whereas in the case of PhCs the inspiration came from the
electron wavefunction. The wavelength of the valence-band electrons is similar to the
inter-atomic distance (≈ 10−10 m), always requiring the description by the Bloch’s
theorem, whereas the wavelength of light is roughly four orders of magnitude
larger, enabling one to approximate the crystal as a homogeneous medium.

Analogously, the earlier metamaterials (or, artificial dielectrics) were mostly
viewed as deeply subwavelength, which provided a clear and easy distinction
from all PhCs. It also allowed to neglect spatial dispersion for the wave. The
situation however appears to change with realistic MMs scaling to the optical
range, since the wavelength becomes of the same order of magnitude as the unit
cell size and both regions start to overlap as illustrated in Fig. 2.18. Besides, the
PhC-MM boundary then becomes also frequency dependent.

The energy criterion The time-averaged energy of a plane wave in vacuum is
constant, but any sort of interaction of MMs or PhCs with the wave is inherently
connected to an uneven distribution of the electromagnetic energy in the structure.
This may become the rationale for a new criterion: In the waves in MMs near a
resonance, the energy is highly concentrated inside a part of the unit cell, typically
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Figure 2.18: Rough illustration of the ratio of the Bloch’s wavelength (2π/K) to the unit
cell size a in metamaterials and photonic crystals

close to sharp edges of metals or within a particle of high-permittivity dielectric.
On the contrary, the resonances in typical PhCs do not concentrate the energy, and
instead there is a moderately high intensity of the field in the majority of the space
between the scattering structure elements.

As a result, one can easily understand that the Bragg band gaps typical of a PhC
are more sensitive to the unit-cell spacing. By contrast, the high concentration of the
energy within a small part of the structure reduces the sensitivity of the parameters
to a moderate disorder in the cell position, which has also been viewed as a trait of
metamaterials, [109]:

(the fact that) the randomized positions do not influence significantly the left-
handed properties indicates that such composite is different from (...) photonic
crystals

The phase criterion The above criteria are somewhat vague, but there exists a
well-defined, rigorous criterion dividing the periodic structures clearly into two
groups at a given frequency: When a metamaterial is excited above its resonant
frequency, and the resonant energy is well localized, the part of the unit cell volume
contains field with the sign opposite to that in the excitation wave. This is similar
to the behaviour of the Lorentz oscillator illustrated in Fig. 2.2. This opposite-
field domain is delimited by a surface where either the electric or magnetic field
is constantly zero, which will be denoted as the nodal plane. For the individual
resonance, the nodal plane is closed and there exists some path through the unit cell
which does not cross it. The Bragg band gap leads to open nodal surfaces delimiting
the opposite-field domain which traverse the unit cell boundaries.

The difference between the topologies of localized and delocalized pair of nodal
planes can be interpreted as the boundary between MMs and PhCs. In practice, this
well-defined difference manifests itself in the change of the phase along each unit
cell, without any obvious impact on the propagation of energy. In more details this
is demonstrated in the Chapter 5.8 by numerical studies of the transition cases in
dielectric rod arrays.

Less fortunate criteria Some sources include the requirement of unusual param-
eters into the MM definition, but this is hardly acceptable since it would obviously
exclude some established MMs from the definition; the previous historical chapter
attempts to give several examples. It also mentions that even some natural materi-
als can exhibit unusual parameters.

67



Also the demand for ”artificiality” in some other definitions appears to be some-
what artificial on its own, provided that one is interested in the actual structure
properties rather than in its origin:

Metamaterial is an arrangement of artificial structural elements, designed to
achieve advantageous and unusual electromagnetic properties [110]

Some confusion may arise from the fact that some authors seem to overly
broaden the applicability of the popular term of metamaterials. For example,
two-dimensionally periodic structures, in which a wave interacts with a single
layer of unit cells only, have substantially different behaviour and applications,
and in the author’s view should be denoted as metasurfaces.

It is even more unfortunate to associate the concept of MMs with one iconic
design of a unit cell. Under no thinkable definition can a metamaterial be made by
attaching a single split-ring resonator to a microwave transmission line.

Some of other definitions realize an important trait of metamaterials, which is
emergence [50]. While the complexity of the electromagnetic field grows proportion-
ally to the number of unit cells stacked together, new kinds of relatively simple and
understandable behaviour can be observed for a large enough system. The intro-
duction of effective parameters, a behaviour emergent from the structure of each
unit cell, is one of the best examples.

A metamaterial is a (. . . ) substance whose properties depend on its inter-atomic
structure rather than on the composition of atoms themselves, (whatis.com)

or, in more words,

metamaterials are artificially structured materials used to control light, sound
and many other physical phenomena. The properties of metamaterials are de-
rived from the inherent properties of their constituent materials, as well as from
the geometrical arrangement of these (. . . ) (website of the Duke university)

In the author’s view, such quotes represent brilliant observations of emergence in
physics, but they cannot be used as a distinction between metamaterials and pho-
tonic crystals. In fact, they apply to both classes of structures.

Metamaterials as all structures subject to homogenisation The criteria of wave-
length or energy localisation leave many structures on the indefinite boundary. The
phase-advance criterion is rigorous, but of little practical use. There are other crite-
ria proposed that appear to fail in some way. This leads the author to the personal
view that the difference in one’s decision on how each structure is characterized.

The unifying concept of virtually all MM studies is to describe how the wave
propagates though them. Their overwhelmingly complicated electromagnetic in-
teraction is approximated by homogenisation, i.e. by finding such properties of a
homogeneous medium that would behave in similar way.

In contrast, the PhC research focuses on whether the wave can propagate at all.
When a mirror, filter, waveguide cladding or other structure with a band gap is
designed, it is important to prevent or allow the light propagation rather than to
achieve some desired effective parameters for the Bloch’s wave.
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This also justifies denoting MMs and PhCs as two different paradigms rather than
two distinct classes of periodic structures, and it is the reason why the neutral term
of periodic structure is used in this thesis.

With this in mind, the author believes that there is no need for a strict rule for
classification. Some structures are then more useful to be subject to homogenisation,
and with some other it is more interesting to focus on their band and band-gap
structure.
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Chapter 3

Numerical methods

“Computers are useless. They can only give you answers.” — P. Picasso (1968)

3.1 Numerical simulation algorithms

This section describes the numerical methods used for preparation of this thesis.
Major accent is put on the finite-difference time-domain method, since it was used
for most simulations. Several important observations are discussed which are prob-
ably not found elsewhere. At its end, this chapter briefly mentions the plane-wave
expansion method.

3.1.1 Finite-difference time-domain method

Algorithm description Finite-difference time-domain (FDTD) simulations rank
among the simplest methods for solving partial differential equations. The simu-
lation volume is initialized as an array in the computer memory, each element of
which corresponds to a so called voxel in an orthogonal grid. When the FDTD
method is applied to solve the Maxwell equations in three dimensions, six com-
plex numbers per voxel describe the electric and magnetic vector fields, other static
scalar arrays describe the permittivity and permeability of the structure and addi-
tional arrays may be used to store other physical quantities, such as material con-
ductivity, polarizabilities and polarisations etc.

The actual computation is realized in consecutive time steps as an explicit arith-
metic operation on each voxel, taking into account only the field values in the neigh-
bouring voxels and in the previous time step [111] . This corresponds to iterating
equations (2.3), (2.4) and (2.5). Most of the computational time is thus occupied by a
simple and unconditional loop repeatedly updating all voxels, which allows to fully
employ the processor cache and facilitates multi-processor parallelisation. FDTD is
applicable to (possibly non-linear) problems where either the temporal evolution
of the fields is being determined, or for linear systems where a frequency-domain
response function can be found by Fourier-transforming the time-domain response.

The time-stepping routine needs the same computing power in empty vacuum
as inside a complex structure. Grid-based methods such as FDTD are therefore the
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Figure 3.1: (a), (b) Different two-dimensional grids are used for different polarisations of
the fields. (c) The three-dimensional Yee grid. The electric field components are related to the
centres of the green cube edges which they are parallel to, whereas the magnetic components
are expressed in the centres of the green cube which they are perpendicular to. Note the
electric and magnetic fields are completely equal in this scheme; the description in terms
of edges and faces could be interchanged if the lower, brown-edged cube was taken as the
elementary one.
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most efficient when a structure has a relatively complex shape, but its smallest fea-
tures are no more than two or three orders of magnitude smaller than the simulation
size. In contrast, an accurate-enough simulation of a structure that has some very
fine features surrounded by big empty space would require an excessively high res-
olution, often resulting in the great majority of the voxels being inefficiently used
in space where the high resolution is not needed. Other methods, such as the finite-
element method (FEM) or boundary-element method (BEM), would be preferable
for such cases.

As widely used in the later chapters, simulations of waves propagating in any
periodic structure can make use of the periodic boundaries of the simulated vol-
ume, so that only one unit cell has to be taken into account in order to derive the
response of the whole structure. The unit cells of periodic structures discussed in
this thesis have their finest features no less than two orders of magnitude smaller
than the unit cell size, and most of the simulations were aimed at obtaining a broad-
band spectrum, so the FDTD approach was an optimal for this task.

Spatial discretisation The discretisation of the grid and the time stepping intro-
duce errors that manifest themselves by an imprecise description of the structure
being simulated, known as staircasing errors. Other errors arise due to an apprecia-
ble deviation of the light velocity from the correct values at higher frequencies, the
so-called numerical dispersion [111]. In most of the FDTD implementations, the error
due to the numerical dispersion is reduced from first to second order (∝ ∆x−2 with
regard to the voxel size ∆x) by using a staggered grid, which, in three dimensions,
is also known as Yee grid [112]. All six field components are expressed in differ-
ent points within the voxel, as is illustrated in Fig. 3.1c. Likewise, the updates of
electric and magnetic fields have to be interlaced also in time (a so-called leapfrog
process). When accessing the field values at a given position and time, each field
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component has to be properly averaged between the nearest points in the grid, and
between the nearest update times.

Spatial discretisation By adequate averaging of permittivity on the boundaries
of materials, this error can likewise be reduced to the quadratic order with regard
to ∆x. Various averaging approaches have been studied in the literature [2]. Arith-
metic averaging of permittivity with a weight proportional to the voxel volume
occupied by the material is perhaps the most intuitive one, but it often leads to
wrong results, and sometimes it is even worse than no averaging at all [113, 114].

In case of a single planar interface between two different materials under a gen-
eral orientation, the arithmetic average of the permittivities εr is correct only for the
electric field component parallel with the interface, whereas the component perpen-
dicular to the interface requires to apply this weighted averaging to the reciprocal
value of permittivity, ε−1r , instead. Such an approach is extremely accurate for all
interfaces with low curvature, but it requires the FDTD simulations to define the
permittivity as a 3×3 tensor array [115]. This is needed even in the case of isotropic
materials.

The situation gets even more complicated for materials with a dispersive per-
mittivity, where also the weighting coefficients of both media need to be frequency-
dependent, and another sophisticated approach has to be employed [114, 116]. Such
a level of elaboration easily leads to computation requirements that may outweigh
the benefits of averaging, and accordingly, no averaging was used for the simula-
tions presented in this thesis.

In general, the effect of discretisation in FDTD simulations can be easily iden-
tified by comparing results from two simulations that differ by the grid resolution
only. It is a good practice to verify that such an error is negligible whenever a new
simulation is tested.

Temporal discretisation While the spatial resolution ∆x can be set relatively
freely depending on the accuracy expected by the user, the temporal resolution ∆t is
related to ∆x. Generally, if the time interval ∆t is set too high, the simulation will
get numerically unstable, yielding unrealistic or even infinite values.

In the literature, one often encounters that the Courant factor s is used instead of
the description in terms of ∆t,

s =
c∆t

∆x
, (3.1)

In words, the Courant factor s denotes what part of a FDTD cell the light can
travel within one time step. The reason for introducing this quantity consists in
the Maxwell equations [Eq. (2.1-2.4)] being scale invariant, which holds also for
the field update routine in FDTD when materials with frequency-independent per-
mittivity are used. Therefore, when the resolution ∆x is changed, s can be a well-
chosen built-in constant and the time resolution given by Eq. (3.1) ensures that
the simulation does not go unstable. The convenient values of the Courant factor,
leading to correct results, are discussed below.

FDTD obviously ceases to be scale-invariant whenever the properties of the ma-
terials depend on the frequency, which is needed for many realistic simulations.
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Then it appears more convenient to formally introduce yet another quantity, a criti-
cal frequency fc:

fc :=
1

π∆t
≡ c

π s∆x
(3.2)

Note that this frequency is only 1/π of the frequency of time-stepping cycles. From
our observations, it is the value of fc, and its relation to the model of materials used,
that are of key importance for assessing the numerical stability of simulation.

Figure 3.2: Plots of complex permittivity εro(ω) of titanium dioxide (rutile), for an ordinary
ray, as defined in the simulation scripts [117]. The above plot has a linear vertical scale,
while the bottom plot displays the same quantity using the scale that is − log(−εr) for
εr < −1; linear for −10 < εr < 10 and log(εr) for εr > 1. The second approach better
shows different orders of magnitude in the permittivity function. Similarly to other figures
in this thesis, the solid line denotes the real component, while the dashed line denotes the
imaginary one.
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Definition of materials for the FDTD method As described in Chapter 2.1.2, Eqs.
(2.21, 2.24), the local response of many usual media to electromagnetic waves can
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be well approximated by a set of Lorentz oscillators, each of which is defined by
three positive real numbers: its resonance angular frequency ω0, damping rate γ
and oscillator strength F .

FDTD, being a time-domain method, uses a computationally efficient descrip-
tion of the media in a similar form, with the difference that the non-dispersive part
of relative permittivity εr∞ can be additionally defined as a real number.

εr(ω) = εr∞ +
M∑

m=1

Fm
ω2
0m − ω2 + iωγm

(3.3)

An illustration of a complex permittivity spectrum for titanium dioxide in its rutile
allotrope is shown in Fig. 3.2. As the crystal is birefringent, only one permittivity
component, denoted as ordinary, from the tensor in Eq. (2.35) was selected.

Conditions of stability in FDTD The author has observed that fc determines the
constraints for the simulation stability simultaneously in two ways:

1. The resonant frequencies of all Lorentzians must be lower than the critical
frequency,

ω0m

2π
< fc, for all oscillators, (3.4)

regardless of the strength Fm of the oscillator or its damping rate γm.

2. For all frequencies higher than the critical frequency fc, the real part of the
permittivity given by Eq. (3.3) must exceed a minimum value given by the
Courant factor s,

ε′r(2π f) > 3s2 ≡ 3

(
c∆t

∆x

)2

for ∀f ≥ fc. (3.5)

A geometrical interpretation of this rule is that an instability is introduced
when any wave with a frequency above fc can travel more than 1/

√
3 of one

FDTD voxel distance within one time step. Note that in a nonmagnetic me-
dium, the travelled distance is

c∆t√
ε′r
.

Both these rules were observed to hold in media with µr = 1 only; in media with
magnetic response they would probably become more complex. The FDTD simu-
lation will become unstable if one of these rules is broken. The instability error
initially arises from inevitable numerical noise at the boundary of the problematic
material and it grows exponentially. It can be identified as a pixel-wise checker-
board pattern on the early field snapshots. Later, the field visualisation usually re-
turns black images as the numerical infinity is reached within several tens of FDTD
steps.
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Choice of the Courant factor Provided that a part of the simulation volume is
empty vacuum (ε′r = 1), Eq. (3.5) clearly determines the maximum value of the
Courant factor:

smax = 3−1/2 ≈ 0.577.

In practice, a slightly more conservative choice is made that provides a safe margin
for the numerical imprecision:

s := 0.500 → ε′r(2π f) > 0.75, ∀f ≥ fc. (3.6)

For any material with a problematic high-frequency permittivity, ε′r(ω = 2π fc) ∈
(0, 1), some low value of s can be found that makes the simulation stable against
the second rule described on p. 74. Simultaneously, the critical frequency shifts
up, so potential problems with the first rule may be alleviated, too. This is done,
however, at the price of scaling up the number of required FDTD steps, so usually
a reasonable change of the material definition is made instead of reducing s.

Practical aspects of material definition In all realistic media, the frequencies of
different oscillators span over many orders of magnitude, and an accurate medium
model would need to determine the parameters of too many oscillators. Not all
oscillators should be accounted for in a given FDTD simulation, though.

First of all, high-frequency oscillators would make the simulation unstable.
Aside from this, adding unduly many oscillators is also inefficient, because each
oscillator term increases the computing difficulty of FDTD computations. It is
therefore advisable to keep the oscillator number to an acceptable necessary
minimum, and to describe the material within some frequency range of interest
(FRoI) only:

1. The upper bound of the FRoI is limited by the numerical stability as stated
above. Mostly, a more strict limit is imposed by the spatial resolution of the
simulation: in a high-permittivity material, too high frequencies correspond
to wavelengths similar to the voxel size or even smaller, leading to a signifi-
cant inaccuracy.

Each oscillator far above the frequency of interest shall be expressed only as a
real constant added to the non-dispersive part of permittivity εr∞. The contri-
bution of an m−th oscillator is given by Eq. (2.22) as

(∆εr)m =
Fm
ω2
0m

.

If some of the high-frequency oscillators introduces significant dispersion or
losses in the FRoI, it should not be eliminated in this way. This usually con-
cerns the oscillator that is the closest to the FRoI, and it usually can be kept
without causing instability.

2. Very low frequencies, corresponding to wavelengths much larger than the
whole simulation volume, are theoretically accessible with a long-enough
FDTD simulation, but it would not be practical to extend the FRoI close to
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Figure 3.3: Permittivity plot for titanium dioxide, similar to Fig. 3.2. The region forbidden
by the stability rules is yellow shaded (above fc = 95 THz and below εr < 0.75). The exact
model for TiO2 (green line, from Ref. [117]) would be definitely unstable due to violating
both stability conditions. The numerically stable model for the frequency range of interest
up to ca. 10 THz (black line) has all high-frequency oscillators substituted by an increased
value of εr∞. Solid and dashed lines denote the real and imaginary parts, respectively.
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the zero frequency. If needed, the low-frequency phenomena can often be
computed more efficiently in a separate simulation with a lower resolution
or even with different numerical methods.

The oscillators at too low frequencies can therefore be omitted without any
change to the behaviour within the FRoI. One important exception is the low-
frequency oscillator that stands for the Drude term and defines the conductive
behaviour, as described below.

Drude model for conductive media The Drude model, describing the response
of free charge carriers, assumes a zero resonance frequency, i.e., the relative permit-
tivity in the form

εr(ω) = 1 +
ω2
p

0− ω2 + iγω
= 1− ω2

p

ω2 − iγω
, (3.7)

where ωp and γ are two independent parameters that describe the metal:

• ωp is the plasma frequency, at which the real part of permittivity crosses zero.
The physical consequence is that for ω > ωp the medium allows the transverse
electromagnetic waves to propagate.

• γ is the momentum scattering frequency, which can be understood as the rate of
exponential decay of the medium response to an impulse, similar to the Lorentz
model. The Drude model was conceived in the early 20th century, with the
simplified hypothesis that electrons are freely propagating particles that un-
dergo collisions with the atoms at an average frequency γ. Upon the collisions,
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their velocity vector would be randomized. The Drude model often provides
a very good approximation of the metallic-like response.

The Drude model can thus be considered a specific case of a Lorentz oscillator with
ω0 = 0, and oscillator strength given by F = ω2

p . Obviously, using Eq. (2.22) to
compute the contribution of the Drude term to the real part of permittivity would
give infinite values, as a static electric field can displace an unlimited amount of
charge in a conductor.

If γ is nonzero, the permittivity is a complex function and it can be separated
into its real and imaginary part εr = ε′r + iε′′r by expanding the fraction in (3.7) by
the complex conjugate of its denominator:

εr = 1− ω2
p ·

ω2 + iγω

ω4 + γ2ω2
=

(
1− ω2

p

ω2 + γ2

)

︸ ︷︷ ︸
real part ε′r

+i

( −ω2
pγ

ω3 + γ2ω

)

︸ ︷︷ ︸
imaginary part ε′′r

. (3.8)

The low- and high-frequency limits of the permittivity given by the Drude model
are:

lim
ω→0

ε′r = 1− ω2
p

γ2
, lim

ω→0
(ε′′r · ω) = −ω

2
p

γ
, (3.9)

lim
ω→+∞

ε′r = 1, lim
ω→+∞

(ε′′r · ω3) = −ω2
pγ. (3.10)

We can see that in the low-frequency limit, the imaginary part of permittivity di-
verges (while its real part has a finite value). In the high-frequency limit, the metal
permittivity approaches that of vacuum, i.e. 1 + 0i.

Low- and high-frequency limits of conductivity in the Drude model The notion
of conductivity is widely used to describe metals and doped semiconductors, i.e.
media where the response to the electric field is characteristic by the motion of
free charge carriers. Generally, both permittivity εr(ω) and conductivity σ(ω) are
complex functions of the angular frequency ω. As long as the approximation of a
negligible spatial dispersion is used, each of them is fully determined by the other
function. For clarity, we avoid using the conductivity in the rest of the thesis except
this chapter.

The relation between εr(ω) and σ(ω) can be derived by realizing that the current
in a material is always caused by movement of charges with a density j and average
velocity v(t). The conduction and polarisation currents are not distinguished here,
as their density is given as jv(t) in both cases. When the current is excited by a
harmonic electric field E(t) = eiωt:

jv(t) = σ(ω)E(t) = σ(ω)eiωt, (conduction approach – Ohm law) (3.11)

jv(t) = ε0εr(ω)
∂E(t)

∂t
= iωε0εr(ω)eiωt. (displacement current approach) (3.12)

Both these equations describe the same quantity, so

σ(ω) = iωε0εr(ω), and εr(ω) =
σ(ω)

iωε0
. (3.13)
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Figure 3.4: Permittivity and conductivity plot for gold; the yellow region, forbidden by the
stability rules, is the same as in Fig. 3.3. The exact model of gold [118] (red) is compared to
the lossy Drude model with Lorentz oscillators substituted by εr (blue), and for illustration,
also to the lossless Drude model with scattering frequency set to zero (grey). Obviously,
none of these models is numerically stable if fc = 95 THz.
The bottom plot shows the conductivity of these three models as given by Eq. (3.13).
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Thus, a dielectric medium with a real constant permittivity has a purely imaginary
conductivity, the magnitude of which grows with frequency (cf. the admittance of
a capacitor). A conductor with a real constant conductivity has a complex permit-
tivity, whose imaginary part diverges in the low-frequency limit.

Using the above relation (3.13) to convert the metal permittivity εr(ω) into con-
ductivity σ(ω), and substituting the Drude-model permittivity (3.8), we obtain

σ(ω) = iωε0εr(ω) = iωε0ε
′
r(ω)− ωε0ε′′r(ω) = i ε0

(
ω − ω2

pω

ω2 + γ2

)

︸ ︷︷ ︸
imaginary part σ′′

+ ε0
ω2
pγ

ω2 + γ2︸ ︷︷ ︸
real part σ′

. (3.14)

We may now express the low- and high-frequency limits also for conductivity:

σLF := lim
ω→0

σ′ =
ω2
pε0

γ
, lim

ω→0
(σ′′/ω) = ε0 −

ω2
pε0

γ2
, (3.15)
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lim
ω→+∞

(σ′ · ω2) = ε0ω
2
pγ, lim

ω→+∞
(σ′′/ω) = ε0. (3.16)

Let us note again that in the literature that uses the negative phase convention e−iωt,
the resulting εr(ω) and σ(ω) are complex conjugated to the above results.

Defining resistive metals for stable low-resolution simulations Simulations in
the optical range are relatively safe in terms of numerical stability. From Eq. (3.2) it
follows that the resolution of ∆x = 50 nm, suitable for the near infrared or visible
spectrum, yields a critical frequency of fc = 3.82 ·1015 Hz (λ = c/fc ≈ 78 nm), which
is far above the plasma frequency of metals and other conductors. Accordingly, no
changes to the Drude model are usually required, although the simulation may run
faster if one or more Lorentz terms outside the FRoI can be omitted.

Realistic simulations of metals at lower resolutions, however, require taking
measures to ensure stability, as the critical frequency fc is reduced below the plasma
frequency of most metals when ∆x & 200 nm. A trivial approach consists in drasti-
cally reducing the Courant factor s so that fc remains above the plasma frequency.
Although this should reliably avoid the instability, it would be at the expense of
scaling the computational time. As a general rule, a lower resolution is typically
chosen for larger structures, where also all investigated processes accordingly hap-
pen on a longer timescale.

For simulations with a lower resolution, it is much more efficient to replace the
exact Drude model with its approximation that maintains the same low-frequency
limit of conductivity σLF , but has a positive permittivity around the critical fre-
quency and above. This formally inverts the relations that describe the material:

• For high-resolution simulations typically in optical range, ωp and γ are given as
experimental properties of the metal, which determine the lower limit σLF =
ω2
pε0γ

−1 and the non-dispersive part of permittivity εr∞ = 1 is fixed to that of
vacuum.

• For low-resolution simulations typically in microwave range, the situation is the
opposite: σLF is given as an experimental property, γ < 2πfc is given by the
critical frequency, whereas εr∞ and ωp are to be determined from the previous
two input parameters.

Debye media in FDTD The Lorentz model can be also employed to define over-
damped oscillators, corresponding to the processes where γ � ω0, i.e. the inertia
is negligible. A typical example is the reorientation of polar molecules in liquids or
solids.

It can be shown that for γ � ω0, the peak in ε′′r(ω) lies approximately at the
frequency ω2

p/γ. The spectral width of such a peak is proportional to its central
frequency.

3.1.2 Finite-difference frequency-domain method

Principle When the procedure for one time-step in FDTD is defined, it can play
the role of the linear operator L in the generic formulation the eigenfunction prob-
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Table 3.1: Comparison of Lorentzian types and the corresponding physical phenomena

Charges are Charge inertia is Phenomenon Example

Bound Significant Lorentz oscillator

optical phonons,
electronic levels,

molecular vibration
or rotation in gases

Bound Negligible Debye relaxation
molecular rotation
in solids or liquids

Free Significant
Reactive

(plasmonic) medium

collisionless plasma,
metals (from mid-infrared

to optical range)

Free Negligible Resistive medium

doped semiconductors,
metals (in far-infrared

range and below)

lem:
Lψ = eiωtψ,

where the function ψ represents either of the electric or magnetic fields.
Both time- and frequency-domain simulations used in this thesis use complex

numbers to represent all field components. The whole frequency-domain problem
can thus be expressed as a simultaneous optimisation of the E(r),H(r) fields, so that
one time-step of FDTD is as similar as possible to the phase rotation of the functions.
The angle of the phase rotation is given by the user-defined angular frequency ω.
For the optimisation to be as efficient as possible, the stabilized biconjugate gradient
algorithm [2] is used. More information on the frequency-domain solver is on the
project’s website [119].

The modes obtained by a frequency-domain simulation can be retrieved with
an unknown phase offset; sometimes the real part of either electric or magnetic
field can be nearly zero. In such a case, the imaginary part thereof always gives a
sufficient amplitude to be plotted accurately.

Comparison to the time-domain computation To verify their reliability, the re-
sults of multiple finite-difference frequency domain (FDFD) simulations, with their
frequency being scanned over a desired range of values, were compared against the
results from the time-domain simulation to evince an acceptable match.

The advantage of the frequency-domain (FDFD) method over the time-domain
(FDTD) is a better efficiency of the field shape computation at a single given fre-
quency, where the computational time of the time-domain methods grows propor-
tionally to the desired spectral resolution. Having both algorithms packed in one
library enables extremely easy switching between them.

While the spectra of all material properties in FDTD have to conform to the
Kramers-Kronig relations, in FDFD the permittivity and conductivity of each me-
dium can be chosen without any limitations. A frequency scan of multiple FDFD
simulations can thus be more efficient for simulation of materials with unusually
complex spectral response, such as superconductors.
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It was observed by the author that the FDFD solver in the MEEP program often
fails to converge when plasmonic effects at the optical frequencies occur. In such
cases, one has to replace it by the FDTD algorithm with a narrow frequency source.

3.1.3 Plane-wave expansion method

Description Another algorithm used in this thesis is the plane-wave expansion me-
thod (PWEM). Whereas FDTD and FDFD are very general algorithms that can be
applied with different choices of simulation set-ups and for virtually any structure,
PWEM is specialised for periodic structures only.

Each PWEM computation is always performed for one given value of the wa-
vevector K. PWEM resolves one or more frequencies which lie on the dispersion
curve of the Bloch’s wave ω(K). For each of them, it can also provide the shape of
the mode function ue,m(r). The algorithm is described in detail, e.g., in Ref. [63, pp.
24-28].

As a convenient implementation of PWEM, we used the freely available pro-
gram MPB[3], provided as open-source project by the same group [119] as MEEP.
The graphical presentation of the results was prepared using a custom script pub-
lished on-line [120].

Comparison to FDTD and FDFD The shapes of the electric and magnetic field
at the edges of each photonic band are important for understanding the physics of
periodic structures. Note that in accordance with the Bloch’s theorem, when K does
not lie in any high-symmetry point of the Brillouin zone, the electric and magnetic
field differ by their phase between adjacent unit cells. Thus, their shapes do not
share the periodicity with the lattice, which makes them harder to be interpreted
from a field visualisation. Finding the band edges is an intrinsic feature of PWEM,
whereas the same task is only approximate in FDTD and requires a previous search
for the band edge frequencies.

Scaling of the computational time with the resolution may present a disadvan-
tage compared with FDTD/FDFD, since in a simple implementation it scales with
the second power of the resolution for one-dimensional problems, fourth power in
2-D problems and ninth power for 3-D problems. Application of more sophisticated
algebra of sparse matrices can, however, partially remedy this.

Perhaps the most important limitation of the MPB program is that it cannot
cope with negative permittivity values. Its applicability is thus restricted to fully
dielectric structures only.

3.2 Simulation set-ups for metamaterial homogenisa-
tion

The general electromagnetic algorithms, such as FDTD, FDFD or FEM, can be em-
ployed to find the electromagnetic field behaviour in a wide variety of problems.
These algorithms, however, tell nothing about the effective parameters of a meta-
material, unless they are employed in a particular simulation set-up.
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This section describes two different approaches to the homogenisation we have
implemented, the retrieval of scattering parameters and the current-driven
homogenisation. Other approaches can be found in the literature, which are briefly
mentioned at the end of this section.

3.2.1 Retrieval of the scattering parameters

Principle The retrieval based on scattering parameters, also known as the s-para-
meter, distributed impedance or Nicolson-Ross-Weir (NRW) method [121, 122], has been
used since the 1970s to retrieve experimentally the index of refraction N and wave
impedance Z of a homogeneous material sample.

The first step to its derivation is that by means of the Fresnel-Airy formulas [11,
p. 329], one can easily compute the transmittance t(f) and reflectance r(f) spectra
of a slab of any material, provided its thickness d, index of refraction N and wave
impedance Z are known. If r, t are known instead, the Fresnel-Airy formulas can
be inverted to yield N and Z of the material of the slab. The actual computation is
therefore also denoted as Fresnel inversion.

Mathematically, this can always be done. When a homogeneous sample is re-
placed by an inhomogeneous structure, such as a layer of a metamaterial unit cells,
this method still yields some effective parameters, Neff(f) and Zeff(f), the relevance
of which is discussed later.

As a great advantage of this approach, there is no requirement to inspect the
fields inside the tested structure, as the retrieval is based only on the amplitude
and phase of the r(f) and t(f) outside the material. It has become a popular way
to retrieve the effective metamaterial parameters thanks to its ease to realize both
experimentally and numerically, with FDTD or other algorithms [123],

The most-often mentioned downside of this method is that its solutions have in-
finitely many branches, and it is necessary to establish which one should be chosen,
and why. In this section we describe that this can, in fact, be solved by a relatively
simple extension of the algorithm, and in the Results chapter it is shown that there
exist well-defined rules for the choice of the branch.

Aside from yielding multiple branches, the physical interpretation of the data
can get even more intricate when effective parameters are to be assigned to an in-
homogeneous slab of a metamaterial. Due attention has to be paid to minimize the
intrinsic imprecision of this method, as well as to establish the limits of its applica-
bility.

Simulation set-up The set-up for the scattering parameter method is depicted in
Fig. 3.5. The wave is emitted from the source plane (green rectangle) in a direction
parallel to the z-axis. The temporal shape of the waves was not critical for the
simulation; a very short pulse, with a spectrum spanning from the GHz range to ca.
5 THz was used.

Periodic boundary conditions along the x- and y-axes were set, so that effec-
tively an infinite metamaterial slab was simulated. On both faces perpendicular to
the z axis we added regions denoted as perfectly matched layers [124] to absorb all
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Figure 3.5: The simulation set-up for the scattering parameter method. All simulation
elements are described in the text.
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radiation (pink areas in Fig. 3.5). The implementation is based on gradually in-
troducing imaginary part into the voxel dimensions [2] to prevent reflections with
an arbitrary incidence angle, polarisation or frequency of the wave. The average
electric and magnetic fields in each of the monitor planes (blue rectangles) were
recorded in each simulation step.

Passing through the first monitor plane, the wave enters the volume of the unit
cell (delimited by empty rectangles) and interacts with the structure. A part of its
energy is reflected back, a part passes through and the rest may be dissipated if
the structure is lossy. The fields that pass through the structure are recorded at
the second monitor plane. After the energy stored in the structure drops to a small
enough level, the FDTD simulation terminates and the recorded fields are processed
to obtain the complex-valued reflectance r(f) and transmittance t(f) as functions of
frequency f .

Avoiding the near-field response in monitor planes With the obvious exception
of an effectively one-dimensional structure of layers perpendicular to the wave vec-
tor, all other structures will change also the orientation of the electric and magnetic
fields. Such a perturbation of the field will be localized around the structure, and
exponentially decaying with the distance in the form of an evanescent wave.

An evanescent wave does not transport energy out of the structure into free
space. However, some energy is stored in it, which can be transmitted to another
structure if it approaches the zone of the evanescent wave. Even if no energy is
transferred by this means, the electromagnetic behaviour of a structure is always
slightly influenced by its surroundings, which manifests itself most often by the
resonances shifting up or down in frequency.

The impact of the evanescent waves partially reaching the unit cell boundaries
in the s-parameters method is twofold:

1. First, computing a single layer of a metamaterial unit cells, with free space in
front and behind it, obviously more or less changes its behaviour compared
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to the periodic lattice.

This issue is inherent to the simulation set-up, but its impact can be assessed
by simulating more than one unit cell, since the retrieved values will change
slightly with the number of layers being simulated: a single-cell simulation
suffers the most from the absence of adjacent layers, whereas in a two-cell
simulation the effect should be halved. Simulations of three (or more) cells
suffer from different behaviours of the cells at the surface and inside, which
possibly broadens the resonance frequency and can yield confusing results
unsuitable to the retrieval method.

2. Second, the monitor planes cannot distinguish between the evanescent or ra-
diated electromagnetic field, but only the radiated waves are relevant for the
s-parameter computations. At very low frequencies or at frequencies close
to resonances, it was observed that the near field can significantly distort the
retrieved parameters.

This can be resolved by shifting both monitor planes away from the metama-
terial cell by a distance denoted as padding. As the evanescent field decays
exponentially, padding of less than half of the unit cell size is often sufficient
to suppress all artefacts due to near-field components. In contrast, propagat-
ing waves only gain an additional phase offset that can be easily compensated
after the simulation.

To the knowledge of the author, such a shift of monitor planes has not been em-
ployed in any related paper. It efficiently resolves the issue, and it does so at an
acceptable expense of moderately extending the simulation volume.

Scattering-parameter retrieval procedure The averaged electric and magnetic
fields recorded at the first monitor plane will be denoted as E

(1)
x (t), H

(1)
y (t).

Likewise, those at the second monitor plane will be denoted as E(2)
x (t), H

(2)
y (t). The

amplitudes of typical time records are shown and commented in Fig. 3.6.
The spectral resolution is determined by the length of the time record. The

higher quality of resonance, the sharper its spectral features. From the Fourier-
Plancherel theorem it follows that the part of the electromagnetic energy that was
coupled to the structure, but was not radiated back until the end of the time record,
will be also missing in the spectra in the frequency domain. When the time record is
too short and significantly truncates a resonance ring-down, characteristic artefacts
in the spectra occur which are very detrimental to further visual and numerical
evaluation.

Using the convolution theorem (see Sect. 2.1.2), it can be deduced that clipping
the recorded fields by a rectangular window in time domain introduces artefacts
equivalent to convolution with the sin(f)/f function in the frequency domain. Mul-
tiplication of the records with a smooth window function, known also as apodisa-
tion, does not improve spectral resolution, but it suppresses the visually distracting
ringing artefacts, which are apparent for the quadrupole resonances (see, e.g., Fig.
5.44).
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Figure 3.6: Time-domain records of the fields in the s-parameter-based retrieval method;
absolute values of the complex recorded fields at the first E(1)

x (t), H
(1)
y (t) and second

E
(2)
x (t), H

(2)
y (t) monitor plane.

The impinging pulse (ca. 2 ps long) excited two distinct resonances in the structure, that
both decayed exponentially in time with different decay rates, as outlined by the thin line
segments. About 35 ps after the source was switched off, the stronger resonance reduces its
intensity below that of the higher quality resonance, which can be clearly seen as a change
of the decaying amplitude slope. The simulation duration was tsim = 150 ps.
After 80 % of the time record length, the field is multiplied by the smooth envelope function
described by Eq. (3.17).

To this end, all four time records were multiplied by the envelope function g(t)
before further processing:

g(t) = 1 for t < 0.8tsim

g(t) =
1 + cos

(
π t/tsim−0.8

1−0.8

)

2
for t > 0.8tsim,

(3.17)

which ensured that after 80 % of the overall simulation duration tsim the field starts
dropping smoothly to zero, introducing a temporal envelope similar to the Hann
window function often used in digital signal processing.

By means of the Fourier transform, the fields were converted to the frequency
domain. This operation is simply denoted as E(1)

x (t)→ E
(1)
x (f), and so on.

The monitor planes are assumed to be located in vacuum, and at a distance suf-
ficient to eliminate the evanescent waves of the simulated structure. It follows that
the vectors of the electric field E, magnetic field H and the wave vector k must form
a right-handed triplet. At both monitor planes, the forward and backward waves
are linearly superposed as illustrated in Fig. 3.7. Therefore they can be separated
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Figure 3.7: An illustration of orientations of the electric field E (blue), magnetic field H
(light brown) and wave vector k (thick arrow) for the waves registered in the simulation.

by using the following relations:

A(in1)(f) :=
E

(1)
x (f) + Z0H

(1)
y (f)

2
, A(out1)(f) :=

E
(1)
x (f)− Z0H

(1)
y (f)

2

A(out2)(f) :=
E

(2)
x (f) + Z0H

(2)
y (f)

2
, A(in2)(f) :=

E
(2)
x (f)− Z0H

(2)
y (f)

2
.

(3.18)

The constant Z0 stands for the vacuum impedance, i.e. the ratio of the electric and
magnetic fields of a freely propagating wave. Its universal value in SI units is Z0 =√
µ0/ε0 = 4πc · 10−7 ≈ 376.7 Ω, but in the actual FDTD simulations, the built-

in convention of Z0 = 1 was used. An example of the wave separation result is
plotted in Fig. 3.8.

Finally, one can easily compute the complex scattering parameters r(f) and t(f)
as the ratios of the reflected and transmitted wave amplitudes to that of the incident
wave, respectively:

s11(f) ≡ r(f) :=
A(out1)(f)

A(in1)(f)
,

s12(f) ≡ t(f) :=
A(out2)(f)

A(in1)(f)
.

(3.19)
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Figure 3.8: Separated amplitudes of the forward and backward waves at the first and second
monitor planes allow to assess the validity of the simulation results.
The incident wave A(in1)(f) should have a smooth spectrum (blue curve), as it is directly
generated by a broadband source. The reflected wave A(out1)(f) (green curve) and the trans-
mitted one A(out2)(f) (light-blue curve) appear to be somewhat complementary to each other,
since squares of their amplitudes should approximately sum up to the square of the incident
wave amplitude, or less in case of losses.
The fourth wave A(in2)(f) should be negligible, as almost all the wave energy is expected to
be absorbed by the perfectly matched layers at the z-faces of the simulation volume. In prac-
tice it is nonzero, also due to numerical imprecision and remaining near-field components
of the structure. This relative error in amplitude is usually less than 10−3.

Comparison of simulated and experimental spectra To verify the simulation re-
sults against experimental data, we computed r(f) and t(f) for a structure that
had been measured in our terahertz laboratory. It consisted of an array of high-
permittivity dielectric bars, cut using a femtosecond laser from a 26 µm thick stron-
tium titanate (STO) slab [125]. The periodicity was 96 µm and the laser cut width
30 µm, resulting in the width of 66 µm for each rectangular bar as shown in Fig. 3.9.

The permittivity of STO strongly depends on the temperature, and was not
known a priori, so it was chosen as εr(1 THz) = 365 + 62i for the simulation to
match the experimental spectra.
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Figure 3.9: (a) Electron microphotograph of the STO array (from [125]), front view, (b)
dimensions of one unit cell, drawn as the side view

(a) (b)

In Fig. 3.10, the curves computed using the FDTD simulations are compared
with the experimental ones, showing very good match in three well-resolved res-
onance peaks, and high reflectance (|r| > 0.9) in most of the spectrum which is
caused by strong impedance mismatch between the dielectric and the surrounding
air.
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Figure 3.10: Experimental transmission texp(f), compared with numerical reflectance r(f)
and transmittance t(f) for strontium titanate bars with a rectangular cross-section 26× 66
µm2, oriented parallel with the electric field.
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Figure 3.11: Set of simulated absorption spectra, computed as 1 − |r2| − |t2|, for different
widths of the strontium titanate bar (in micrometers). The experimental bar width of 66
µm is denoted by the white line. Different modes are marked by the black curves and the
cross-sections of their approximate electric field shapes are drawn above the plot.
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Example of a parametric scan with FDTD simulations To briefly illustrate fur-
ther possibilities of the numerical simulations, in Fig. 3.11 we scanned the relative
width of the STO bar, and computed the relative energetic loss in the structure given
by 1 − |r2| − |t2|. Each loss peak can be clearly associated with one resonant mode
in the dielectric. Only modes with a mirror symmetry in the direction transverse
to the wave propagation couple to the wave; the remaining antisymmetric modes
would manifest themselves at oblique incidence only.

The two-dimensional scan can provide further information about the underly-
ing physics. Most importantly, it is clear that the resonance frequencies of the modes
have different sensitivities to the bar width. Note that both the vertical and horizon-
tal axes are logarithmic, so the power dependence can be directly estimated from
the slope of each line.

It can also be seen from Fig. 3.11 that for the bar width close to 66 µm, which is
indicated by the horizontal white line, two modes cross-over in frequency. Namely,
one of these is a narrow mode with nodal planes almost parallel to the wave prop-
agation, while the other one is much broader one with one nodal plane centered
inside the dielectric slab volume. This explains why the first resonance in Fig. 3.10
has an obviously asymmetric shape, both in the simulated and experimental spec-
tra.

The overlap of two modes differing by the spectral widths and the resonance fre-
quencies forms a typical Fano resonance shape, which would be probably observed
experimentally if the losses were lower. A more elaborate discussion on periodic
structures composed of dielectric bars/rods oriented either along the electric or the
magnetic field will follow in the Sections 5.7 and 5.8.

Retrieval of the effective parameters Complemented with the cell thickness d,
the spectra of the frequency-dependent reflectance r(f) and transmittance t(f) can
serve as inputs for the s-parameter method, [126, 127] [22, pp. 51-55]. The expres-
sion for the effective index of refraction is

Neff =
± arccos

(
1−r2+t2

2t

)
+ 2πm

kd
, (3.20)

where neither the integer-valued branch index m ∈ Z, nor the sign of the solution
are known a priori. For the effective impedance, the sign is also ambiguous:

Zeff = ±
√

(1 + r)2 − t2
(1− r)2 − t2 . (3.21)

Search for the correct solution From Eqs. (3.20) and (3.21) it follows that the
correct solution depends on three discrete-valued functions of frequency, i.e. the
sign of Neff(f), its branch index m(f), and the sign of Zeff(f), which have to be
determined during computation. We identified the following criteria for selecting
exactly one of infinitely many solutions:

1. Passivity, i.e., inability to supply energy to the wave propagating through the
structure, requires the imaginary part of refractive index be non-positive:

N ′′eff(f) ≤ 0 ∀f ∈ R (3.22)
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2. Passivity with regard to the wave reflected from the structure interface re-
quires the real part of refractive index be non-positive, too:

Z ′eff(f) ≤ 0 ∀f ∈ R (3.23)

3. A causal response of the sample requires a specific relationship between the
real and imaginary parts of r(f), t(f) and of effective parameters Neff(f) and
Zeff(f), when substituted for the function F (ω):

F ′(ω) =

∫ +∞

−∞

−2i

ω − Ω
F ′′(ω) dΩ ≡

[−2i

ω

]
∗ F ′′(ω). (2.30 again)

Perhaps the most familiar consequence of this criterion is the requirement of
continuity for Neff(f) in all structures with nonzero losses.

Note that in the papers that use the other complex convention, i.e. e−iωt, both pas-
sivity conditions use the opposite sign. This does not apply to the kernels of the
Fourier nor Hilbert transforms.

Retrieval of effectiveN ′eff based on unambiguous complex arccosine We wrote a
custom procedure to select the correct solution automatically on pure mathematical
basis. To our knowledge, such an approach was not addressed in any of previously
published papers. Alternative approaches are briefly discussed in the following
section.

The ambiguity in Eqs. (3.20, 3.21) results from the fact that the inverse functions
of arccosine and square root are not injective mappings [128]:

cosx = cos(−x) = cos(x+ 2π) ∀x ∈ C, (3.24)

x2 = (−x)2 ∀x ∈ C. (3.25)

Since the temporal records of the fields are exponentially decaying functions, the
reflectance r(f) and transmittance spectra t(f) must be continuous. It is assumed
that for any realistic structure with nonzero losses, the transmission never passes
exactly through the complex zero, and the arccosine argument from Eq. (3.20)

υ(f) =
1− r2 + t2

2t
, (3.26)

is also a continuous complex function. Any discontinuities in the retrieved spec-
tra of N ′eff(f) may therefore arise exclusively from discontinuities of the arccosine
function in the complex plane.

To ensure the overall continuity of Neff in Eq. (3.20), it is therefore necessary to
identify the two branch cuts of arccosine in the complex plane, as illustrated in Figs.
3.12a,b. Different measures must be taken for the sign and branch index m(f) to
ensure continuity:

1. If, by increasing the frequency, the arccos argument υ passes through the right
branch cut at υ′ > 1, υ′′ = 0 (point ”R” in Fig. 3.12c), the real part of arccos(υ)
touches zero, whereas its imaginary part is non-zero and changes its sign. The
direction given by the sign of dυ′/df does not play any role. The continuity is
achieved if, from this frequency on, one reverses the sign of the arccos term .
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Figure 3.12: (a) Real and (b) imaginary parts of the arccosine of complex argument υ.
Branch cuts are denoted with thick lines. The thick curve shows a possible trajectory of υ(f)
(upon a frequency variation), which intersects the branch cuts in points marked as R, L.
(c) From top to bottom: an example function υ(f), its ordinary arccosine, example branch
and sign choices ensuring the continuity of the arccosine function, and the continuous ver-
sion of arccosc(υ), as determined by the algorithm described.
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2. At the left branch cut (the ”L” point in Fig. 3.12c), i.e., for υ′ < −1, υ′′ = 0,
where the imaginary part of arccos(υ) experiences again a step-like change of
the sign and the real part touches the value of π. To restore the continuity, the
sign reversal must be also accompanied by a change of the branch index. .

Effective impedance retrieval The sign of the square root function is similarly
chosen so as to ensure that Z is a continuous function of frequency. Probably the
simplest approach is to express the square root argument in Eq. (3.21) in the polar
nonation, i.e., as its real-valued modulus and its angle in the complex plane. The
angle can be easily ensured to be a continuous function by shifting it by ±2π at any
discontinuity.

Using the Moivre theorem, the square root is then computed by halving the angle
of the argument, and computing the square root of its real-valued modulus. Both
operations are safe in terms of maintaining the continuity.

A particular implementation of this algorithm for continuous arccosine and
square root retrieval can be found online in Ref. [117, effparam.py file].

Initial branch and sign choices Next, it is necessary to establish the sign and
branch index of Neff and the sign of Zeff at the starting point of the spectrum. One
can assume that for very low frequencies below any individual resonance, also the
Bloch’s wave vector tends to zero,K → 0. In case of conductive structures, the spec-
trum starts with a plasma-like band gap at low frequencies, leading to an evanes-
cent wave with vanishing wavenumber as well.

Whenever the spectra of r(f) and t(f) are computed using the Fourier trans-
form, they are known also for very low frequencies and the selection of the initial
branch is thus easy.

The remaining step is to establish the signs of Neff and Zeff, using the aforemen-
tioned rules requiring the metamaterial passivity.

Computing effective parameters of a 1-D photonic crystal The above described
algorithm was proven to work reliably with most structures. However, it is sensi-
tive to numerical errors when the arccosine argument υ(f) in Eqs. (3.20, 3.26) passes
near the points (−1 + 0i) and (1 + 0i), that is, near the ends of the branch cuts of the
complex arccosine.

Unfortunately, it was observed that υ(f) comes excessively close to these points
in the spectra of planar slabs of lossless dielectrics, particularly when the spectral
resolution is low. A correct retrieval of effective parameter spectra for this partic-
ular structure requires that even in these points, the curve is processed as if it had
crossed the branch cuts.

Otherwise, the retrieved spectrum of Neff(f) remains continuous, but at higher
frequencies it ceases to make physical sense. Its imaginary part acquires the wrong
sign in the band gaps, breaking the passivity criterion. Simultaneously, in the
next photonic band its real part decreases with frequency, which would break the
Kramers-Kronig relations [see Eq. (2.30)] and would be a sign of negative group
velocity occurring without significant dispersion. For these reasons, this error can
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be easily notified, and with further programming it can be combined with the veri-
fication against the Kramers-Kronig relations.

This is the only issue known to the author which arises from the described
effective-index retrieval algorithm. This problem has proven to be efficiently re-
solved by introducing moderate losses into the structure and/or artificially shifting
the branch-cut detection points to be slightly closer to the complex zero, e.g. to
(-0.999+0i) and (0.999+0i). In many cases, the wrong detection of the branch was re-
solved simply by multiplying the recorded fields by the smooth window function
from Eq. (3.17).

Summary of the scattering-parameter method The scattering-parameter method
is the most widely used one for the effective parameter retrieval. It stands out
among other methods by relying on the amplitudes of the reflected and transmitted
waves only, without any inspection of the fields inside the unit cell. It is also effi-
cient, since it requires a single time-domain simulation to retrieve the full spectrum
of effective parameters. The wave is let to propagate freely through the structure,
and then the retrieval algorithm determines the wavenumber at each frequency
component of the incident wide-band pulse. The frequency ω represents the input,
and the wavenumber K(ω) is one of the outputs.

However, the scattering-parameter method also has its weaknesses. Perhaps
the worst one is that it does not fail explicitly in cases it is not appropriate for; or, as
stated in Ref. [129]:

Of course, a refractive index per se (generally, tensorial and dependent on the
direction of the Bloch’s wave vector) can always be formally introduced for a
Bloch’s wave.

One has to be careful to verify whether the retrieved values of effective parameters
make any physical sense whatsoever, or are just a confusing output of an algorithm
used outside its scope. The majority of the possible issues was mentioned above:

1. The method is intrinsically imprecise, because the evanescent fields of most
structures are influenced by the free space in front of the unit cell and behind
it. This issue can be neglected if nearly all the energy is transferred by the
radiated wave, in which case the metamaterial is sometimes described as a
Bloch’s lattice [130, 131]. In other cases, usually in dense or metallic structures,
a significant amount of energy is transferred by the near-field coupling, and
it can be demonstrated that the effective parameters retrieved by this method
strongly depend on the number of layers [132, 133] which renders the ap-
proach invalid.

2. Another source of errors is the fact that the monitor planes detect also the
near field, requiring one to increase the distance between the structure and
the monitor planes.

3. Although we devised a relatively robust computation of effective parameters,
the current implementation is still sensitive to numerical errors when spectra
of lossless dielectric slabs are computed.
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4. The method requires the structure to be symmetric with regard to the wave-
vector K, since it attempts to approximate it by effective parameters that leave
no degree of freedom for possible asymmetry. An example of an asymmetric
structure was discussed in Ref. [127], where it was concluded that

. . . so different are the two solutions for Zeff for the asymmetric structure
that in general the assignment of values of εeff and µeff to the composite
becomes counterproductive.

In the view of the author of this thesis, also the retrieved Neff in Fig. 7c of Ref.
[127, p. 036617-9] can be reasonably interpreted if and only if the structure is
symmetric.

5. Perhaps the most fundamental limitation of this method comes from its prin-
ciple of retrieving the wavenumber at a given frequency. For a periodic struc-
ture which exhibits a strong enough spatial dispersion, more than one wave-
number exist at a single frequency as shown in Figs. 2.11. For any frequency
from such a problematic range, the retrieved effective parameters depend on
the unknown ratio of the energy coupled to either of the waves. Therefore, the
method is inapplicable for structures with a strong spatial dispersion. This ef-
fect is illustrated in the Results section (e.g. in Fig. 5.21).

3.2.2 Current-driven homogenisation

Principle When more than one wavevector K corresponds to a given frequency,
a different approach to the effective-parameter retrieval must be used, for which
the wavevector K becomes the input, and the corresponding frequencies ω1...∞(K)
at the dispersion curves are returned as the output. This section describes the
current-driven homogenisation (CDH), in which the whole simulation is computed ex-
clusively with a single wavevector K, and the dispersion curves are reconstructed
from multiple simulations differing by the wavevector.

In this thesis, the method is described in its simplest form. More elaborate im-
plementation is discussed in Refs. [134], [135] and [26], which would enable to re-
cover all 36 parameters that describe the influence of the fields (Ex, Ey, Ez, Hx, Hy,
Hz) to the displacements (Dx, Dy, Dz, Bx, By, Bz), taking into account also possible
anisotropy and bianisotropy.

Bloch-periodic boundaries for arbitrary wave vector In CDH, the unit cell is sim-
ulated as being placed in an infinite lattice, neighbouring with the same cells of size
a in all three dimensions. To emulate such a lattice in a simulation of a single cell,
all the faces of the unit cell have to be set Bloch-periodic, i.e., set to copy the field
from the opposite face.

Exact copying of the fields from one side to another would require the wavevec-
tor of the Bloch’s wave to be strictlyKxyz ∈ 2πm/axyz, which is, however, the known
condition for a photonic band gap. Since we are mostly interested in computing the
wavenumber inside photonic bands, the periodic boundaries have to allow for an
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arbitrary phase shift before the fields are copied:

E(r + axx/2) → e−iKxax E(r− axx/2), (3.27)

where x is the unit vector along the x-axis, and ax are the unit cell size along this
axis. The unit cell is assumed to be centered around the x = 0 point, thus x = ±ax/2
denotes the point at the boundary, and similarly for other axes.

Positive phase advance proportional to Kx is applied when copying the fields
parallel to the x-axis, and negative phase retardation is applied when simultane-
ously copying the fields in the opposite direction:

E(r− axx/2) → e+iKxax E(r + axx/2). (3.28)

A similar field-copying procedure is repeated in each simulation step for all remain-
ing axes, y and z, in the case of a 3-D simulation.

Single-wavevector source In order to excite the simulation volume with a single
wavevector K which complies to the Bloch-periodic boundary conditions imposed,
the source volume must expand over the whole unit cell and acquire a correct har-
monic modulation of its complex amplitude. While this task appears impossible by
experimental techniques, it is straightforward in the FDTD simulation. The source
is typically designed to be a complex-valued electric current with a given ampli-
tude:

J(r, t) := x e−iK·r j(t), (3.29)

where x determines the default polarisation of the electric field and j(t) is the tem-
poral profile of the source.

Excitation of the structure with this kind of the source gave the current-driven
homogenisation its name. Unlike the scattering-parameters method, in CDH the
source volume coincides with the entire unit cell volume. An attempt of visualisa-
tion of this minimalistic simulation set-up is in Fig. 3.13.

Figure 3.13: Current-driven homogenisation set-up consists of a single unit cell with all
faces set to be Bloch-periodic, with appropriate phase shift between the corresponding pair of
faces. One example of the real part of the spatially varied source amplitude is sketched along
the unit cell edge as the green-filled curve.

periodic unit cell
= monitor volume
= source volume

z y
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Temporal profile of the source With the wavevector restricted to a single given
value, it is necessary to excite and detect as many corresponding modes of the struc-
ture as possible. Therefore, a short and broadband temporal source profile could be
reused from the scattering parameter method.

Unlike the scattering-parameters method, CDH cannot detect easily the spectral
profile of the exciting field, and the retrieved fields cannot be normalized against
it. To maintain an approximately constant source amplitude over a wide part of
the spectrum, a nontrivial temporal shape of the source was designed, tested and
finally also submitted to the MEEP simulation developers:

j(t) := wBN(t) [Si(2πf1t)− Si(2πf2t)] (3.30)

where the transcendent sine-integral function introduces the flat-top rectangular
spectrum of the wave radiated from the source:

Si(t) =

∫ t

0

sin τ

τ
dτ, (3.31)

The electric field radiated by a source is proportional to the temporal derivative of
the current j(t) [119], therefore the sine-integral must be used to obtain the field
shape of Ex ∝ sin(t)/t, which is known to have a rectangular flat-top spectrum.

If the source amplitude had an infinite duration in time, its spectrum would
form a perfect rectangular function. However, clipping the temporal duration of
the source results in spectral artefacts, as was already described on the page 84.
The artefacts can be very efficiently suppressed by multiplying the source by the
Blackmann-Nutall window function

wBN(t) := 0.3635819+

+ 0.4891775 cos
2π(t− tc/2)

tc
+

+ 0.1365995 cos
4π(t− tc/2)

tc
+

+ 0.0106411 cos
6π(t− tc/2)

tc
for t ∈ 〈0, tc〉,

wBN(t) := 0 otherwise.

(3.32)

Since wBN(t) has finite support in time, but particularly fast decaying wings in its
spectrum, it ensures relatively steep edges of the nearly rectangular spectrum of the
source.

Field monitor and identification of the dispersion curves The detection of the
fields is defined in a way similar to the definition of the source. In each timestep,
the electric field Ex(r, t) is sampled in multiple points through the unit cell. As each
of the points could have a different phase, the values are divided by e−iK·r before
they are averaged.

After the simulation ends, the single record of cell-averaged Ex is processed to
identify the set of frequencies ωm(K) at which Ex exhibited a ringdown. For ex-
ample, if the cell is empty vacuum, the source with wavevector K can only excite
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a wave at the frequency ω = Kc. All other combinations of (ω,K) are off the dis-
persion curve (known also as the light line in vacuum) and no solution of Maxwell
equation exists for them. Although the source can create temporary evanescent
fields even at such ”off-shell” combinations, the evanescent-field energy is imme-
diately returned back to the source.

The same holds for any kind of structure placed in the unit cell: the energy
persists to the end of the simulation only at frequencies ωm(K) that lie at one of
corresponding dispersion curves. An intuitive way of detecting such frequencies
would be to compute the Fourier transform of the recorded averaged field Ex and
identify the peaks in the resulting spectrum. The resolution of the Fourier transform
is nonetheless proportional to the time record, and it is inefficient for the task of
accurately recognizing the frequencies of a small number of damped oscillations.

A more advantageous algorithm for recognition of oscillations is the filter diag-
onalisation method (FDM), originally developed in 1990 for analysis of experimen-
tal spectra and the nuclear magnetic resonance waveforms in particular [136, 137].
Unlike Fourier transform, FDM does not require the oscillators to decay before the
temporal record ends; on the contrary, it appears to work even more reliably when
supplied with several tens of the oscillation periods at most. Using FDM, the simu-
lation time could be shortened several times.

Advantages over the scattering-parameters method Using CDH resolves some
of the issues of the s-parameters method, namely

1. It simulates the unit cell embedded from all sides in the lattice, and there is
no problem with the evanescent fields sensing free space as it was in the s-
parameter method.

2. Retrieval of the dispersion curves is not much sensitive to the actual field
amplitude, but rather to the frequencies detected in its ringdown. The shape
of dispersion curves is less distorted by any possible error during the scattered
field detection.

3. Since the wavevector is given before each simulation, no issues with wrong
branch detection can flip or otherwise distort the dispersion curves.

4. Also the requirements to the structure symmetry are weaker. In general,
the structure is not required to have any symmetry plane perpendicular to
the wavevector. Other kinds of lower symmetry may lead to bianisotropic
behaviour, which would require more sophisticated detection of the waves,
though.

5. Last but not least, CDH inherently takes into account even very strong spatial
dispersion, which is not the case of the s-parameters method. All additional
waves are detected correctly.

CDH also has more general applicability. It can operate with arbitrary orienta-
tion of the wavevector K; it can even excite longitudinal waves in the structure and
retrieve their dispersion curves.
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Weaknesses compared to the scattering-parameters method The downside of
CDH, as implemented in this thesis, is mainly in the fact that it provides less in-
formation than the s-parameter method:

1. It does not compute the effective impedance Zeff at all, and it is questionable
whether Zeff could be computed if also the averaged magnetic field Hy(r, t)
was recorded.

2. On the one hand, CDH reliably computes the dispersion curves, and the cor-
responding set of ωm(K) functions could be inverted into K(ω) and, for prop-
agation along an optical axis (cf. page 27), also intoNeff(ω). On the other hand,
it does not give any information on the topology of nodal planes, nor which
branch of Neff(ω) would be selected by the s-parameter method.

3. We failed to obtain any useful information related to the imaginary part of
Neff – about the structure losses, field decay in photonic band gaps, and its
behaviour outside the dispersion curves in general.

Other downsides relate to the practical implementation, and arguably are the rea-
son for its rarer use in the literature.

1. A comparable task in CDH is more computationally intensive than in the s-
parameters method. For a single set of dispersion curves, several tens of sim-
ulations with different K are needed. After they are run, a postprocessing
script must analyse all recorded fields and assemble the dispersion curves.

2. Naturally, CDH can hardly be employed in an experiment, since it inspects
the field in multiple points inside the structure simultaneously.

In spite of these limitations, the simplified implementation of CDH for this thesis
remains an important complement to the s-parameter method.

3.2.3 Other effective parameter retrieval methods

Extensions of the scattering parameters method Various modifications to the
scattering parameters method were proposed, in particular with connection to the
homogenisation of metamaterials. One modification makes it robust against the ex-
perimental error in the reflectance phase [138]. Another solution to the issues con-
nected with experimental measurement of the reflectance was employed during the
preparation of this thesis [139]. It involved a slight modification to the experimental
set-up, and thus it is described in the experimental chapter (pp. 110–112).

Some of the modifications apply to the effective parameters retrieval only, and
no change is made to the way how the scattering parameters r(f) and t(f) are mea-
sured. Not knowing the correct branch of the index of refraction is equivalent to
using the folded dispersion curves (cf. Par. 2.3.2), so the post-processing of FDTD
data can also be viewed as a specific, non-trivial way of unfolding the dispersion
curves. This task appears to have been often done manually, particularly in earlier
papers [126]. An approach based on iterative fitting which avoids abrupt discon-
tinuities in N ′eff(f) has been published [140], but the author conjectures that, from
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its very nature, it would become unstable whenever a localized resonance intro-
duces fast changes of N ′eff(f), which can be found e.g. in Fig. 5.8. Manually assisted
approaches present the risk of affecting the resulting effective parameters with un-
justified subjective expectations.

A more elegant method was published in 2010 by Szabó et al. [141] and relies
on the inherently unambiguous knowledge of N ′′eff(f). It uses the Hilbert transform
introduced in Eq. (2.30) to recover N ′eff(f) from N ′′eff(f). However, from our own
experience, applying this integral transform to a finite part of spectrum introduces
not only an arbitrary constant offset, but also slow continuous distortion of the
N ′eff(f) curves, which would require a complicated compensation.

The discussion in this thesis is restricted to the near-perpendicular wave propa-
gation, since it is assumed the optical axis is also perpendicular to the interface. In
Ref. [142], Eqs. (3.20, 3.21) were generalized also for oblique incidence. Note that
for retrieving the effective index of refraction one must establish whether it makes
any physical sense at all, i.e., whether the structure is either isotropic, or at least
whether the angle of refraction is parallel to its optical axis (see page 27).

In Ref. [143], the scattering parameter method was extended also to the bian-
isotropic behaviour of structures with reduced symmetry, and other approaches
can be found [133] in the recent literature.

Averaging of the fields With the scattering parameters method,Neff(f) andZeff(f)
are retrieved first using the amplitudes of the reflectance and transmittance. The
local effective permittivity εeff(f) and permeability µeff(f) can be computed using
Eqs. (2.37) and (2.57), but are considered valid only when |N ′eff| � 2π/a, i.e., when
the unit cell size a is much less than the Bloch’s wavelength.

The effective parameters εeff(f) and µeff(f) can however be computed directly
by exciting a unit cell of the structure, averaging both the fields (E, H) and the
displacements (D and B), and dividing the respective displacement by the field.
The method is described in Ref. [49], where also numerical examples are given.

Bloch-mode analysis A single-interface method has been proposed [144] that anal-
yses only the field behaviour at the interface of a semi-infinite structure. The fields
in the structure are computed and decomposed into discrete modes of the Bloch’s
wave. The method attempts to recognize a dominant Bloch’s mode for which the
wavevector K(ω) is deduced. [145] [146]

When no mode is clearly dominant, this method naturally cannot be used. In
such a case, even the scattering parameter method fails, but its limitations of ap-
plicability are less obvious than with the single-interface method. Failure of the
scattering parameter method can be observed as contradictory results [132] from
simulations of different numbers of unit cells. In Ref. [98] it is argued that the ex-
istence of one dominant mode is the prerequisite for the structure to be viewed as
homogeneous. Refs. [98, 131] apply the Bloch-mode analysis approach to selected
structures. A direct numeric evaluation of amplitudes of the different modes in 1-D
photonic crystals can be found in [43].
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Wave phenomena In the Wave propagation retrieval method, proposed in Ref. [133],
the wave impinges a thick, ideally semi-infinite, volume of the periodic structure.
Since there are no repeated reflections from the second interface, the averaged field
amplitude is assumed to have exponential nature: E(z) ∝ e−2πifNeff/c, and thus Neff

can be reconstructed using a complex logarithm.
Like in the s-parameters method, the function ofK(ω) can be resolved in a single

run by using a broad band pulse. Like in the current-driven homogenisation, the
fields need to be sampled inside the structure.

Concluding remarks Other homogenisation methods include the multipole expan-
sion [18, 147], quasimode theory [148], or other advanced approaches as discussed
by Simovski [130, 128, 149, 108]. Without much exaggeration it can be concluded
that there are roughly as many homogenisation methods as authors involved in the
research of periodic structures. All such methods work reliably in the easy cases:

Homogenisation theories are typically valid when the unit-cell size is insignif-
icant with respect to the wavelength (the zero-frequency limit) and thus might
be expected to result in a poor description of metamaterials. [49]

Indeed, in most practically encountered metamaterials today, the wavelength is not
more than an order of magnitude smaller than the unit cell.

Most homogenisation methods attempt to describe the structure using local ef-
fective parameters, εeff(f) and µeff(f), which do not provide enough degrees of free-
dom to fully express the interaction between the medium and fields. The homogeni-
sation methods differ by the shapes of excitation fields the structure is probed with,
by the boundary conditions that may be either partially or fully periodic, and also
by the way the field is analysed. Thus, it should not be surprising that also the
results strongly deviate between the methods [49, Fig. 5] and that they even seem
to break fundamental physical postulates [106], even when no mistake was made
during the application of the method.

As a matter of fact, the mistake might have been made already during the selec-
tion of the method.

From the literature available, one can conjecture that systematic homogenisation
in terms of the spatially dispersive (Landau-Lifshitz) permittivity εLL

r (ω,K) should
prevent most striking quirks arising in the local homogenisation methods. All prob-
lems involving an interface then also need to be complemented by the additional
boundary conditions [14]. However, computations and the application are more
complex for the medium described by the spatially-dispersive effective parameter,
than for a medium described by local parameters. This is the price that would have
to be paid for its more general validity.

In this thesis, we restrict the discussion mostly to the scattering parameters
method, pointing out where it is applicable, and where its results cease to make
any sense. The current-driven homogenisation then remains as a good reference to
compare the results with.
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Chapter 4

Experimental methods

4.1 Short review of the terahertz technology

The terahertz range of the electromagnetic spectrum, spanning roughly from
100 GHz to 10 THz, has met a relatively small application potential in science and
technology as yet, compared to the development in the microwave (< 100 GHz)
and near-infrared (> 100 THz) or optical ranges. The reason can be traced down
both to the limited choice and high cost of suitable terahertz sources and detectors,
and to their usually small efficiency or sensitivity. The technology and science,
however, develop fast in this field, and the number of terahertz-related papers has
doubled every 3.2 years [150] between 1975 and 2010.

There is a great number of books and papers that describe different terahertz
sources and detectors in detail [151, pp. 155-158][152, 150] and many of them are
also, with more or less detail, discussed in previous doctoral theses written in our
group ([153, pp. 2-30], [154, pp. 19-25], [155, pp. 7-26], [156, pp. 11-21], [157, pp.
31-45], [158, pp. 33-38], [159, pp. 25-33], etc.).

Electromagnetic waves in the terahertz range are radiated whenever charged
particles are subject to fast-enough acceleration at the picosecond scale. The gen-
eration processes may be sorted with regard to the medium in which the emission
occurs and to the origin of the force causing the acceleration. In the following para-
graphs, we try to review the terahertz technology in a systematic manner.

Although they are widely used at higher frequencies, thermal sources are rarely
used in the THz range. The black body radiation is governed by the Planck law [8,
p. 23]

I(f, T ) =
2h

π2c2
f 3

e
hf
kT − 1

W sr−1 Hz−1 m−2, (4.1)

from which it follows that the luminosity I in the terahertz range is always very
small: Integrating over frequencies from 300 GHz to 3 THz, one obtains roughly 0.6
W sr−1 m−2 at the room temperature (T = 300 K). Furthermore, all Planck oscillators
at the frequency of e.g. f = 1 THz are already fully saturated:

kBT ≈ 1.38 · 10−26 J K−1 · 300 K ≈ 25.8 meV � hf ≈ 4.13 meV,

and therefore the power radiated in the THz range cannot be significantly improved
by increasing the black body temperature. Thus, it can be shown that in this part of
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the spectrum the luminosity scales only linearly with the temperature T ; in contrast,
the total power scales as T 4 as follows from the Stefan-Bolzmann law. Therefore,
sources other than thermal are preferred for measurements in the THz range.

4.1.1 Terahertz sources

Kinetic energy of an electron beam One class of devices uses the kinetic energy
of an electron beam propagating in the vacuum. In devices accelerating a circulat-
ing electron beam, such as cyclotrons or synchrotrons, radiation is emitted when
electrons are passing through the bends in the particle path, the deflection of the
electrons being caused by a static transverse magnetic field. If the electrons are
packed in a short bunch, it results in an efficient emission of a coherent broadband
pulse. Another example is the free electron laser with the electron bunches passing
through a device with a periodically poled magnets, called wiggler. Both types of
devices provide an excellent brightness and tunability, but they are rather large-
scale facilities often with a dedicated building.

Tabletop sources of radiation covering a part of the THz range are the
microwave vacuum tubes: gyrotron, travelling-wave and backward wave
oscillators (BWO, also known as carcinotrons, of the O- and M-types), and klystron.
The unifying principle of these devices is that the electron beam speed, position or
density can be modulated by the electric field, and the modulation in turn radiates
amplified electromagnetic waves. Backward-wave oscillators are tunable
monochromatic sources used for continuous-wave spectroscopy, but the tunability
of one device is typically limited to tens of percent and the power drops with the
frequency [150].

Terahertz solid-state oscillators Reducing the size of the active regions of well-
established microwave devices, such as microwave diodes, transistors and vacuum
tubes, usually enables scaling down the wavelength of the emitted radiation pro-
portionally with the dimensions. The fundamental issue lies in that the power
drops very fast when the device is miniaturized. If the total emitted power is lim-
ited by cooling, i.e. by the surface of the active region, it drops with the second
power of the device size. If the volume power density is the determining factor,
the power drops even faster. As a solution, either substantial changes in the device
geometry, constituent materials, or even new physical principles have been intro-
duced for efficient THz sources [152, pp. 8-12].

If a relatively low power is required, principles used in microwave engineering
can be extended to the lower part of the terahertz spectrum. The frequency range
of operation of high electron mobility transistors (HEMT) has been extended in this
way up to 1 THz.

An oscillator may be formed by placing an element with a negative differen-
tial resistance (NDR) into a resonant cavity or circuit. In Gunn diodes, widely used
in microwave technology, the NDR is due to the electron’s effective mass abruptly
increasing with their velocity in certain direct-gap semiconductors. In resonant tun-
neling diodes (RTDs) [160, 161], NDR is achieved by a heterostructure quantum
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well, where, upon an increase of the voltage, the electron energy is detuned from
the resonance of the quantum well, and the current is reduced.

Yet another principle is employed in the impact ionization avalanche transit-time
(IMPATT) diodes, where a non-destructive breakdown of a reverse-biased p-n junc-
tion follows the voltage with a delay which again enables oscillations if the junction
is surrounded by a cavity. In contrast, in the tunneling transit-time (TUNNETT)
diodes, the NDR is achieved by changing the transit time of carriers through the
semiconductor volume.

Nonlinear up-conversion of microwaves A nonlinear response of semiconduc-
tor devices to microwaves can be used for up-conversion into the terahertz range.
Starting from a relatively powerful and widely available semiconductor source op-
erating in the 100 GHz range, frequency multiplying stages are often cascaded to
reach frequencies several times higher [162].

Harmonic frequency multipliers and mixers often employ varactor diodes or
Schottky diodes embedded in a waveguide. They, however, still suffer from a sig-
nificant power drop above 1 THz.

Nonlinear down-conversion of optical waves The opposite approach, also
known as optical rectification, generates THz radiation as the difference frequency
between two or more detuned optical waves. The radiation may come from two
lasers or laser modes, mutually detuned by a frequency that is to be generated.
Other possibility is to use the terahertz parametric generation where a single wave
enters the nonlinear crystal as the pump and the second wave, idler, is generated
during the nonlinear process. The idler wave is kept in an optical resonator; the
terahertz output can be tuned by changing parameters of the resonator. For
nonlinear generation of pulses in the THz range, usually a mode-locked laser is
used that emits pulses that intrinsically cover a broad spectrum of frequencies (e.g.
typically over 360–390 THz for a titanium-sapphire laser). The difference
frequencies are generated from all optical frequency components simultaneously,
which results in a terahertz pulse with a very broad spectrum given by the type of
nonlinear medium.

The classical process of nonlinear optical conversion involves transparent
electro-optic crystals, where some measures are taken to account for the generally
different velocity of all interacting waves.

• For the difference-frequency generation between optical waves of close fre-
quency, the classical condition of phase synchronization is equivalent to ensure
similar group velocity at the optical and terahertz frequencies. Among the ma-
terials satisfying these requirements, zinc telluride (ZnTe), gallium selenide
(GaSe), and lithium niobate (LiNbO3) found their widest applications in the
frequency ranges up to 3–5 THz.

• The quasi-phase-matching technique allows to compensate the difference of the
group velocity of the optical wave and the terahertz wave by periodically
altering the nonlinear coefficients of a crystal so that the nonlinear contribu-
tion to the resulting wave never reverses its sign. Crystals of periodically poled
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lithium niobate (PPLN) are often used for this, with the possibility of shap-
ing the poled regions as wedges (fanned-out PPLN), which allows to change
the effective poling pitch. This method is suitable for continuous-wave or
narrow-band pulse terahertz generation.

• A sufficiently strong nonlinear interaction, on a length scale smaller than the
coherence length, alleviates the requirements of both phase matching and low
absorption of the waves [163]. Organic crystals, e.g. those of DAST,1 have
been reported [164] to have their electrooptic coefficients two orders of mag-
nitude higher than the materials usual in nonlinear optics, making them suit-
able for operation up to 20 THz.

Nonlinear interactions in semiconductors are enhanced when the incident
photon energy is above their band gap. Common crystals used for resonant
THz emission are GaAs, InP or CdTe (with band-gaps of 1.42, 1.34 and 1.5 eV,
respectively), which can be illuminated by a titanium-sapphire laser (with an
average photon energy hc/λ ≈ 1.5 eV).

• With a proper spatio-temporal optical pulse geometry and choice of materials,
THz pulses can be generated in the form of Čerenkov cone [165] even if the
optical group velocity is higher than the terahertz one.

• Finally, plasma generated in gases by high optical intensity of optical pulses
can serve as a nonlinear medium, with low dispersion and thus a very broad
bandwith of tens of THz [166, 167, 168].

Photoconductive sources Terahertz waves can be generated by photoconductivity,
i.e. by transient acceleration of charges upon optical illumination. In the photocon-
ductive devices, the major part of the energy is supplied by the external quasi-static
electric field, which reduces the requirements for the laser illumination intensity.
The light sources can be again two detuned lasers or laser modes [169], or pulses
from a mode-locked laser oscillator. Obviously, this method requires the photon
energy to exceed the band gap of the selected semiconductor.

The photoconductive emitter is usually a slab of a suitable semiconductor with
an antenna structure, deposited on the illuminated side [170]. Earlier antenna de-
signs use two metallic segments of different shapes, such as split-H shape or a spi-
ral. The gap between the electrodes may vary; the large-aperture emitters with gaps
of several millimetres allow to increase the energy and directivity of the THz radia-
tion in the pulsed regime, however they require a high-voltage power supply. The
optical beams (continuous or pulsed) are always more or less tightly focused to the
gap between the electrodes.

The interdigitated emitters [171, 172] provide a large-aperture and relatively high-
energy THz pulses even with low voltage in the range of tens of volts. The metalli-
sation on its front side forms a dense array of narrow metallic wires; every second
gap between them is covered with opaque paint. The odd and even wires are con-
nected to two terminals of a voltage source. Upon pulsed illumination, all charge

1DAST is a shortcut for 4-dimethylamino-N-methylstilbazolium tosylate
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stored in the interdigitated electrodes discharges through the illuminated parts of
the semiconductor surface, emitting THz waves polarized perpendicular to the wire
grid.

The emission efficiency can be improved when the sharp current rise is followed
by a similarly sharp falling edge of the current, again in the order of one picosecond.
For this purpose one needs to select a material with a very short lifetime of carriers,
but a relatively high mobility thereof. Radiation-damaged silicon films on sapphire,
or gallium arsenide slabs with lattice disordered either by (Be or Cr) doping, or by
growing at low temperature, are used to this purpose.

A weaker THz emission can also be observed from semiconductors even with
no static bias voltage, owing to the surface electric field, photo-Dember and other
phenomena [173, 174].

Terahertz lasers Continuous gas terahertz lasers use stimulated emission from
quantum transitions between discrete rotation levels of small organic molecules
[175]. Although they represent high-brightness continuous sources at multiple lines
in the terahertz range, they are rather expensive and their quantum efficiency is
poor, as they usually have to be pumped by a powerful carbon dioxide laser at 33
THz.

Solid-state terahertz lasers are represented by the p-doped germanium laser,
where the quantum transition occurs between energy levels of light and heavy holes
in a strong magnetic field and at cryogenic temperatures. The transition frequency
can be continuously tuned by the magnetic field.

Quantum cascade lasers (QCL) are composed of hundreds of semiconductor
layers [176], which create multiple closely-spaced quantum levels. Each electron
or hole travelling across the structure thus undergoes multiple transitions. Such
devices are compact and efficient sources of continuous and slightly tunable radia-
tion in the mid-IR region. The extension of their operation under 2 THz oftentimes
requires cryogenic cooling and is subject to intense research.

Other THz sources Although a complete list of all physical phenomena that lead
to possibly useful emission of terahertz waves is beyond the scope of this thesis, we
try to point out some most notable examples of these.

Earlier in our laboratory it was observed that an oblique impact of femtosecond
optical pulse on a 50-150 nm thick gold layer on glass emits a THz pulse of similar
energy as those from an interdigitated emitter [177, 178]. Other experiments, e.g.
with thin organic layers [179], suggest the process may be intensified by surface
plasmons.

Tunable terahertz continuous-wave emission was observed in multiple stacked
Josephson junctions [4], where the oscillation frequency is determined by the junc-
tion voltage f(U) = 2e/h, thus 2 mV correspond to roughly 1 THz. This method
however requires cryogenic temperatures as a superconductor structure is used,
and is still subject to primary research.

The Smith-Purcell effect is observed when a relativistic electron beam passes
close to a corrugated surface, e.g., that of an optical grating. The emitted coher-
ent radiation can be obtained also in the THz region [180] (as determined by the
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grating pitch). A similar effect was later observed from a direct current flowing
through a graphene monolayer placed over a photonic crystal [181].

4.1.2 Terahertz detectors

Thermal detection A broad class of detectors, applicable also to the terahertz
range, measure the energy of the radiation. Classical bolometers use thermistors
or thermocouples, resistivity of which will change when they are heated by radia-
tion. Pyroelectric detectors convert the heat directly to the electric signal by means
of a crystal that changes its polarisation with temperature. In the Golay cells, an
incident terahertz pulse heats the air and its thermal expansion is detected. Such
devices usually operate at room temperature.

The concept of a bolometer can be greatly improved, in terms of sensitivity or
speed, at cryogenic temperatures when a superconductor near its critical temper-
ature or a doped semiconductor are used as the temperature detector. In the hot-
electron bolometers, the superconductor forms a narrow bridge between two con-
tacts so that the changes in resistance are more pronounced. The changes in the
superconductor behaviour can also be detected by a superconducting quantum in-
terference device (SQUID).

Heterodyne mixing A continuous-wave terahertz signal can be mixed with the
signal from a local terahertz oscillator, producing a difference frequency in the mi-
crowave spectral range which can be processed easily using an oscilloscope or a
spectral analyzer. The nonlinear components often used up to 1 THz are Schottky
diodes or superconducting Josephson junctions [182]. Fast enough thermal detec-
tors, such as hot-electron bolometers based on Nb or NbN superconducting transi-
tion, can also be used, offering higher sensitivity [151].

Time-resolved field sampling Another class of terahertz detectors enables mea-
suring the electric field E(t), or magnetic field H(t), as a function of time. An im-
portant advantage of such devices is the possibility to recover the instantaneous
amplitude of the field, i.e., both its modulus and phase in the frequency domain).
It also allows to synchronize the detection with the pulsed source to record short
terahertz transients. It should be noted that the measurement of the transmittance
phase can be accomplished with a continuous tunable source, too, using a Mach-
Zender interferometer. Pulsed measurement is however vital for transient dynam-
ics investigation.

Most of such detectors require a simultaneous incidence of the terahertz pulse
and of a sampling (or, gating) optical pulse. The mutual timing of the pulses can
be scanned using an optical delay line, thus the terahertz waveform can be recov-
ered over repeated measurements [183]. Alternatively, various single-shot detection
schemes have been also implemented, usually being based on the temporal dilation
(chirp) of the sampling optical pulse and subsequent spectral analysis of the output.
The physical process of the optical sampling is in most cases analogous to one of
the above described mechanisms of terahertz pulse generation:
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1. Photoconductive receiving antennas use a short optical pulse to introduce a
subpicosecond time window to short-circuit the antenna segments. The in-
stantaneous THz field at the time of the optical pulse arrival moves a charge
across a semiconductor gap between two metallic stripes. The charge amount
is proportional to the THz field and can be amplified and measured by rela-
tively slow electronics.

2. Electrooptic sampling uses the nonlinear interaction between the optical and
THz electric fields in an electrooptic crystal, typically a thin plate of ZnTe. To
discriminate between the sampling optical pulse and the weaker component
added to it by the nonlinear interaction, usually a change of optical polariza-
tion is detected.

3. Magnetooptic sampling was also demonstrated [184], based on the Faraday
rotation induced by the magnetic component of a transient THz wave.

Similar to all cases of the pulsed terahertz sources, the temporal resolution of sam-
pling terahertz detectors is generally limited by the duration of the sampling optical
pulse, and more often, by the limited speed of the photoconductive antenna or by
the group velocity dispersion of the nonlinear crystal. The detection bandwidth can
be improved using the approaches used in the terahertz pulsed sources such as the
use of thin plates of organic crystals (DAST) or nonlinear detection in plasma.

4.2 Terahertz time-domain spectroscopy

Overview of the method The numerical data presented in this thesis could be
in some cases corroborated by experimental measurements using the time-domain
terahertz spectroscopy (TDTS) in our laboratory.

The basic principle of the measurement is similar to the scattering-parameter re-
trieval in FDTD simulations presented in Chapter 3.2.1. A short, broadband pulse
impinged the sample, one part of its energy was transmitted, another reflected and
the rest was dissipated in the sample. The transmitted pulse was then recorded by
the time-domain sampling setup, and processed to obtain the transmittance ampli-
tude and phase as functions of frequency.

The reflectance could not be directly measured in the setup described, but at
the end of this section an indirect method is described that allows to compute the
equivalent sample properties from the subsequent echoes that arise when the sam-
ple is surrounded by thick transparent slabs of sapphire. In the following, we give
details on the optical and terahertz experimental setup.

Terahertz pulse generation As the source of ultrashort optical pulses, we used the
commercial Coherent Mira titanium-sapphire femtosecond oscillator with a mean
power of 0.5 W, central wavelength 810 nm, repetition rate of 76 MHz and pulse
duration not exceeding 70 fs.

The laser output was split into two branches at the beamsplitter (BS1 in Fig. 4.1),
one of which was used for the electrooptical sampling setup. The major part of the
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energy passing through BS1 was converted to terahertz pulses using an TeraSED
interdigitated photoconductive emitter, described in the previous section. The volt-
age at the emitter was 15-20 V, and its polarity was modulated at the frequency of
91-92 kHz. This enabled us to use synchronous lock-in detection to increase the
signal-to-noise ratio of the detection system.

Vacuum chamber and sample holder The diameter of the active region on the
TeraSED emitter was comparable with the longer-wavelength components of the
THz pulses, so the beam diffraction led to a broad angle of the terahertz emission,
of the order of 0.5 radian. Therefore, the waves were reflected at an ellipsoidal
mirror and refocused at the sample. Upon passing through it, they diffracted again
and were collected by an identical ellipsoidal mirror and focused at the detector. To
allow enough clearance for a bigger instrumentation surrounding a sample, such as
a liquid-helium cryostat or a heating furnace, the ellipsoidal mirrors were separated
by 0.3 m and the whole beam path approached 0.6 m.

Propagation of terahertz waves in air over such a distance is impeded by ab-
sorption of water vapour, which is the only polar molecule found in the air in a
significant concentration. The absorption forms clear notches in the terahertz trans-
mittance spectra, for instance around 0.62, 0.75, 1.07 and 1.41 THz, which can be
traced down to discrete rotational levels of the water molecules [185]. In the time
domain, the absorption manifests itself as an exponentially decaying ringdown. In
order to avoid such a signal deformation, the whole terahertz wave path has to be
in an environment free of water vapour, and the fastest way to achieve this reli-
ably was to enclose the emitter, mirrors, sample and detector in a vacuum chamber
evacuated by a two-stage rotary pump.

Figure 4.1: Experimental setup for the terahertz time-domain spectroscopy. BS1 is the
beam splitter separating the pump and sampling branches, F1 a focusing lens, QWP a
quarter-wave plate, PBS a pellicle beam splitter. ZnTe denotes the optoelectric crystal, C
is the Babinet compensator, WP is the Wollaston polarizer and PD1, PD2 and PD3 are
photodiodes.
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Terahertz detection setup Before the laser pulse entered the vacuum chamber to
induce the photoexcitation of the THz emitter, a small part of its energy was sepa-
rated by a reflection from a beam splitter (BS1 in Fig. 4.1) into the sampling branch.

The pulse in the sampling branch reflected from a pair of mirrors on a delay line,
acquiring a precisely controlled relative delay against the terahertz pulse. Then
it was attenuated at a filter (F1) and its polarisation was converted from linear to
the circular one on a quarter-wave plate (QWP). The pellicle beamsplitter (PBS)
directed the optical beam along the axis of the terahertz beam.

We used the electrooptic sampling mentioned in the previous chapter: The elec-
tric field of the terahertz pulse induced a slight transient change in the permittiv-
ity tensor of the zinc telluride crystal (ZnTe). The much weaker and shorter opti-
cal pulse was modified by this change, acquiring diagonal ellipticity that could be
fine tuned for zero signal with the Babinet compensator (C). The Wollaston prism
(WP) was used to separate the two diagonal components of the resulting elliptic-
polarized light. The difference between these two signals, if a small modulation is
assumed, is proportional to the amplitude of the electric field. This allowed us to
sample the electric field with a theoretical temporal resolution given by the dura-
tion of the optical pulse, but using a standard intensity detection using a pair of
silicon diodes.

Signal processing and acquisition To reduce the noise, synchronous detection
with the Stanford SRS360 lock-in amplifier was used and the polarity of THz wave-
forms was modulated by the voltage at the TeraSED emitter. The difference signal
at the two photodiodes, PD1 and PD2, was first fed to an analogue filter (with cen-
ter frequency 91.3 kHz and 3 dB drop at ± 7 kHz), sampled by the lock-in amplifier
and digitally normalized against the signal measured by the auxiliary photodiode
PD3. The normalisation was necessary due to the fact that the difference signal is
proportional not only to the terahertz field, but also to the laser intensity which may
fluctuate over time.

The spectral response of both the emitter and electrooptic sampling substan-
tially influenced the measured sample spectra. Moreover, the phase of the recorded
waves was modulated, too, as a beam passing through a focus acquires additional
phase due to the Gouy shift [186]. Every transmittance measurement was therefore
normalized in frequency domain against a corresponding free-space reference, so
that both the amplitude and phase artifacts cancelled out.

4.2.1 Simultaneous reflectance and transmittance measurement

Principle With rearrangement of optics, it would be possible to measure the re-
flectance spectrum, similarly as the transmittance was measured. However, due to
the complexity of such a setup and its very high sensitivity to the sample displace-
ment, we did not use a second sampling branch for detecting the reflected signal.
Instead of using two sampling schemes, we recovered the amplitude and phase re-
flectance of the sample by stacking it between a pair of thick (3 and 6 mm) sapphire
slabs [139]. Thanks to the relatively high refractive index of sapphire in the terahertz
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range along the optical axis, N ≈ 3.068, these slabs introduce several time-delayed
pulse reflections, also called echoes, into the transmitted signal.

If the beam divergence is neglected, each optical element can be characterised by
its complex transfer function in the resulting spectrum. One needs to define three
intrinsic transmittance functions: that for the beam passing through the volume of
the thin sapphire A(f), the one of the thick sapphire B(f) and one through the thin
sample tS(f); all of these are without the effect of reflection at interfaces.

The reflection is described by two reflectance functions for the beam reflected
on sapphire-air interface rA(f) and on the sapphire-sample interface rS(f).

By measuring the references of the thin and thick sapphires separately, the spec-
tra of A(f) and B(f) as well as rA(f) can be established [139].

To retrieve the characteristics of the sample, i.e. t(f) and rS(f), the overall trans-
mitted time-domain waveform of the sapphire-sample-sapphire structure has to be
split into two parts that correspond to the direct pass, and the first echo arising from
the pulse reflecting back and forth in the thin sapphire. The double propagation de-
lay through 3 mm of the thinner sapphire is roughly 70 ps, which limits the spectral
resolution to 14 GHz. All spectral features in the sample transmittance must be sig-
nificantly broader than this value. Otherwise they could not be resolved, and even
more importantly, their temporal ringdown would overlap in the time domain with
the following echo and produce spurious results. Using a thicker sapphire could
improve spectral resolution of this method, however it conflicts with the require-
ments of the terahertz beam fitting into the area of the sample [125] and of reducing
the error caused by beam diffraction as noted in the following paragraph.

Limitations of the scheme In the experiment, we observed substantial deviation
from the numerically predicted results, which were moreover sensitive to subtle
changes in the parameters. We propose several independent explanations for the
experimental errors:

1. The geometrical beam divergence cannot be fully compensated by the trans-
fer functions of separate sapphire slabs, A(f) and B(f). The terahertz beam
is relatively tightly focused, and the focus of the echoes is longitudinally dis-
placed compared to the focus of the first pulse. The deconvolution algorithm
can compensate for slight focus displacement by changing the amplitude of
different frequency components, or shifting them in phase.

However, due to the hyperbolic shape of the Gaussian beam, with its Rayleigh
length zR being similar to the sapphire thickness2, the overall effect of two
sapphires cannot be linearly compensated from two separate measurements
of each of them.

2. The possible asymmetry of the sample with regard to the beam axis can sub-
stantially bias the measured reflectance. This happened during the character-
isation of the dielectric spheres, when the sapphire distance was defined by a

2As an approximate example, for the main frequency component f = 1.5 THz with wavelength
λ = c/f ≈ 200 µm, for ϑ . 0.15 rad as an estimated divergence of the beam from its axis, the
Rayleigh half-length of a Gaussian beam would be zR = λ

πϑ2 & 2.8 mm, i.e. roughly the thickness of
the thinner sapphire.
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≈60µm teflon spacer. The nonuniform size of the resonators required us to at-
tach them to one of the sapphire windows. While the spheres with the 60µm
diameter were placed symmetrically in the gap, the smaller spheres had an
asymmetric position. Since the latter have higher resonant frequencies, the
effect of asymmetry was probably also frequency dependent.

3. The sapphire slabs can influence the near field of resonances in some samples,
cf. Sect. 3.2.1. This error should not be significant in transversally homogene-
ous samples (i.e. slabs), nor in samples that are made of dielectrics with much
higher permittivity than that of sapphire. However for some samples, such as
metallic resonators, the spectra are be completely changed in the vicinity of a
dielectric (see its application on a fishnet sample in Fig. 4.19 in Ref. [157]).

4. Finally, it follows from Eq. (3.20) that reliable reflection data can only be
retrieved at frequencies where also the transmittance amplitude is strong
enough for the signal not to be dominated by noise.

4.3 Preparation of the titanium dioxide microspheres

Fabrication through the spray-dry technique The collaborating laboratory of Dr.
Patrick Mounaix in France provided us with high-permittivity TiO2 spheres with
the sizes from 30 to 100 µm, which were examined by the terahertz spectroscopy as
dielectric resonators, and as possible constituents of a metamaterial with negative
effective permeability.

Figure 4.2: Microphotograph of the TiO2 spheres after preliminary sieving

Compared to most metamaterial designs, the fabrication of the dielectric spheres
can be extremely simplified by the spray-drying technique. In contrast with the ex-
pensive and time consuming top-down processes such as laser cutting, litography
or polishing, this is a typical bottom-up process, where the particles are formed all
within one procedure, though certain postprocessing is needed.

As a first step, rutile (TiO2) was ground to a sub-microscopic powder [157, pp.
91-93]. A suspension of this powder in ethanol was sprayed into flame. It immedi-
ately formed spherical droplets, which dried up and sintered in the hot air. Rutile
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concentration in the suspension, feed rate and gas flow in the flame determined the
average size of the sintered particles.

The resulting particles were annealed in a furnace to further solidify. The de-
gree of recrystallization could be controlled by the temperature of the furnace from
1200 to 1400 ◦C from microscopic grains to few large crystalline domains in one
microsphere. Note these temperatures used are still far below the melting temper-
ature of rutile, which exceeds 1800 ◦C. Similar TiO2 microspheres are also available
commercially (e.g. from Brace, GmbH), and they were likely made with a similar
process.

The annealed spheres were further treated with the aim to break or eliminate
clusters, by means of light milling with agathe mortar, which was separated af-
terwards by ultrasound bath cleaning in ethanol. Pre-sieving was performed on
commercial sieves with 100, 53, 50, 40 and 38 µm size of the square hole, though
these nominal parameters of sieves should be in no way understood as hard limits
for the particle sizes. The procedure of milling, cleaning and sieving was repeated
2-3 times, according personal communication with Dr. Patrick Mounaix and Dr.
U-Chan Chung.

Only the low-temperature annealed samples were measured by the terahertz
spectroscopy in this thesis. The fine-grained rutile was assumed to represent a
nearly isotropic dielectric. We estimated the size of the constituent crystalline grains
by grinding one microsphere and observing it under a polarizing microscope: un-
like polycrystalline aggregates, small rutile monocrystals appear as coloured parti-
cles due to their inherent birefringence. In this way, the sizes of crystalline grains
were assessed to be in the order of few micrometres or smaller.

Theory of anisotropic sieves Triple sieving on commercial sieves, weaved from
stainless steel wire, did not provide narrow enough size distribution, which is how-
ever essential for obtaining a narrow resonance peak of the sample. We therefore
developed a more exact method for very fine sample sieving and characterisation.

In the following, the dielectric particles are approximated by ellipsoids with
three (generally different) half-axes

ρa ≤ ρb ≤ ρc.

For the purpose of sieving, only the values of the shortest two half-axes, ρa and ρb,
decide whether the particle can pass through the sieve. The longest ellipsoid half-
axis ρc does not affect this, although it may influence the sieving speed. Therefore
we can represent each three-dimensional particle with its projection on the smallest
possible ellipse, which is described by its minor axis ≡ 2ρa, and by its major axis
≡ 2ρb (which is, in fact, the medium axis of the ellipsoid). For a given shape of a
hole in a homogeneous flat sieve, it is easy to determine which values of minor and
major ellipse axes allow a particle to pass through, and which not. For a square
sieve such area in the parameter space forms a disk around the center of origin
(Fig. 4.3a). It can be shown that when the sieve is diagonally stretched, forming a
lozenge-shaped hole, the area of spheres allowed to pass transforms into an ellipse
(Fig. 4.3b). When the hole shape is circular or elliptical, it is obvious that the area
forms a part of a square or of a rectangle, respectively (Fig. 4.3c,d).
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Figure 4.3: Correspondence between the hole shape (above) and the set of ellipsoids that
can pass through the hole (below), determined by their medium and minor axes. Somewhat
surprisingly, the (a) square and (b) lozenge holes result in circular/elliptic set of passing
particles, whereas the (c) circular and (d) elliptic holes result in the square/rectangular
shape of such an region.
For clarity, some limiting-case examples of the ellipsoid projection and the equivalent posi-
tion on the minor-major ellipse axis plot are drawn in blue, violet and red.

The resonant frequency of a dielectric resonator depends on all three half-axes,
ρa ≤ ρb ≤ ρc. In order to select a size fraction as narrow as possible, one has
to use double sieving: the above sieve not allowing the fraction of particles too
big, the bottom sieve removing the fraction of particles too small. This is where
the anisotropic hole shapes become useful – the bottom sieve can exclude also all
oblong particles with the difference of ρa ≤ ρb too big. This effect is illustrated in
Fig. 4.4, which also presents a comparison between using more usual sieves with
square/lozenge holes and the approach with a pair of sieves with micromachined
square/elliptical holes. Obviously, the latter approach better discriminates between
the shapes of the ellipsoids. This advantage further gains on importance when the
anisotropy of the sieve is low.

It shall be noted that although we plotted a binary (pass/not pass) function
in Figs. 4.3 and 4.4, the sieving speed continuously drops when the particle di-
mensions approach those of the sieve holes. However, this particular fraction of
particles is exactly what one is interested in during the high-accuracy sieving. The
process must therefore be run for a long enough time, of the order of days, and with
as high a sieving speed as possible.

First sieving apparatus Employing the idea of anisotropic sieves from Fig. 4.4a,
the author assembled a first prototype based on nylon sieves, as depicted in Fig.
4.5. Two glass containers, 6 mm high and 11 mm in diameter, were cut on a lathe
from a glass tube. On their bottom, the sieves were glued and carefully clipped.
The side of the sieve holes was 60±5 µm.
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Figure 4.4: Application of the effect from Fig. 4.3 for separating a narrow fraction of el-
lipsoids between the sieves. Both combinations of (a) square-rectangular and (b) circular-
elliptic sieves can be used, with the latter one promising better selectivity also in terms of
the particle aspect ratio.

Figure 4.5: (a) Photograph and (b) scheme of the first sieving apparatus based on square-
lozenge sieve pair, with a schematic out-of-scale illustration of its operation for an input of
four different microspheres (c)

The mesh was woven of nylon threads, so the bottom sieve could easily be
stretched by ca. 20-25 % in the diagonal direction. The above sieve was kept
isotropic.

This property however prove to be also detrimental for precise sieving, as the
threads easily bent aside under only a small force, thus allowing oversized particles
either to pass or to get stuck permanently and to block the sieve within few minutes.
To help resolving the latter problem, two additional narrow glass rings were cut
from the glass tube, supporting much coarser sieves with 150 µm pitch glued on
the bottom, to allow little spherical springs bounce beneath the sieves and to loosen
the particles that got stuck in the holes. For the same purpose, 2mm plastic balls
were added to the microsphere samples.

A cover on top prevented the particles to jump out of the above container. The
whole stack was carefully lowered into a test tube with a larger diameter, and vi-
brated by a tiny electric motor glued on the bottom.
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Figure 4.6: (a) A sketch of the acoustic sieving device, and (b) a photograph thereof

(a) (b)

Second sieving apparatus The partially promising results and, more importantly,
obvious deficiencies of the previous apparatus motivated the construction of a sec-
ond one depicted in Fig. 4.6. Different from any other sieving apparatus known to
the author, this one made use of vertical acoustic waves for the movement of parti-
cles. It consisted of two coaxial glass tubes: The inner tube, with outer diameter of
13 mm, had a round metallic sieve glued to its bottom, and on its upper end it was
covered by a small acoustic transducer. The outer tube (90 mm long, outer diame-
ter 26 mm) surrounded the inner one and had a round bottom, where the particles
were collected.

The gaskets ensured that the whole apparatus was tightly closed, preventing
both sieved particles and the sound from escaping. The brass ring with the trans-
ducer was fixed to a massive aluminum stand, and the rest of the structure was held
by two accessible screws that allowed easy disassembling.

The key advantages of this novel approach are the following:

1. The speed of sieving is expected to grow with the frequency at which the
particles hit the sieve. The acoustic frequency of 1 kHz is roughly two orders
of magnitude higher than in usual commercially available devices. Moreover,
the spheres are continuously stirred, so it is ensured that a layer of over-sized
particles does not occupy the sieve.

2. The upward air pressure pulls out particles that got stuck in the sieve in every
period of acoustic vibration. This resolves the major issue of clogging inherent
for the previous prototype.

3. Avoiding macroscopic vibrating parts, except the membrane of a small acous-
tic transducer, allows the device to operate over multiple days with reduced
risk of mechanical failure.

The outer tube acted as an acoustic resonator, greatly enhancing the effect of the
sound when tuned to resonance around 750-900 Hz. These frequencies obviously
correspond to the fundamental acoustic resonance, as the corresponding quarter-
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wavelength is close to the 10 cm length of the outer tube. The electrical input power
of the sine wave feeding the device was in the order of 1 W.

Sieving challenges A practical deficiency of this setup was that the upper open-
ing of the transducer radiated relatively intense sound during operation. We re-
solved this potential issue by covering the whole apparatus by a robust glass bell
jar.

With the acoustic power and frequency correctly adjusted, the particles formed a
cloud 5–10 mm high. One difficulty arose from that the small particles tend to attach
to the surface of glass or metal, probably due to electrostatic charges on their sur-
face. While at an average particle radius ρ = 50 µm this effect was rather marginal
and transient, it took only few seconds of sieving for ρ = 20 µm particles to immo-
bilize permanently on any surface. It has however proven efficient to tap the upper
brass ring, as the mechanical shock released most spheres and renewed the sieving
process. To ensure unattended sieving for a timespan in order of days, we added a
little motorized hammer with a timing circuit (Fig. 4.6a).

The amount of particles in one batch was limited to ca. 10–20 mm3, otherwise
the sieve would be covered with a layer too thick, which could not be efficiently
lifted by the acoustic pressure. This problem could however be slightly mitigated
by tilting the apparatus. With a tilt of 5–10 degrees, the bulk of particles then accu-
mulated near one side, leaving most of the sieve surface free for sieving the mov-
ing particles. Given the small amount of particles required for the terahertz spec-
troscopy measurements, it is however advisable to sort a batch in order of 1–3 mm3.

4.4 Optical determination of microparticle statistics

Image preparation An accurate characterisation of the particle statistics was nec-
essary not only to assess the efficacy of sieving, but also to explain possible differ-
ences between the measured terahertz spectra and the computed ones on a quanti-
tative basis. To obtain reliable statistics, thousands of particles needed to be evalu-
ated, repeatedly for every sample. This, along with the small dimensions of parti-
cles, indicated that the most viable way to do so would be the optical microphotog-
raphy with computer image processing automatically resolving each particle.

Computer granulometry, identification and measurement of photographed par-
ticles from a digital image, is a well-established technique. It is implemented in
several advanced image processing programs, of which ImageJ was selected [187]
since it is free of charge and allows its use for large batches of images through the
use of macros.

The transmission microphotographs were acquired either with the lowest mag-
nification on a laboratory microscope, or with a portable microscopic digital camera
on its highest magnification, yielding similar results.

The first processing step, applied at the somewhat blurred photographs, as
shown in Fig. 4.7a, was to establish the intermediate brightness level between the
image’s bright and dark areas, and apply a threshold so that the image was a
binary function. Then the ImageJ’s watershed algorithm was applied to resolve two

117



or more touching particles relatively reliably, and a particle outline was found. An
example is depicted as cyan lines in Fig. 4.7b. Finally, the particle outlines were
approximated by best matching ellipses, and the major and minor axes of the
ellipse were added into the statistics. We complemented the ImageJ macro with a

Figure 4.7: (a) A small section of a microphotograph of a pre-sieved sample before applying
the described double-sieve method, (b) the corresponding identification of particles in ImageJ

(a) (b)

Python script enabling us to process multiple photographs in a batch, and to plot
the resulting histograms of the ellipse axes distribution. The script has also been
published online [188]. The scale for each batch of images had to be determined
from a separate photograph of a ruler.

Imprecision of the method An intrinsic deficiency of this method is that it was
not possible to resolve the third dimension of particles. It can be however estimated
that when ellipsoidal particles were randomly sprinkled on the glass, they would
lie mostly on their flat side – i.e. their orientation would enable to measure the
medium ρb and major axes ρc of the ellipsoid. This is in contrast with the process of
sieving, as described above, where the particles were sorted according to their and
minor ρa and medium ρb axes.

This source of error is probably similarly important as another one, arising from
rough shapes of the particles which could not always be well approximated by an
ellipsoid.

4.5 Laser cutting

Fabrication of dielectric bars Dielectric or metallic structures can be made by
cutting a thin polished slab of the given material. Electromagnetic waves with a
frequency of 1 THz have a free-space wavelength of 0.3 mm. Periodic structures
designed to operate in this range have their unit cells of a similar size or less, and
their finest features are usually in the order of 10-20 µm.

The sample already shown in Fig. 3.10 consisted of bars from strontium titanate
(SrTiO3) with a rectangular cross-section (see Fig. 3.9), where a structure with 10–30
µm lateral bar dimensions was engraved into a thin slab of the dielectric of a similar
thickness [189].
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If the slab consists of a monocrystal or a ceramic, it is usually extremely brittle
and also sensitive to breaking due to thermal stresses. Femtosecond laser cutting
(or, micro-machining) is suitable for such a task because it delivers the energy so
fast that most of the heated material evaporates before the heat can diffuse into the
rest of the structure. The strontium titanate bars were fabricated by the Alphanov
facility in France.

Fabrication of sieves and fishnets Femtosecond cutting of metallic sheets into
two-dimensional meshes is relatively easy, compared to the dielectrics, and was
implemented in our laboratory. To achieve the required precision, we used 20 or 30
µm thick high-quality stainless steel foils.

The femtosecond laser used was different from that serving as the femtosecond
source for terahertz spectroscopy (Sect. 4.2). A largely sufficient power was pro-
vided by the Spectra Physics Spitfire Ace multipass titanium-sapphire amplifier, with
1 mJ of energy per impulse, duration of∼50 fs, and 5 kHz repetition rate. Its output
beam had to be attenuated to obtain finer cut at the expense of a slightly slower
rate. The mechanical part consisted of two crossed Owis stepper-motor controlled
linear stages, and a fast mechanical shutter allowed us to control the beam with a
sufficient resolution of ca. 100 ms.

Figure 4.8: (a) Laser cutting the steel foil with a moving holder for four samples, metal
vapour ventilation, and the focusing lens. A bright plasma spot is visible at the focus. (b)
The resulting sieves made from 30 µm stainless steel foil with 10 mm overall diameter.

(a) (b)

The 3 mm wide beam was focused by a lens with a focal length of 10 mm or
50 mm (Fig. 4.8a). The tighter focusing lead to a better resolution, but had stricter
requirements for accurate focusing of the beam. To facilitate the task of optimal
focusing, we devised a focusing-collimating setup which used the fact that the steel
foil reflected the light like from a point source only when it was exactly in the lens
focus. Then the reflected light would be collimated again by the very same lens
into a beam returning to the laser. A part of the beam energy reflected from the
metal sheet was separated sideways by a skewed glass in front of the lens, so that
one could finely align the lens seeking for the smallest spot diameter on a distant
screen.
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A compact stepper-motor controller of a custom design [190] facilitated to au-
tomate the sample movement by means of computer control operated by a Python
script. The sequences of shutter opening, sample movement and shutter closing
could be assembled into a program for fabrication of a whole mesh sample of ca.
10 mm diameter, which took about 30 minutes to finish. Multiple different meshes
with different parameters could be cut out from one steel foil in a batch, without
user interaction.

Laser cutting issues The metal evaporated during the laser cutting immediately
oxidises in the air. Although in total only few milligrams of the stainless steel foil
were removed, the microscopic particles would pose a risk of damaging optical
components. We built a miniature ventilation and filtering system out of a tube
filled with cotton wool and fine synthetic fibres. After few meshes were cut, the
cotton changed its colour from white to pale brown, indicating that at least a part
of the particles were filtered out.

A greater challenge arose from thermal expansion of the foil. In order to fully
utilise the valuable laser beam time, one would wish to set the cutting speed as
high as possible. However, the speed of cutting was rather limited by the speed
of stepper motors. The heat remaining in the steel foild was high enough to cause
its thermal expansion and bending out of the plane of its holder. Even though the
resulting displacement was less than 1 mm, the sheet moved significantly out of the
beam focus. We assume this was the reason for slight variations between the hole
sizes in Fig. 5.42. The effect would be diminished through slower cutting speed or
by gluing the foil to a sacrificed rigid substrate.

Cutting the foil into free-standing wire array was however not successful since
the resulting thin wires bent out of their original plane due to the thermal expan-
sion. Their spacing was so uneven that no usable sample of wires was made.

Difference between sieves and fishnets The meshes were made for two purposes
– either as sieves used in the second sieving apparatus described above, or as meta-
material samples known as fishnets, which are predicted to exhibit a negative index
of refraction (see Sect. 5.10). The difference between these applications is subtle; the
meshes intended as sieves would surely exhibit a resonance in the terahertz range.

The optimum size range for the titanium dioxide spheres resonating around
1 THz is around 30–60 µm, which determined the hole diameter of sieves. To main-
tain mechanical robustness, the periodicity in sieves was kept much larger than the
hole diameter, usually 300×300 µm, and the thickness was chosen as 20 or 30 µm.
The fishnets had the same periodicity as sieves, and the hole dimensions were cho-
sen between 150 and 280 µm. For cleaner cutting, a thinner stainless foil was used,
with a thickness of 5 µm.
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Chapter 5

Results

“The purpose of computing is insight, not numbers.” — R. W. Hamming

5.1 Dielectric slab

Dispersion curves of a one-dimensional photonic crystal One-dimensional pho-
tonic crystals (1-D PhC) were investigated thoroughly in the previous century and
they found their major application in dielectric mirrors. This represents the simplest
example of periodic structures, exhibiting only a subset of different phenomena that
can be observed in other periodic structures. This is due to a continuous transla-
tional symmetry in the transverse direction that excludes all phenomena with a
lower symmetry.

Most importantly, no individual resonances can occur in a 1-D PhC; all interactions
with the waves occur through partial reflections of the electromagnetic waves on
the interfaces of the layers. The only type of the band gap observed is of the Bragg
type.

Dispersion curves for two examples of one-dimensional photonic crystals com-
puted using PWEM are shown in Fig. 5.1. Its left panel shows the folded dispersion
curves for a plane wave propagating in vacuum on which we imposed virtual pe-
riodicity. To save space, the dispersion curves were plotted as folded, but one can
easily imagine how the curve unfolds into a linear dispersion of vacuum, known
as the light line. No scattering occurs for homogeneous vacuum, hence for any fre-
quency f , there exists a real wavenumber k corresponding to a propagating wave
and there are no band gaps of nonzero width.

The right panel, Fig. 5.1b, is obtained by introducing periodic layers of a dielec-
tric with a permittivity of 12% and a 15% filling fraction. In the field plots, the di-
electric is outlined by thin black lines. The band gaps of nonzero width correspond
to frequency ranges where the waves cannot propagate through the structure.

Characteristics of Bragg-type band gaps The lower and upper edge of the pho-
tonic bands are located in high-symmetry points of the Brillouin zone, such as Γ or
X, which are equivalent to the wavenumber K = mπ/a for m ∈ Z in the discussed
one-dimensional case. Whenever K corresponds to one of these points, the electric
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Figure 5.1: Dispersion curves (a) in free space with virtual periodicity a, (b) in dielectric
layers with permittivity ε = 12 and 15 % filling fraction.
Side plots show the electric field in 2 × 2 unit cells, with dielectric outlined by thin black
lines. The triplet of the electric E and magnetic H fields and the wave vector K for the
incident wave is indicated in the lower left. The electric field is plotted as a blue-white-red
color map. In the left panel, corresponding to vacuum propagation, the fields acquire pure
harmonic shape.
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and magnetic fields are periodic in space, and can be easily visualized. The side
plots in Fig. 5.1 show the shapes of the electric field Ex in the (y, z) plane at respec-
tive frequencies of the band edges. To stress the fact that the field is periodic even
in the X point, each of the side plots spans over 2×2 unit cells.

An important characteristic of each field pattern is the set of all points where the
field amplitude remains zero at any time. Such sets will be denoted as nodal planes,
or also, more accurately, nodal surfaces.

From all pairs of field plots that are connected by a photonic band (i.e. X2-
Γ2, Γ3-X3 etc.), it can be deduced that one nodal plane dividing the unit cell in
perpendicular orientation to the wave vector is always added when the frequency
increases from the lower band edge to the upper one. This rule is more general and
is satisfied by other structures, too.

A feature typical for all Bragg band gaps (i.e. X1-X2, Γ2-Γ3, etc. in 5.1) is that
between the lower and upper edges of each band gap, the phase increase across an
unit cell does not change and thus K remains constant, as does the number of the
nodal planes. The field does change between these points, however, and the change
is in the location of the nodal planes such that the upper band-gap edge concentrates
the field energy in mostly lower-permittivity regions.
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Figure 5.2: Amplitude of (a) reflectance, (b) transmittance and (c) effective index of re-
fraction Neff (real part solid, imaginary part dashed) for a dielectric slab with a 15% fill-
ing fraction in a 300 µm unit cell, and various values of permittivity of the dielectric
εr ∈ {4, 12, 20}. The dashed black lines in panel (c) denote the boundaries between the
first, second and further Brillouin zones.
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Bragg and Fabry-Pérot resonances The Bragg condition for the formation of a band
gap in a periodic structure is that an integer number of half waves must fit into the
unit cell; i.e. that the phase difference φ1+2 of the wave along the unit cell is

φ1+2 = d1n1
ω

c
+ d2n2

ω

c
= πm, where m ∈ Z. (5.1)

Here d1,2 are the thicknesses and n1,2 are the refractive indices of the two layers.
The width of the band gap grows with the amplitude of the wave scattered from

the unit cell. This amplitude, however, also depends on frequency and, in the case
of a lossless dielectric slab, it vanishes whenever an integer number of the half-
waves fits into either of the dielectric layers. For comparison with Eq. (5.1), this
condition is

φ1 = d1n1
ω

c
= πm or φ2 = d2n2

ω

c
= πm, where m ∈ Z. (5.2)
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Figure 5.3: (a) Reflectance and (b) the imaginary part of the retrieved refractive index for
a 1-D PhC, with filling fraction of 15 % in a 300 µm unit cell, as a function of frequency
and dielectric permittivity. On the right panel, the Fabry-Pérot condition from Eq. (5.2) are
marked by a thin dash-dotted line.
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Note that unlike the Bragg resonance, this effect can be observed even in a single
isolated unit cell; in fact it is the well known Fabry-Pérot resonance.

The vicinity of a Fabry-Pérot resonance influences the position and width the
neighbouring band gap, which can be found for different values of dielectric per-
mittivity of the slab εr ∈ {4, 12, 20} in Fig. 5.2.

As a special case, the conditions for both Bragg and Fabry-Pérot resonances can
be fulfilled simultaneously: a zero-width band gap results and two photonic bands are
adjacent to each other in the same way as they were in vacuum (cf. Fig. 5.1a). In all
cases of zero-width PBGs, the dispersion curves appear to approach the boundary
of photonic bands (located in a high-symmetry point in the Brillouin zone) as lines
with nonzero slope. In analogy with the dispersion of electrons in a solid, this
can be viewed as a Dirac point for photons-polaritons, where the photons-polaritons
have zero effective mass. The corresponding isofrequency contour may have a cusp
in this point, invalidating even the generalised notion of the refractive index as
elaborated in Section 2.1.3.

An example of a structure that exhibits multiple zero-width band gaps is the
1-D PhC with equal optical thicknesses of both slabs (d1n1 = d2n2), but multiple
such points exist when the dielectric permittivity or the dielectric filling fraction
is changed, as depicted in Figs. 5.3 and 5.4, respectively. These plots are also the
simplest examples showing the interplay between the resonances contained in the
dielectric structure and the overall band-gap structure, a topic that will be discussed
later in more detail.

Local effective parameters of a 1-D PhC Employing the s-parameter method based
on FDTD simulation, as described in Chapter 3.2.1, one can obtain the scattering pa-
rameters (i.e. complex reflectance and transmittance) of a finite layer of the periodic
structure, and eventually retrieve its local effective parameters: the index of refrac-
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Figure 5.4: (a) Reflectance and (b) the imaginary part of the retrieved refractive index for a
1-D PhC, with a relative dielectric permittivity of 4, as a function of frequency and filling
fraction in a 300 µm unit cell
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tion Neff(f), impedance Zeff(f), permittivity εeff(f) and permeability µeff(f). The
first one is plotted in Fig. 5.2c, allowing one to clearly identify the Bragg band gaps
as regions where N ′eff follows one of the Brillouin zone boundaries and N ′′eff < 0.

To what extent the three remaining local parameters, Zeff, εeff and µeff, have
any physical meaning? As a generally accepted approach, they will be considered
meaningful only for the long wavelength limit, i.e. if K is close to the Γ point in
center of the Brillouin zone where the effects of the spatial dispersion should be
negligible [191]. According to Fig. 5.2c, this is true for frequencies up to 100 or
200 GHz only.

In the low frequency limit of a 1-D PhC, it was always observed that

1. Zeff ≈ 1/Neff, thus the effective permeability is µeff =
√
NeffZeff ≈ 1, corre-

sponding to our expectations for a dielectric structure without internal reso-
nances.

2. The effective permittivity εeff is the weighted average of the constituent media,
which determines the low-frequency limit for the refractive index:

Neff|K�2π/a =
√
εeff|K�2π/a ≈

√
d1n2

1 + d2n2
2

d1 + d2
(5.3)

Notice in Fig. 5.2c that Neff at higher frequencies converges towards its asymptotic
value Neff|K→+∞, which differs from the value obtained by Eq. (5.3):

Neff|K→+∞ ≈
d1n1 + d2n2

d1 + d2
(5.4)

The difference comes from the fact that in the low-frequency limit, the electromag-
netic energy concentration is the highest in the areas of higher permittivity, whereas
in the high-frequency limit it appears to be distributed evenly. Note that with the
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correct branch retrieval procedure, the index of refraction never drops with fre-
quency except for the photonic band gaps. A negative derivative of Neff(f) would
otherwise imply the group velocity to be higher than the phase velocity [24], which
was never observed in a 1-D PhC.

5.2 Wire medium

High-frequency behaviour The structure consisting of a regular square lattice of
conductive wires exhibits more interesting properties when the electric field is par-
allel to the wires, and this polarisation will be assumed in the following (Fig. 5.6a).
The lattice of wires perpendicular to the electric field does not appreciably inter-
act with the electromagnetic waves, until the wire width is of similar magnitude to
their spacing; such a case is discussed in Section 5.9.

In the high-frequency part of the spectrum above the first photonic band, the
array of metallic rods in the lattice allows the light to pass through. Each layer scat-
ters a part of the wave in a similar way to that one discussed in the previous section.
Thus, the high-frequency interaction of the waves consists of photonic bands alter-
nating with Bragg band gaps. In contrast with the dielectric PhC described above,
no Fabry-Pérot resonances are observed and the scattering strength of the wire lay-
ers reduces monotonously with growing frequency.

Inductive behaviour at low frequencies At low frequencies, in contrast, the inter-
action of the conductive wires with the electromagnetic wave becomes very strong
and leads to a behaviour completely different from that described above. For a
frequency range from zero up to the effective plasma frequency fp, the array exhibits
a band gap where Neff is pure imaginary. Therefore, in the low-frequency part of
the spectrum, the local effective permittivity εeff is a physically meaningful quantity
and it follows the law typical for inductive media:

εeff(f) = 1− f 2

f 2
p

(5.5)

Such a dependence of εr was already used in the Drude model in Eq. (3.7), and plot-
ted in Fig. 3.4. Owing to this similarity to metals or plasma, wire arrays are denoted
also as diluted metal or artificial plasma since the 1950s [86, 85], or as metallic delay di-
electrics, owing to the possibility to manipulate the phase and group velocities [87,
p. 54].

The physical origin of εeff < 0 is different from that in homogeneous metals or
plasmas, where it is of kinetic origin, i.e., due to the effective mass of electrons [192].
In contrast, the negative effective permittivity in wire arrays is the result of the
self inductance due to the magnetic field circulating around the conductor. As a re-
sult, except for optical frequencies, fp does not substantially depend on the internal
plasma frequency of the constituent metal, and the above described behaviour can
be obtained even if the wires are thought to be made of a perfect electric conductor
(PEC). The effective plasma frequency fp does, however, depend on the geometry
described by two parameters, the wire radius ρw and the unit cell size a.
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Figure 5.5: Amplitude of (a) reflectance, (b) transmittance (c) effective index of refraction
Neff and (d) effective permittivity εeff for an array of wires made of gold, depending on the
wire radius ρw ∈ {1, 2, 4, 8, 16} µm with a fixed unit cell size a = 100 µm. The results were
obtained by FDTD simulations with a grid resolution of 1 µm. The results for the effective
permittivity have no physical value above the first band gap, in the right half of the plots.
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The wires may also be arranged parallel to all three axes, forming a nearly
isotropic plasma. Somewhat surprisingly, its behaviour differs depending on
whether the wires are interconnected or not [191].

Behaviour close to the effective plasma frequency The dependence of fp on the
wire radius ρw ∈ {1, 2, 4, 8, 16} µm is illustrated by the spectra of reflectance, trans-
mittance, refractive index and effective permittivity in Fig. 5.5. The effective plasma
frequency fp can be easily determined as the point where ε′eff(f) crosses zero in the
plot 5.5d. This coincides with the lower edge of the first photonic band in Fig. 5.5c.

At frequencies close to fp, but slightly higher, the phase velocity in nonmagnetic
media

vp =
c

n
=

c√
εeff(f)

(5.6)
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Figure 5.6: Drawings of one unit cell of (a) the wire array, (b) of the cut wire array. The
unit cell is outlined by a dashed line.
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is proportional to (f −fp)−1/2 and thus very high. Conversely, the group velocity [24]

vg =
c

n+ f ∂n
∂f

(5.7)

vanishes, being proportional to (f − fp)
+1/2. Hence the product of the phase and

group velocities close to fp remains nearly constant c2, which is a phenomenon
commonly encountered also near the cut-off frequency of metallic waveguides.

Exactly at f = fp, the wire array medium can support the longitudinal oscilla-
tions of the charges, oriented parallel to the wires. They bear a close resemblance to
plasmons in bulk media [193].

Notice that for a single cell, the transition from negative to positive permittivity
is not accompanied by any obvious spectral feature on the
reflectance/transmittance plot. Except for the zero frequency, a layer of wires has
always a nonzero transmittance that increases with frequency. Independent of the
wire conductivity, it is not possible to build a 100% efficient wire polarizer.

Plasma frequency as a function of wire radius and unit cell size From Fig. 5.5,
it can be also deduced that fp is approximately proportional to the logarithm of
ρw if ρw � a. This is related to the fact that thicker wires should have a lower
self-inductance per unit length. The effect of wire spacing a is the opposite; with
a growing, the magnetic field has more space to circulate around the wire and fp
reduces.

Different analytical models were proposed for the description of both effects.
The early model by Pendry et al. from 1996 [193] works well for thin wires:

fp(ρw, a) ≈
√

c2

2π a2 ln( a
ρw

)
. (5.8)

Its refinement by Maslovski et al. from 2003 [194] should be valid also for wires
with a relatively high filling fraction:

fp(ρw, a) ≈
√√√√ c2

2π a2 ln
(

a2

4ρw(a−ρw)

) (5.9)
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Figure 5.7: Comparison
of numerical results (dots)
and two analytical models
(solid and dotted lines) for
plasma frequency fp of a
wire medium: (a) fp as a
function of wire spacing for
two different wire radii of
16 µm and 8 µm (red and
blue curves/dots, respec-
tively). Added for compari-
son are the empty symbols,
correspond to FDTD sim-
ulations with significantly
reduced resolution (hence
marked as ”LR”). (b) fp
as a function of wire radius
ρw.

We ran two series of wire array simulations as a simple verification of the FDTD
algorithm against the mentioned analytical models. In the first series plotted in
Fig. 5.7a, we kept the wire radius constant ρw = 16µm, or and changed the wire
spacing a (red points). We changed the radius to ρw = 8µm in the second batch,
marked by blue points. For comparison, we plotted the plasma frequency predicted
by both analytical models from Eqs. (5.9, 5.8) as full and dotted lines with the color
corresponding to the simulation parameters, respectively.

To test the possible error introduced by the FDTD algorithm, we ran the simula-
tion with a different resolution - results with a fine (1 µm) grid are denoted by full
circles, results ”LR” with a coarse (4 µm) grid by empty squares which are located
relatively close to the respective high-resolution results.

In the second series of simulations plotted in Fig. 5.7b, we kept the spacing
constant as a = 100 µm and changed the wire radius r. The analytical model and
FDTD simulations give similar results (within 5 %) even for wire radii approaching
roughly a/4. For thicker wires, the analytical model predicts higher plasma fre-
quency than FDTD. To conclude, the results of the model presented by Maslovski
match the FDTD simulations with good accuracy for thin wires (where r . a/5).
One possible application of the wire media is in constructing of negative-refractive-
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index metamaterials, where a small negative real value of the effective permittivity
is desired.

5.3 Cut wires

Individual resonances The low-frequency behaviour of a wire array is
determined by the distributed inductance of the wires, which introduces a
negative effective permittivity up to the plasma frequency fp. When the wires are
cut in each unit cell as shown in Fig. 5.6b, a three-dimensional periodic lattice of
wire segments is formed. Its important parameters are not only the inductance
along each antenna, but also the capacitance across the gap between wires. In a
direct analogy with a series LC (coil-capacitor) circuit, such antennas exhibit
individual resonances at some nonzero resonant frequency 0 < fr < fp when the cut
distance dc is small compared to the unit cell size a.

These resonances couple to the electromagnetic field by means of their electric
dipole moments, so they are denoted shortly as electric resonances. Still, the mag-
netic field is essential for the resonance; in fact, the energy is exchanged between
the resonant electric and magnetic fields during each quarter-period. The situation
partially changes when the unit cell dimensions decrease; at optical frequencies,
the energy is exchanged between the electric field and the kinetic energy of the
electrons, while the magnetic field circulating around the metallic particle plays a
minor role only. Such a regime is known as plasmonic resonances and was described
by Mie in 1908 [195].

The spectra of cut-wire structures for different cut distances dc are depicted in
Fig. 5.8. Starting with the thinnest wires of ρw = 2 µm (red curves), we can iden-
tify the individual resonance at frequency close to 1200 GHz where even a single
layer of unit cells reflects the whole wave amplitude and the transmittance drops to
zero. Towards higher or lower frequencies from the resonance, the transmittance is
relatively high.

Dispersion near individual resonances Each individual resonance in a periodic
structure forms a characteristic shape in the spectrum of effective index of refrac-
tion Neff(f). The following description will therefore be applicable to individual
resonances in other resonant structures, as well.

1. At frequencies under the resonance, the electric dipole of the antenna oscil-
lates in phase with the driving field and the resonance contributes to the ef-
fective index of refraction N ′eff(f). The spectrum of a periodic structure with
an individual resonance differs from that of a homogeneous medium which
was already described by the Lorentzian resonance curve in Fig. 2.2b. At
some frequency below the resonance f . fr, the index of refraction N ′eff(f)
becomes high enough to join the closest Brillouin zone boundary which was
above it. From this point up to the resonant frequency fr,Neff(f) has a nonzero
imaginary part, and the medium exhibits a band gap.
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Figure 5.8: Amplitude of (a) reflectance, (b) transmittance, (c) effective index of refraction
Neff = N ′eff+iN ′′eff for the arrays of cut wires of radius ρw = 1 µm made of gold, depending on
the cut distance ρw ∈ {2, 4, 8, 16, 32, 64} µm. The unit cell is cubic and its size is a = 100
µm.
In plot (d), the effective permittivity is illustrated for the thinnest cut distance dc = 2
µm. Although retrieved for the entire spectrum, the local effective parameters have physical
meaning only when the wavelength is much larger than a, i.e. roughly from 0 to 500 GHz
and from 1220 to 1280 GHz.
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2. Exactly at the resonant frequency, the interaction of the dipole with the field
changes its sign, since above the resonance, the dipole starts to be oriented
opposite to the driving field. The real part of the refractive indexN ′eff(f) ceases
to follow one Brillouin zone and it traverses to another Brillouin zone below
it. In local media, individual resonances appear to be the only occasions for
N ′eff(f) to traverse downwards.

The imaginary part of the refractive index,N ′′eff(f), is required by the Kramers-
Kronig relations to exhibit a sharp peak at the resonant frequency, which is
superposed over the broader background stemming from the band gap (see
Fig. 5.8c).
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The spectral width of the transition and peak is inversely proportional to the
quality of the resonance. Whenever the structure is built from realistic mate-
rials with nonzero losses and its spatial dispersion can be neglected, Neff(f) is
a continuous complex function.

3. The band gap continues up to some frequency f > fr, where another photonic
band begins between the same pair of Brillouin zones.

The most important observation is that the resonance curves of Neff(f) in peri-
odic structures are constrained between the closest two Brillouin zone boundaries,
which can be understood as the ”floor” and ”ceiling” for the dispersion curve. Ap-
parently a single individual resonance cannot shift the transmittance phase by more
than π per each layer of unit cells. It can therefore introduce a band of imaginary
Neff, but this is not sufficient for Neff to reach negative values. For this, elements
with both electric and magnetic dipoles opposite to the driving field have to be
combined.

Another observation is that two resonances of the same type, i.e. either both
with an electric dipole, or both with a magnetic dipole, cannot be combined into a
single wide region of negative effective parameter. This is due to the dipole chang-
ing its sign below and above the resonant frequency. Combination of multiple ele-
ments of different resonant frequencies thus leads either to multiple separate bands,
or to a wide spectral region of high losses.

Effects of the cut distance dc An increase in the cut distance dc clearly increases
the resonant frequency fc (see Fig. 5.8). The reason is twofold: for a cut width small
relative to the unit cell size, dc � a, it is mostly due to a reduced capacitive coupling
between the cut wires; for a cut width comparable to unit cell size, dc & a, reduction
of the cut-wire inductance is more important.

Both the individual and Bragg-type resonances can be identified in the plot for
different dc in Fig. 5.8c. When dc ∼ 16 µm, the individual resonance shifts above
1.5 THz and exchanges its order with the Bragg band gap. For dc & 32 µm on, the
individual resonances are similar to those for dc ∼ 2 µm, but are shifted by one
Brillouin zone up.

Effects of the wire radius ρw The dependence of the resonant frequency fc on the
wire radius, Fig. 5.9, is somewhat more complicated: For thin enough wires in the
a = 100 µm unit cell, the resonant frequency decreases with growing ρw, since the
inter-wire capacity increases. For high enough ρw the opposite mechanism prevails;
fc(ρw) then starts growing as a result of reduction of the wire inductance.

While the changes in the cut-wire radius ρw relatively weakly influence the res-
onant frequency, they have a major impact on the strength of the individual reso-
nances. Thick wires lead to a stronger reflectance out of resonances, which also
reflects itself in the wider band gap in Fig. 5.9c.

Experimental measurement of cut wire spectra Although we did not fabricate
any cut-wire metamaterial, we used the terahertz time-domain spectroscopy to
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Figure 5.9: Amplitude of (a) reflectance, (b) transmittance and (c) effective index of refrac-
tion Neff = N ′eff + iN ′′eff for a metamaterial made of cut wires with radius ρw. Cut distance
dc = 2 µm, unit cell size a = 100 µm (see Fig. 5.6).
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characterise cut-wire-on-silicon structures, one representative of which is
photographed and sketched in Fig. 5.10. The metallic wires were deposited on a
silicon substrate, and at their ends, the silicon was doped to form diode-like
transitions.

This kind of structure was designed to operate as a switch for the terahertz ra-
diation, controlled by the current that flows along the orientation of the wires and
modulates the conductivity of semiconductor transitions at the ends of each cut
wire. For an unknown reason, the modulation of the terahertz signal was very
weak, if any, in all of 7 supplied samples. The only observed kind of systematic
modulation manifested itself as a 2.2% drop in amplitude of the transmitted tera-
hertz waveform, and its temporal advance by no more than 18 fs. These values
required to feed the structure with a strong modulation signal, dissipating roughly
10 watt peak thermal power.

The sample presented above in Fig. 5.10, though not applicable as a modulator,
exhibits a clear electric resonance around 1550 GHz. This resonance is substantially
broadened and weakened by the losses of the structure (red line in Fig. 5.11). A
FDTD simulation of thin metallic stripes 30 µm long and 6.5 µm wide on a silicon
substrate did not match the experimental spectra quite well (green line in Fig. 5.11).
A much better match was obtained by simple elongation of the conductive stripes
to 40 µm (blue line in Fig. 5.11). This may reflect the fact that the wires were sur-
rounded by highly doped, conductive zones of silicon. Although not taking into
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Figure 5.10: The sample of cut wires (pale yellow) on silicon (cyan) substrate. (a) Natural-
colour photograph from an optical microscope, (b) Geometry of the wires in micrometres.
They were measured to be 6.5 µm wide and 30 µm long. The periodicity of cut-wires was
30× 50 µm.
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account the dissipative losses, such a simulation identifies correctly the resonance
frequency of the stripes. It also, at least quantitatively, matches the asymmetric
spectral shape, which is caused by the onset of diffraction into the silicon substrate
at fc = c/(50 µm)/NSi ≈ 1730 GHz.

The presented simulations were not optimized for the dissipative losses in sil-
icon, which could be modelled with more detailed knowledge of the structure
preparation.
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Figure 5.11: Comparison of experimental (red line) and simulated transmittance spectra
(green and blue lines) of the cut-wire array on a silicon substrate. The green line corresponds
to the original geometry from Fig. 5.10b; a better match with the experiment is obtained by
changing the length of stripes from 30 to 40 µm (blue line).
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5.4 Split-ring resonator

Resonances with magnetic dipole moment The fundamental resonance in a cut
wire has an electric dipole moment only. The resonant magnetic field circulates
around the wire and due to its rotational symmetry along the x-axis, the magnetic
dipole moment is zero. Other structures can support resonances without symmetry
with regard to the x-axis, thus having a magnetic dipole moment.

One of the simplest examples is formed by bending a wire into a ”C”-shaped
split-ring resonator (SRR). To reduce the resonant frequency without changing the
SRR diameter, capacitor pads can be added to the cut, as shown in a side view
in Fig. 5.12a. The first resonance in its spectrum has a dominant magnetic dipole
moment, and it will be denoted simply as the magnetic resonance. The electric current
flows through the wire along a circular path, while the magnetic field has a toroidal
shape around the wire.

The very concept of SRR is at least as old as the Hertz’s experiments with the
spark-gap transmitter from the 1880s. As described in the historical review of Ref.
[196, pp. 120–126], first SRR arrays were built in the early 1980s with the aim to
build an effective medium with highly lossy complex permeability; a decade later
asymmetric SRRs were used to achieve strong bianisotropy. Many publications cite
Refs. [90, 92] from Pendry et al. as the first application of SRR array for achieving
negative effective permeability and index of refraction, respectively. Since then, the
number of SRR-related publications has grown rapidly.

Symmetry of the split ring resonator The orientation of the splitting in the SRR
determines the possible coupling between its electric and magnetic dipoles. In par-
ticular, when the splitting is on the front or rear side of the ring relative to the
direction of wave propagation, the predominantly magnetic resonance creates also
a weak electric dipole, leading to optical activity [197].

Simultaneously, it precludes to use the common homogenisation approaches,
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Figure 5.12: Variants of the split-ring resonators, viewed from the side perpendicular to the
magnetic field: (a) classical SRR with low symmetry, (b) symmetric SRR with two splits.

(a) (b)

H
K

E

since the scattering parameters retrieval method assumes that the structure is sym-
metric along the axis of wave propagation, i.e., that its reflectance is equal from both
sides. Asymmetric structures therefore have properties that cannot be matched by
any (reciprocal) homogeneous medium.

The symmetry is restored again by considering a symmetric split ring resonator
(sSRR), depicted in Fig. 5.12b, which has two splittings at opposing position on the
ring. This is documented by the results in Fig. 5.14. The SRR with a single splitting
is represented by red lines; while its magnitude of reflectance and transmittance in
the plots 5.14a,b appear similar to these of a cut wire, the computation of the refrac-
tive index yields a spectrum (in panel 5.14c) which has no reasonable interpretation
near the resonance at 500 GHz and above it.

The symmetric resonator is represented by green curves. In Fig. 5.14c, the refrac-
tive index follows a resonance pattern that was already described on the example
of the cut wires: the curve rises up to the upper Brillouin zone boundary, follows
it for a span of frequencies, drops to the Brillouin zone boundary below, follows it
again and then a next band starts.

At higher frequencies, outside the range of Fig. 5.14, the SRR exhibits also an
electric resonance where the current flows symmetrically along both its arms. It
is assumed that any structure should support an infinite number of resonances, of
which only the lowest few are usually of practical interest.

Antiresonances in local effective parameters In the case of symmetric split-ring
resonators, the first resonance possesses only the magnetic dipole moment, as fol-
lows from the symmetry of the resonant fields. This fact implies a strong resonant
behaviour of the permeability µeff(f) (green curve in Fig. 5.14e, between 600 and
700 GHz).

The permittivity spectrum εeff(f) is, however, also affected by the magnetic
dipole resonance (Fig. 5.14d). The impact of the magnetic resonance on εeff(f) is
several times weaker than on µeff(f), and more importantly, it has the opposite sign:
The real part of ε′eff(f) is reduced at frequencies below the resonance, and enhanced
above it. Simultaneously, in the chosen eiωt convention, the positive sign of the
imaginary part ε′′eff(f) would imply an amplification of the electric field oscillating
around 650 GHz, which is impossible in a structure composed of lossy materials
only. This feature in the spectrum is sometimes described as an antiresonance and
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has incited much discussion in the literature [106, 107].

Physical relevance of effective parameters in their local approximation We be-
lieve that the influence of a magnetic resonance on εeff(f), or conversely, of an elec-
tric resonance of µeff(f), is a mere artifact of approximating a strongly nonlocal
structure with a concept of local effective parameters. It can be shown that antires-
onances become stronger at higher frequencies, as the wavelength 2π/K becomes
similar to the unit cell size a. In Ref. [107], it is argued that

the periodicity cannot . . . be the only explanation since qualitatively similar an-
tiresonances have been reported using the measured data for a disordered high
permittivity composite.

The true origin of antiresonances and other deviations of εeff(f) and µeff(f) from the
Lorentzian resonance curve can however be attributed to the presence of photonic
band gaps and nonlocal response of the structure. These effects are, to some ex-
tent, maintained also under randomizing the unit cell positions [109], and there is
probably no need to seek for another explanation.

Comparison of the s-parameters method and current-driven homogenisation
With local effective parameters εeff(f) and µeff(f) appearing to lose their physical
meaning in a frequency range near a resonance, the question remains to what
extent the dispersion curves, or equivalently, the spectrum of effective index of
refraction Neff(f) are applicable. While the Bloch’s theorem in Eq. (2.60) suggests
that the dispersion curves for the Bloch’s wavevector K can be determined for any
periodic structure, the s-parameter method might return invalid values.

Dispersion curves obtained by the s-parameters method and by the current-
driven homogenisation (CDH) are compared in Fig. 5.15. Although these methods
are fundamentally different, their results overlap, and thus one can assume that
the array of symmetric split-ring resonators can be treated as homogeneous with a
well-defined index of refraction Neff(f) for the Bloch’s wave over the whole spec-
trum. Its local effective parameters εeff(f) and µeff(f), however, seem to have no
useful physical interpretation near the resonances, where the Bloch’s wavelength is
similar to the unit cell size. They remain useful farther from the resonance, though.

Variants of split-ring resonators Diverse metamaterial designs based on the SRR
principle were developed. Many SRR designs involve a smaller ring nested inside
the original one, as shown in Fig. 5.13a,b in the asymmetric and symmetric vari-
ants. The long narrow gap between the inner and outer split rings enhances their
capacitive coupling. In this way, the frequency of the magnetic resonance can be
reduced without increasing the overall SRR dimensions. Such designs usually do
not need capacitor pads, and can be made by etching or microlitography.

A modification of this double split-ring design includes a cross-connection be-
tween the inner and outer conductors as in Fig. 5.13c; this version breaks the mirror
symmetry, but restores the central symmetry. Such resonators can be attached to
each side of the unit cell, forming a nearly-isotropic, three-dimensional metamate-
rial [197]. However, some highly symmetric structures that eliminate anisotropy

137



Figure 5.13: Other variants of split-ring resonators: (a) double SRR, (b) symmetric ver-
sion thereof, (c) double SRR with cross-connection between the inner and outer rings, (d)
illustration of a square variant of the double SRR, (e) ”omega” structure aimed to introduce
N ′eff < 0, (f) cut-wire pair

(a) (b) (c)

(d) (e) (f)

H
K

E

still enable near-field coupling between the electric and magnetic fields; this effect
is sometimes denoted as bi-isotropy [198].

The square ”ring” resonator (Fig. 5.13d) is also widely used, without any sub-
stantial difference from the round SRR.

The omega structure was designed to emulate the operation of a SRR and a wire
simultaneously [199, pp. 62–72], by interconnecting the ends of a SRR along the
x-axis (Fig. 5.13e).

All SRR structures in Fig. 5.13 can be made flat in the plane perpendicular to the
magnetic field, which facilitates their fabrication. At terahertz and higher frequen-
cies, using a thin metal film should not be much detrimental to the SRR conductiv-
ity, since the skin depth caused by eddy currents is often submicroscopic [200].

A similar way of operation is achieved by structures which extend infinitely in
the direction of the magnetic field of the incident wave. This allows one to fabricate
magnetic resonators by rolling stripes of a semi-metallised plastic foil, producing
a swiss-roll metamaterial [200], or by partially sputter-coating a polymer fibre by a
metal [201]. Such structures however seem to exhibit relatively high losses when
applied above the microwave range.

The metallic cut-wire pair, or also strip pair, metamaterial depicted in Fig. 5.13f,
was designed for operation in the infrared or optical range. It can be understood as
a split-ring resonator flattened along the direction of the wave vector. The geometry
is tuned so that the electric and magnetic resonances overlap.

At the radio frequency range up to 100s MHz, each split-ring resonator can be
connected to a small electric circuit which may provide gain [202] in the metama-
terial. The effective parameter spectra of such an active metamaterial do not have
to conform to the Kramers-Kronig relations anymore, since the spectrum of the me-
dium response may acquire any sign of its imaginary part.
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SRR in a wire array The analysis of the wire arrays has shown that at low fre-
quencies, their effective permittivity is physically valid and has a negative value.
Likewise, the symmetric SRRs have a region in the spectrum above its magnetic
resonance where the effective permeability is negative, too.

A combination of these two structures yields a region of negative index of re-
fraction, probably the first [92] and most prominent metamaterial design to achieve
this. The possibility of combining structures that interact exclusively with magnetic
and electric field is nontrivial, discussed in more detail e.g. Refs. [203, 204].

The resulting effective parameters are represented by the blue line in Fig. 5.14.
Its spectrum of the effective index of refraction resembles that of the wire array up
to 630 GHz, where it drops by one Brillouin zone down at the resonant frequency.
As a rule, a single individual resonance always causesN ′eff(f) to drop from one Bril-
louin zone boundary to another, which should be observed in all correctly retrieved
spectra.

Notice that the magnetic resonances cause a drop in N ′eff(f) even without the
wire array (green curve in Fig. 5.14c), but in such a case it happens between the
first Brillouin zone boundary and zero. Without wires, N ′eff does not reach negative
values.

By contrast, a magnetic resonance in the combined SRR-wire structure intro-
duces a narrow region, still within the photonic band gap, where the index of re-
fraction follows the minus-first Brillouin zone boundary:

Neff(f) = − c

2af
, (5.10)

with a being the unit cell size. This means that the whole photonic band spanning
from 635 to 670 GHz has N ′eff < 0. The effective permittivity and permeability with
physical meaning can be retrieved only whenN ′eff comes close to zero, roughly from
650 to 670 GHz. Then they are correctly retrieved as both negative, as can be indeed
seen in Figs. 5.14d,e (blue lines).

Fano resonance The spectrum of reflectance magnitude |r(f)| for the sSRR-wire
structure (blue line in Fig. 5.14a) has a relatively complex shape – starting from
a high reflectance introduced by the wire array, it rises below the magnetic reso-
nance, then it drops to zero around 660 GHz, and it rises until its local maximum
on 750 GHz is reached. The resonance profile differs significantly from the arguably
simpler spectrum of the cut wires (Figs. 5.8a and 5.9a), where the resonance was ac-
companied by a single peak in reflectance. The reason is in that with the sSRR-wire
structure, |r(f)| is a linear superposition of the wave scattered by the interaction of
the structure with the electric dipole, which has a relatively large amplitude r1(f)
over broad spectral range, and another wave r2(f) scattered by the magnetic dipole
of the split-ring which is prominent only close to its magnetic resonance, between
550 and 750 GHz.

Both scattered components, r1(f) and r2(f), are complex functions. The phase of
the wave scattered by a resonant element differs almost by π when f is below and
above the resonance. The impact on the plot of the overall reflectance is in a change
from a constructive to destructive interference between the two components.
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Such typical spectral features, observed whenever a narrower resonance over-
laps with another broader one, are known as Fano resonances, and can be found on
most following plots of |r(f)| or |t(f)|. The Fano spectral profile comes from a nat-
ural interference between waves scattered by different mechanisms: whenever the
spectrum of a structure close to a magnetic dipole resonance does not fall into the
class of possible Fano resonance profiles, it suggests the homogenisation has failed.
For an example of such an error, see the spectra of the asymmetric SRR in Fig. 5.14.
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Figure 5.14: Spectra obtained by simulations of THz waves incident on three different struc-
tures: the asymmetric SRR with split width d = 4 µm (red curves), its symmetric variant
sSRR (double split width d = 2 µm) and the same sSRR with wire grid added (blue curves).
(a) Amplitude of reflectance, (b) amplitude of transmittance, (c) effective index of refraction,
(d) effective permittivity εeff and (e) effective permeability µeff. Note that in panels (c)-(e),
the dispersion curves nor effective parameters for the asymmetric SRR could not be deter-
mined by the scattering parameters method. In all cases, the outer ring radius was ρ = 30
µm, conductor cross-section ∆ρ = 6 µm and unit cell size a = 100 µm.
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Figure 5.15: Current-driven homogenisation results, shown as bubbles, indicating the dis-
persion curves for (a) a symmetric split-ring resonator and (b) the same with a wire mesh.
The area of each bubble corresponds to the relative amplitude of the respective harmonic
component at the given frequency, as detected by the FDM algorithm; the blue shading on
the background denotes the amplitude of the excited electric field as computed directly by
Fourier transform.
The results of the scattering-parameters method are overlaid as green lines; these show the
same data as the green and blue solid lines from Fig. 5.14c.
To save plotting space, in the right panel, the negative-index range of frequencies between
630 and 670 GHz was mirrored against the K = 0 vertical axis and plotted by a dashed
green line.
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5.5 Combined electric and magnetic resonator

Effect of the central bar in SRR In contrast to all previously discussed struc-
tures, the fundamental resonance of a split-ring resonator (SRR) couples to the field
through a magnetic dipole and the electric current flows around the circumference
of the SRR. Therefore, the frequency of the magnetic resonance does not change sig-
nificantly even when central bar parallel to the incident electric field is added (see
Fig. 5.16a). From the symmetry of the resonant fields it follows that in the magnetic
resonance zero current flows through the central bar.

However, a new electric resonance (Fig. 5.17b) is introduced by adding the bar,
characterized by a current flowing through the central bar antiparallel to that con-
ducted through the outer SRR arms. Simulations have shown that the correspond-
ing frequency is lower compared to the original parallel electric resonance (Fig.
5.17c), and similar to the frequency of the magnetic resonance (Fig. 5.17a).

Figure 5.16: (a) A modification of a split-ring resonator with a central bar, (b) a similar
structure where the central bar was split by another circular capacitor with a radius ρc,
allowing to tune the antiparallel electric resonance

(a)

ρcρr

(b)

Tuning the frequency of the antiparallel electric resonance The spectra of cut
wires (Fig. 5.8) suggest that each electric resonance, unless it is preceded by a Bragg
band gap, or excessively lossy, introduces a region in the spectrum where the local
effective permittivity has a physically meaningful and negative value. Under the
same conditions, the magnetic resonance introduces a region of µeff(f) < 0.

Figure 5.17: Three low-frequency resonances in the combined SRRs: (a) magnetic reso-
nance, (b) antiparallel electric resonance, (c) parallel electric resonance.
The actual order of the first two resonances in the spectrum is determined by the inner
capacitor radius ρc and other parameters of the resonator.
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Figure 5.18: Simulated spectra of the electric-magnetic resonators shown in Fig. 5.16:
amplitude of (a) reflectance, (b) transmittance and (c) effective index of refraction Neff =
N ′eff + iN ′′eff. The frequency of the electric resonance is tuned by the series capacitor radius ρc
on the central bar.
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By optimizing the structure geometry, the resonances can be tuned against each
other so that the regions of εeff(f) < 0 and µeff(f) < 0 overlap. This is the con-
ventional approach to design a metamaterial with a negative index of refraction;
applying it to the electro-magnetic resonator leads to an array of independent, sep-
arate elements, which may be an advantage over embedding SRRs in a wire array.
One of the means of tuning the frequency of the antiparallel electric resonance is to
divide the central bar by an inner capacitor as shown in Fig. 5.16b.

If the inner capacitor is relatively small, with inner capacitor radius ρc = 6 µm,
the electric resonance is located around 1150 GHz, and it shifts down to 940 GHz
when ρc is increased to 8 µm. By contrast, the magnetic resonance is virtually in-
dependent of ρc and remains close to 800 GHz. Both individual resonances can be
identified clearly in the spectra by the points of zero transmittance and by the cor-
responding steep, but still continuous, drops in the refractive index (red and light
green curves in Fig. 5.18). For ρc ≤ 8 µm, the resonances are separated by a pho-
tonic band, indicating that the regions of εeff(f) < 0 and µeff(f) < 0 do not overlap.

However an attempt to reduce the frequency of the electric resonance further,
in order to obtain negative index of refraction N ′eff < 0 in the region of overlap,
leads to confusing results (cyan curves in Fig. 5.18). For ρc ∈ 〈10, 16〉 µm, the scat-
tering parameters method retrieves apparently erroneous spectra with two distinct
band gaps, but without any individual resonance. A more detailed parametric scan
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Figure 5.19: (a) Reflectance and (b) the imaginary part of the refractive index of the electro-
magnetic split-ring resonator, retrieved by the scattering parameters method,
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through these problematic values of ρc can be found in Fig. 5.19.
The effective parameters retrieved by the s-parameters method become easy to

interpret for ρc ≥ 18 µm. The antiparallel resonance at 690 GHz is again well sepa-
rated from the magnetic one, which remains near its original frequency (dark blue
curves in Fig. 5.18). Further explanation of these results is beyond the capabilities
of the scattering parameters method, and it necessitates the more expensive com-
putational approach using the current-driven homogenisation (CDH) method.

Current-driven homogenisation and spatial dispersion CDH results for the
same structure parameters, ρc ∈ {6, 8, 10, 18} µm are presented in Figs. 5.20 and
5.21. For comparison, the dispersion curves corresponding to the N ′eff(f) retrieved
by the scattering parameters method are shown by green lines.

For ρc = 6 µm, both retrieval methods yield relatively similar results, and they
identify correctly two indirect band gaps, the first of which corresponds to the mag-
netic resonance, and the second to the antiparallel electric one. The match is not as
good as in Fig. 5.15, though. Namely the magnetic resonance around 800 GHz ap-
pears somewhat wider when retrieved by the s-parameters method, compared to
CDH. The deviation can be attributed to the structure being surrounded by vacuum
instead of sensing the near fields of the surrounding cells (cf. page 98).

The value of ρc = 8 µm used for the right panel of Fig. 5.20 was not chosen
randomly, since for this inner capacitor radius, the spatial dispersion starts to af-
fect substantially the dispersion curve of the second photonic band. It starts in
the Γ point at 794 GHz with a positive group velocity and reaches its maximum
of 890 GHz, but with growing K, the group velocity changes its sign and the band
ends in the X point at ca. 887 GHz. At a given frequency between 887 and 890 GHz,
two solutions of the wave equation exist that differ merely by the wavevector. The
s-parameters method has no means of distinguishing them, and accordingly, the
retrieved dispersion curve deviates from that retrieved by CDH.

The spatial dispersion is even more evident in Fig. 5.21, where the frequen-
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cies of the second photonic band in the Γ and X points come close to each other,
amounting to 784 and 795 GHz, respectively. The central maximum of the band
is on 828 GHz, which explains why the s-parameters method no longer correctly
determines the dispersion curve shape, nor it identifies any of the resonances.

These issues persist until ρc ≥ 18 µm, when the second photonic band becomes
a relatively flat function of the wavenumber K. Both resonances are then retrieved
correctly again, except for a systematic error in the frequency determination which
may arise from the already discussed difference in the simulation geometry used
by the s-parameters method.

Is this a negative-refraction structure? The electro-magnetic resonator was exam-
ined as an example structure which, particularly in its magnetic resonance, exhibits
a strong electric quadrupole moment, leading to a prominent spatial dispersion.
Figures 5.20 and 5.21 illustrated that not only the s-parameters retrieval algorithm
fails, but also the very idea of describing the structure behaviour in terms of re-
fractive index Neff(f) cannot describe all dispersion curves observed the physical
reality. A similar failure of the s-parameters method in homogenisation of an array
of SRRs in a wire lattice was reported previously, [132], showing that Neff(f) can be
determined only for a relatively big spacing between the metallic elements.

For particular values of the inner capacitor radius ρc ∈ 〈8, 16〉 µm, the second
photonic band supports simultaneously a wave of group velocity collinear with
the phase velocity, and an additional wave with a higher wavenumber and opposite
direction of these velocities.

The interface of this metamaterial with vacuum should exhibit negative refrac-
tion, provided the auxiliary boundary conditions are arranged to couple all energy
exclusively to the described additional wave with a relatively high Bloch’s wave-
vector. In any other case, the single-valued index of refraction is not sufficient for
description of this kind of metamaterial – even for propagation nearly parallel to
the optical axis.
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Figure 5.20: Current-driven homogenisation results for the combined electric-magnetic res-
onator, differing by the inner capacitor radius (a) ρc = 6 µm, (b) ρc = 8 µm.
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Figure 5.21: Current-driven homogenisation results for the combined electric-magnetic res-
onator, differing by the inner capacitor radius (a) ρc = 10 µm, (b) ρc = 18 µm.
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5.6 Dielectric spheres

Mie resonances Already in Eqs. (3.11, 3.12) it was assumed that at higher frequen-
cies, there is no difference between the effect of conduction and the polarisation
currents. The current flowing around a split-ring resonator has a direct analogy in
the polarisation current circulating in a dielectric particle, be it a torus of dielectric
[205], or a sphere [40]. The capacitor of the SRR is then replaced by the distributed
capacitance of the whole dielectric. For the first resonance in spherical dielectric
particles, the magnetic dipole moment induced by the polarisation current points
through the sphere center, as can be found from the resonant field shape in Fig.
5.22a. The resonant frequency is inversely proportional to the radius ρ of the sphere
and it decreases monotonously with the growth of the dielectric permittivity εr.

The second resonance (Fig. 5.22b) has an electric dipole moment. It is similar
to the magnetic one, but the electric and magnetic fields exchange their topology:
The magnetic field circulates around the axis of the sphere, and the polarisation
current forms the electric dipole. In spite of the similarity of both resonances, the
frequency of the magnetic resonance is lower, since it allows the electric field to be
more localized in the dielectric volume. In contrast, for the electric resonance, most
of the streamlines of the electric field have to pass through the surrounding air (see
Fig 5.22a,b).

Figure 5.22: The electric field component Ex (shaded in blue-white-red) and magnetic field
components Hy, Hz (plotted as vectors) for (a) the magnetic and (b) electric Mie resonances
in a dielectric sphere. The figure is in the y-z plane of mirror symmetry, so the fields have
no other nonzero components than those shown here. On the right side, the vectors depict
the right-hand vector triplet of the incident plane wave.
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An analytical theory of electromagnetic resonances in dielectric spheres (or rods)
was developed by Mie in 1908 [195], and correspondingly they are denoted as Mie
resonances. Dielectric resonators operate in a similar way to a series L-C circuit, as
was noticed by Richtmyer in 1939 [206]. Few decades later, the dielectric resonator
found its use in the developing microwave technology; usually it takes the form of
a millimetre-sized ceramic disc glued to a microstrip circuits.

The Mie theory describes the scattering from a single particle surrounded by
vacuum, but for high-permittivity dielectrics, the resonant fields are well confined
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in the dielectric volume and are not appreciably affected by the presence of the
neighbouring cells, so the Mie theory remains applicable.

An artificial dielectric consisting of dielectric particles with effective permeabil-
ity differing from unity was considered by Lewin in 1947 [88]; apparently it was not
until 2002 when O’Brien et al. computed [40] that the effective permeability of such
a structure may be negative.

Infinite number of the higher-order resonances exist [195, pp. 407-408], resem-
bling the set of single-electron orbitals around an atomic nucleus. Many of these,
e.g. most d-type orbitals, have zero electric or magnetic dipole moments. Dipole
moments of many others are nonzero, but are not oriented parallel to the fields of
the incident wave, and do not couple to the electromagnetic wave. In the spec-
trum of an array of dielectric spheres, one can identify clearly an alternating series
of electric and magnetic resonances, of which the first three are easy to identify in
Fig. 5.23. Each of them manifests itself as a peak in reflectance, and as a pair of
resonance in µeff(f) and antiresonance in εeff(f), or vice versa.

Dielectric losses Unlike split-ring resonators, where the high-frequency dissipa-
tive losses depend on many factors such as the metal surface, eddy currents and
fine details in the geometry, the losses in dielectric resonators can be more accu-
rately modelled and their effect can be computed reliably by the FDTD simulation.

We used a realistic model [207] of permittivity of polycrystalline rutile (TiO2),
which was already plotted in Fig. 3.2. In the terahertz range it counts among high-
permittivity dielectrics with relatively low losses compared to similar materials:

εr(f = 1 THz) = 94.2− 2.43i. (5.11)

The actual permittivity of the experimentally measured samples depends on their
preparation, in particular the volume fraction of microscopic voids. For such com-
posites, Ref. [207] gives only the ratio of ε′′r/ε′r, but since ε′r could be determined
from the resonant frequencies in the experimental spectra, also the imaginary part
could be inferred.

The reflectance, transmittance and effective parameters of rutile spheres with
radius ρ = 15 µm are compared in Fig. 5.23. Three different levels of losses were
considered. The realistic value was denoted as 100 %, and it was accompanied with
hypothetic low-loss dielectrics with the same real part of ε′r, but the imaginary part
ε′′r artificially reduced to 10 % and 1 %.

In all three cases, the magnetic resonance is located at 530 GHz and the electric
one at 790 GHz, the second magnetic resonance follows at 1040 GHz. As a natural
result of the Lorentzian model, the dielectric losses grow proportional to the fre-
quency. Notice that around the resonant frequencies, the transmittance is higher in
the case with high losses.

When the realistic losses are taken into account, the curves of the effective pa-
rameters in Figs. 5.23c,d,e become smoother and approach the familiar curve of the
damped oscillator in Fig. 2.2. Strong enough losses can even prevent the formation
of regions with negative effective parameters. Note, however, that formally N ′eff
can become negative [63, pp. 12–15] even when either ε′eff > 0 or µ′eff > 0. Such
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Figure 5.23: (a) Amplitude of reflectance, (b) amplitude of transmittance, (c) effective index
of refraction Neff = N ′eff + iN ′′eff, (d) effective permittivity εeff = ε′eff + iε′′eff and (e) effective
permeability µeff = µ′eff + iµ′′eff of TiO2 spheres with varied loss compared to the natural one
from Ref. [207]; sphere radius ρ = 30 µm, unit cell size a = 100 µm.
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a negative-index medium is however inevitably extremely lossy, which is repre-
sented by its figure of merit

FOM :=
N ′eff(f)

N ′′eff(f)
. 10. (5.12)

At the right hand side of the plot, for f ∼ a/(2c) ≈ 1.5 THz, the structure reaches
a Bragg band gap. This kind of resonance is not appreciably affected by the losses,
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since most of the field energy in the Bragg resonance is concentrated in free space
between the particles.

Figure 5.24: Amplitude of (a) reflectance, (b) transmittance, (c) effective index of refraction
Neff = N ′eff + iN ′′eff, (d) effective permittivity εeff = ε′eff + iε′′eff and (e) effective permeability
µeff = µ′eff + iµ′′eff of TiO2 spheres, wire grid array, a combined negative-index structure and
its modification with varied loss compared to the natural one from Ref. [207]; sphere radius
ρ = 30 µm, unit cell size a = 100 µm.
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Negative-index metamaterial based on dielectric spheres An important prop-
erty of the periodic sphere array is its nearly isotropic electromagnetic behaviour,
i.e. independence of its behaviour on the wave polarisation, which is approximately
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maintained at low frequencies even when the spheres are arranged into a periodic
lattice, provided that the spheres are not too close.

Following the approach used to build a metamaterial with a negative refractive
index from SRRs, it is possible to combine the sphere array with an array of wires
to introduce negative permittivity and permeability simultaneously. In order to
maintain the approximate isotropy of the resulting structure, the wires may form a
two- or three-dimensional mesh. This modification does not make any appreciable
change in the low-frequency behaviour.

Fig. 5.24 compares the already commented spectra for the sphere lattice (red
line), and wire grid (blue line) with the spectra for the compound structure, which
is sketched in Fig. 5.25a,c. At f > 0, the wire grid does not reflect all energy, leading
again to formation of the Fano resonance profile.

Notice in 5.24 that the Fano resonances of structures with and without the wire
mesh have a peculiar complementary shape. The wave reflected from the electric
dipole of the wire mesh has the opposite sign than that reflected from the electric
dipole of dielectric particles. Its sign determines whether the interference with the
second component, scattered by the Mie resonances, would be constructive, or de-
structive.

A band of negative index of refraction is formed above the magnetic Mie reso-
nance, between 510 and 550 GHz. When the realistic model of losses in TiO2 is used,
the maximum figure of merit N ′eff/N

′′
eff ≈ 6 is reached around the centre of the pho-

tonic band. This means that the metamaterial, in the optimum of the negative-index
band, reduces the wave amplitude to e1/6 ≈ 0.84 within one wavelength λ. When
a wave propagates over a distance of ca. 40λ in the metamaterial, the amplitude
drops to 10−3 and the wave energy to 10−6 of the incident value. The applicability
of such a metamaterial for building a macroscopic optical device is questionable.

Effect of elliptic shape For a spherical dielectric particle, the frequencies of the
magnetic and electric resonances, fM1 and fE1, respectively, scale inversely propor-
tional to the radius ρ:

fM1 ∝ ρ−1, fE1 ∝ ρ−1. (5.13)

A deviation from this rule may result from the inter-particle coupling in a very
dense lattice, or from dispersion of the constituent dielectric.

When the particle is an ellipsoid with three independent semiaxes ρx, ρy and ρz
aligned parallel to the x-, y- and z-axes, the resonant frequencies fM1 and fE1 become
certain functions of these three ellipsoid parameters. For a nearly spherical shape,

ρx ∼ ρy ∼ ρz,

we observed that both frequencies can be approximated as

fM1 ∝ ρ−0.4x ρ−0.2y ρ−0.4z , (5.14)

fE1 ∝ ρ−0.15x ρ−0.15y ρ−0.7z . (5.15)

Obviously, in both Eqs. (5.14) and (5.15), all three exponents must sum exactly to
-1 so that they are compatible with the scaling rule for a sphere in Eq. (5.13). Their
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Figure 5.25: Sketch of the sphere array embedded in the wire grid. (a) Front view of the
simulated structure, (b) the experimental structure used in Ref. [208], measures are in
micrometres. (c) and (d) top views of the corresponding structures
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values are approximate only, as they were interpolated from batches of simulations
which scanned through the ellipsoid parameters.

When the ellipsoid axes have a general orientation with regard to their cubic
lattice, the resonant frequencies remain almost the same. In such a case, an incident
wave polarized along the x-axis can excite multiple magnetic or electric Mie reso-
nances of the same topology but of different orientation, which differ slightly by
their frequencies. The structure then may change the polarisation state of the wave,
which is beyond the scope of this analysis.

Experimental spectra of spheres We measured series of spectra of titanium micro-
sphere samples using the terahertz time-domain spectroscopy. We used the scheme
described on pages 110–112 to retrieve not only the transmittance of the single-
layered sample, but also the reflectance, which enabled us to approximately com-
pute the effective parameters of a metamaterial which would be made by arranging
the spheres into a lattice.

The first magnetic Mie resonance was easy to identify in the spectra. The ex-
act quantitative comparison of the results was also possible, but of lesser physical
meaning, since two most important quantities, the resonant frequency and the oscil-
lator strength (i.e. amplitude of the resonant waveform) could not be characterised
reliably.

In particular, the exact dielectric permittivity of the polycrystalline rutile sam-
ples was not known, and over multiple measurements, our group established a
consensus of ε′r ≈ 94 as in Eq. (5.11), which provided the best match with most
experimental data.

Second, the oscillator strength of the first Mie resonance does not allow for a
direct comparison with the experiment. While it could be determined reliably in the
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Figure 5.26: Comparison of the effective permeability µeff(f) of an ideal monodisperse sphere
array (dashed red line), weighted average according to the size distribution (solid black line)
and experimental data (green dots). (a) Real part of effective permeability for a sample
denoted as having the ”40-50” µm diameter, (b) for another sample with slightly larger
average diameter, also depicted in Fig. 4.2. (c), (d) corresponding imaginary parts of µeff(f)
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simulations with a given unit-cell size a, the exact density of the microspheres was
very hard to determine exactly. They were attached to one of the sapphires by static
electricity, and their position was random. Upon manipulation with the samples,
part of the spheres fell off the sapphire surface. Moreover, we had no reliable way
of determining through which part of the sample the probing THz beam passed.

Comparison of experimental and simulated spectra The effective permeability
of two samples having different average sphere sizes is represented by dots in Fig.
5.26. The FDTD simulations for an array of identical TiO2 spheres yielded much
narrower resonant spectra of µeff(f), which are represented by dashed red lines. To
enable a direct comparison, we used the granullometric data obtained by digital
processing of the microscopic images. Using the granulometric data,, the effective
radius of a sphere ρeff was estimated for each particle from the minor ρa and major
axes ρb:

ρ
(m)
eff :=


 2

3
(
ρ
(m)
a

)2 +
1

3
(
ρ
(m)
b

)2




−0.5

(5.16)

This expression is based on the assumption that the ellipsoids will orient horizon-
tally when sprinkled on the microscope slide, thus making the shortest axis verti-
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cal and hidden from the statistical processing. Obviously, it is arbitrary to assume
the shortest and medium ellipsoid axis will be both equal to ρb, but this approach
yielded a relatively good match with experiment. The most accurate procedure
would be to determine all three axes of the particle and predict its resonance spec-
tra by means of Eqs. (5.14), (5.15). Without the knowledge of all three ellipsoid axes,
the spherical approximation using Eq. (5.16) however appears as an acceptable ap-
proach.

From the FDTD simulations, we deduced that the resonant frequency of a TiO2

sphere is inversely proportional to its effective radius ρ(m)
eff , and its scattering cross-

section to the square thereof. Once a reference permeability spectrum µ(ref)
eff (f) was

computed for a reference radius ρref, the experimental spectra could be estimated as
the following weighted sum over all M particles processed:

µ(simulated)
eff (f) := 1 +

M∑
m=0

(
ρ
(m)
eff

)2 [
µ(ref)

eff

(
fρ

(m)
eff
ρref

)
− 1

]

M∑
m=0

(
ρ
(m)
eff

)2 . (5.17)

The result, plotted by thick black curves in Fig. 5.26, corresponds to a weighted
average through the particle statistics, with the weight proportional to the scatter-
ing cross-section of each particle. The averaged simulation results are relatively
close to the experimental data at frequencies around the first magnetic Mie reso-
nance (around 600 and 480 GHz, respectively).

At higher frequencies, the experimental data deviate substantially from the pre-
dictions. This can be attributed to one or more sources of error in the experimental
setup for effective-parameter retrieval.

Narrowing the resonance by sieving The broad dispersion of the microsphere
sizes leads to a broadening of the Mie resonance, which is detrimental to the meta-
material performance. In the samples measured, it precludes µ′eff(f) from reaching
negative values. It also spreads the very strong dissipative losses, introduced by a
resonance, over a broader spectral range, including the region where the FDTD sim-
ulations in Fig. 5.23 would otherwise predict relatively low losses and µ′eff(f) < 0.

With the aim to resolve this issue which affected all microsphere samples, we
developed the novel sieving technique described in the experimental section of this
thesis. Fig. 5.27 compares the independently measured spectra ofNeff(f), εeff(f) and
µeff(f) for three different fractions of one sample. The green line corresponds to the
oversized fraction that remained above the first sieve, the red line to the correctly
sized fraction that passed the first sieve but remained above the second one, and
the blue line to the remaining fraction that passed both sieves.

Moderate narrowing of the resonance spectral shape can be observed for the
correctly sized fraction, with the remaining fractions being shifted in the frequency
as predicted. The intermediate fraction consistently exhibits more pronounced res-
onance in the permeability. Simultaneously all spectra measured are burdened with
one or more severe errors of the characterisation method. Namely in Fig. 5.27, the
simulations cannot explain the pronounced resonance in retrieved effective permit-
tivity, which appears to be an artifact from the asymmetry of the sample between
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two sapphire plates. This may be also the cause of the spectra of εeff(f) and µeff

usually deviating from the expected values at higher frequencies.
However, the truly fundamental limitation are the dissipative losses in TiO2,

already shown in Fig. 5.24. They impose a tight upper bound for the figure of merit
of any terahertz metamaterial based on TiO2 resonators.

Figure 5.27: Comparison of retrieved effective parameters for three fractions of the micro-
spheres sample: (a) effective index of refraction, (b) permittivity and (c) permeability.
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Spheres in a metallic mesh We attempted to fabricate one layer of a negative-
index metamaterial by embedding resonant particles into the holes of a metallic
sieve. This kind of structures is predicted to have a negative index of refraction
above the first Mie resonance of the spheres (see the green curve in Fig. 5.24), which
should result from combining of negative permittivity and permeability. Thanks
to high localization of the electric field inside the sphere, negative refraction is pre-
dicted even when the spheres are embedded in homogeneous εr < 0 medium. Note
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this is in contrast with the split-ring resonators, where εr < 0 medium disrupts their
magnetic resonance [205]

The issues in our case were mostly of geometrical and mechanical origin.
Although it was possible to manufacture a sieve with proper size of holes which
would hold microspheres during sieving, the spheres randomly fell out of it upon
manipulation. We decided not to use any glue, since even a relatively thin layer
thereof would substantially alter the spectra, increasing losses in the terahertz
range.

An experiment involving a similar sample was published previously [208], with
TiO2 spheres sprinkled over a commercial mesh woven of steel wire, as sketched
and accurately measured in Fig. 5.25b,d. The original publication reported very
low transmittance, with inconclusive results as regards to the negative phase ad-
vance through the structure. The published structure was asymmetric, with the
sphere displaced by ∆z ∼ 15 µm along the wave propagation direction, and ac-
cordingly, the simulations processed with the scattering-parameter method yielded
unphysical values of effective parameters.

5.7 Dielectric rods parallel to the magnetic field

Resonances in a low-permittivity array Dielectric rods aligned parallel to the
magnetic field exhibit spectra similar to the sphere arrays (see Fig. 5.29), with
clearly identifiable Mie resonances with magnetic and electric dipoles. Unlike
sphere arrays, the computation of the rod array behaviour under
near-perpendicular incidence is a two-dimensional problem.

Photonic crystals composed of dielectric rods in a square lattice have been exam-
ined thoroughly since the early 1990s [209, 210]. For structures intended to operate
at optical or near-infrared frequencies, the permittivity of the constituent materials
was usually relatively low, typically up to the permittivity of silicon εr ≤ 12. .

In the left panel of Fig. 5.28, the low permittivity in the structure causes its low-
frequency behaviour to be similar to the one-dimensional photonic crystal. At the
lower edge of the Bragg band gap (X1 subplot of 5.28a), the electromagnetic wave
concentrates the electric field in the layer of dielectric rods, as indicated by tiny ar-
rows. The magnetic field energy is roughly complementary, located predominantly
in the air between them. As already described on the example of 1-D PhC, at the
upper edge of the band the situation is opposite, with most of the magnetic-field
energy localized around the dielectric. The number of nodal planes of the electric
or magnetic field does not change between the lower and upper edges of a Bragg
band gap.

Resonances in the high-permittivity array In the microwave and terahertz
ranges, the permittivity of many materials turns out to be much higher than 12.
This fact gives rise to the main difference between the panels in Fig. 5.28. In the
right panel, the dielectric permittivity εr = 100 moves the first Mie resonance [40]
in the first band gap.
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This band gap starts in the X1 point, where each unit cell is divided by one
nodal plane of the magnetic field. In contrast, the next photonic band starts in the
Γ2 point where no such nodal plane exists. This corresponds to a drop in the real
part of effective index of refraction, a behaviour that is typical for all individual
resonances.

Figure 5.28: Dispersion curves for an array of dielectric rods parallel to the magnetic field.
The side plots show the shapes of the fields in the (x, z) plane, at the frequencies of the
band edges. The magnetic field is plotted as orange-violet color map and the electric field is
represented by vectors. The rod radius was chosen to 12 % of the period. (a) On the left,
a relatively low permittivity εr = 12 places the magnetic resonance above the first Bragg
band gap. (b) For high permittivity dielectric εr = 100, the magnetic resonance forms the
first band gap.
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Figure 5.29: Comparison of (a) transmittance and (b) effective index of refraction Neff for
arrays of dielectric spheres (with radius ρs = 30 µm) and of dielectric rods (with radius
ρr = 19 µm) in a 100µm unit cell, both made of TiO2. The choice of radii used ensures the
same volume filling fraction.
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5.8 Dielectric rods parallel to the electric field

Sparse rod array The discussion of the previous structure has proven that the
choice of permittivity and geometry obviously leads to a qualitative change in the
structure behaviour. Similar changes are also observed for dielectric rods parallel
to the electric field.

Fig. 5.30 compares the spectra of effective parameters for three rod arrays of
equal radius ρ = 10 µm and dielectric permittivity εr(f = 1 THz) = 89.5 + 0.23i.
The latter was chosen to be close to that of porous polycrystalline rutile, but the
losses were artificially reduced for better readability of the spectral features. The
three structures differ only by the unit cell size a ∈ {80, 90, 120} µm.

Starting with the blue curves in Fig. 5.30 representing a sparse array with a =
12ρ = 120 µm, one can identify two points of near-zero transmittance around 745
and 1170 GHz with two individual resonances. Each of them introduces a familiar
shape in the spectrum of Neff(f). From the effective permittivity εeff(f) and per-
meability µeff(f), the first resonance can be identified as an electric one, and the
second as a magnetic one. The electric resonance has a strong dipole moment and
introduces a broader band gap than any of the resonances shown in Fig. 5.29. At
frequencies close to the upper edge of the band gap, the dielectric structure behaves
in a similar way to the wire array and plasma; this effect has been proposed to in-
troduce negative permittivity in one all-dielectric metamaterial design [205].

In spite of the strength of the first resonance, the corresponding region of
ε′eff(f) < 0 does not overlap with that of µ′eff(f) < 0 and no negative index of
refraction is obtained for the sparse rod array with a = 120 µm. The resulting
spectra of all parameters are qualitatively similar to that of the electro-magnetic
resonator with the capacitor radius ρc & 18 µm (cf. Figs. 5.18 and 5.21b).
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Figure 5.30: Amplitude of (a) reflectance, (b) transmittance (c) effective index of refraction
Neff, (d) effective permittivity εeff = ε′eff + iε′′eff and (e) effective permeability µeff = µ′eff + iµ′′eff
for a rod array of realistic TiO2 dielectric model with constant radius ρ = 10 µm and grid
resolution of 1 µm. Similar to other plots, the real part is plotted solid, the imaginary one
dashed.
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Effect of inter-cell coupling By increasing the filling fraction of the dielectric rod,
the electric and magnetic resonances can be efficiently tuned upwards and down-
wards in the frequency, respectively. The reason can be deduced from the symmetry
of the magnetic field shapes for K ∼ 0.

The electric resonance (Fig. 5.31a), with the electric field pointing parallel to
the rod, and the magnetic field circulating around it, introduce opposite orientation
of the magnetic field at the cell boundaries. A reduction of the cell size a also re-
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Figure 5.31: Cross-sections of first two resonant modes in the dielectric rod. The red and
blue colours show positive and negative values of the electric field, while the magnetic field is
represented by the arrows. (a) The electric Mie resonance, (b) the magnetic Mie resonance.
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duces the effective inductance of the rod per unit length, thus shifting the electric
resonance to a higher frequency.

On the contrary, the magnetic field surrounding the rod near at the magnetic
Mie resonance (Fig. 5.31b) is oriented parallel with the field of the neighbouring
cell. Thus the reduction of a decreases the frequency of the magnetic resonance.

Note that this strong coupling is specific for this particular rod orientation. In
the previous chapter we discussed similar high-permittivity rods oriented parallel
to the magnetic field. In the first resonance, the electric field also circulated around
the rod axis, but the majority of its energy was confined to the dielectric volume
(cf. Fig. 5.28b-X1). The inter-cell coupling of the magnetic resonance was thus
much weaker, and similar argument applied also to higher resonances. As a result,
the resonant frequencies of dielectric rods parallel to the magnetic field cannot be
efficiently tuned against each other.

Medium-density rod array Through moderate reduction of the unit cell size a
to 90 µm, as represented by the green line in Fig. 5.30, the electric and magnetic
resonant frequencies approach each other, shifting to fE ≈ 950 and fM ≈ 1070 GHz,
respectively. This eventually leads to an overlap of the ε′eff(f) < 0 and µ′eff(f) < 0
regions, and a negative-index band is formed between 1130 and 1200 GHz.

At the upper-frequency edge of the band with N ′eff < 0, either the effective per-
meability or permittivity becomes positive, for a . 92 µm or a & 92 µm, respec-
tively. This is another subtle, but qualitative change in the structure behaviour.

At the exact parameter a for the cross-over, the effective permittivity and perme-
ability change their sign at the same frequency, and a zero-width band gap is obtained.
Unlike the Fabry-Pérot resonances in 1-D PhC, this band gap is located at N ′eff = 0,
which results in a peculiar regime of operation – in the idealized loss-less model,
the wave would not exponentially decay nor would acquire any phase advance in
the metamaterial volume; all unit cells would oscillate in phase. Still, its group ve-
locity would be nonzero, and any spatial modulation of the wave envelope would
propagate through the cells. This can be viewed as a complementary phenomenon
to the extremely narrow photonic bands where, due to the vanishing inter-cell cou-
pling, the phase velocity is orders of magnitude higher than the group velocity (cf.
the second band in Fig. 5.21b).
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Figure 5.32: Behaviour of the rods ||E, with permittivity ε = 100 and radius r = 11 µm.
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Both points of near-zero transmittance at fE and fM , indicating individual res-
onances, come closer to each other with further reduction of a. The maximum am-
plitude of transmittance |t| between both resonances decreases approximately with
the second power of the frequency difference:

max
f∈ 〈fE ,fM 〉

|t| ∝ 1

(fE − fM)2
, (5.18)

hence the transmitted spectral intensity drops with the fourth power of the differ-
ence of the resonant frequencies, (fE−fM)4, and can maintain very low values over
this spectral region. Simultaneously, the transmittance rapidly grows above fM and
reaches almost 100 % relatively close to this low-transmittance region. We proposed
[99] that with the aforementioned geometry, a single layer of unit cells could find its
application as a dielectric-rod array filter. It would possess a better extinction ratio,
and a better-defined stop-band than a dielectric slab of similar material can achieve
through Fabry-Pérot resonances.

Dense rod array Further reduction of the unit cell size a to 80 µm does not lead
to a cross-over of the resonant frequencies, as might be expected. Instead, the in-
dividual resonances disappear and an ordinary Bragg band gap remains, spanning
from 480 to 1150 GHz. The corresponding transmittance curve (plotted in red in
Fig. 5.30b) does not touch zero anywhere in the spectrum.

163



Figure 5.33: (a) Reflectance, (b) transmittance, (c) the real and (d) the imaginary part of
the retrieved refractive index of an array of dielectric rods made of TiO2, with a constant
radius ρ = 10 µm and a variable unit cell size 20 µm < a < 200 µm. Three selected values
of radius, discussed in the text, are marked by horizontal black dash-dotted lines.
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Consequently, there is no individual resonance, nor any fast drop in the spec-
trum of N ′eff(f) (see Fig. 5.30c). The effective index of refraction N ′eff maintains
high values over the whole spectrum, which precludes to describe the structure
by means of local effective parameters of permittivity and permeability anywhere
above the middle of the first photonic band. This kind of behaviour was already
encountered in the spectra of one-dimensional photonic crystal (Figs. 5.2, 5.2).

However, the effective index of refraction Neff(f) is still valid, and its spectrum
for a = 80 µm approximately maintains the shape that N ′eff had for a = 90 µm
and even a = 120 µm. Most notably, the negative-index band around 1200 GHz
(spanning between the -1th and the 0th Brillouin-zone boundaries) on the green
curve has its analogy in a similarly narrow band on the red curve (between the 1th
to the 2nd Brillouin-zone boundaries). Also the higher frequency features tend to
be similar. This suggests that the only change between a = 90 µm and a = 80 µm
that can be observed without an inspection of the internal fields is in the phase that
the wave acquires per one unit cell.
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Figure 5.34: Scheme of band gaps and Mie
resonances under the same conditions as in
Fig. 5.33. In the upper-right corner of the
plots, for a > c/f , an empty area is left where
the diffraction precludes determination of ef-
fective parameters.
The colours and numbering from 1 to 6 denote
the band gaps. Mie resonances are outlined by
thick black curves. A small black patch close
to the center of the figure depicts the condi-
tions of negative index of refraction.

Continuous scan through the unit cell sizes For illustration, we add a high-
resolution continuous scan through the unit cell size a in Fig. 5.33, with other
parameters shared with the previous plots in Fig. 5.30. The individual Mie reso-
nances can be identified as the sets of points where transmittance |t| comes close to
zero, real part of effective index of refraction N ′eff drops and its imaginary part N ′′eff
has a sharp peak. The photonic band gaps are all areas where N ′′eff 6≈ 0 in Fig. 5.33d.

For easier interpretation, the interplay of the individual resonances and the band
gaps is redrawn in Fig. 5.34, where each photonic band gap is represented as a
coloured area and the individual resonances as thick black lines. The small black
patch between the first and second band gaps covers all (a, f) combinations nec-
essary for reaching N ′eff < 0, provided that the dielectric is titanium dioxide with
permittivity εr ≈ 92.

In accordance with the previous discussion, the electric and magnetic Mie reso-
nances approach each other when the unit cell size a decreases from 120 to 90 µm,
and eventually they meet and vanish for a . 85 µm, forming an ”U”-shaped curve.
Using a as the scanning parameter enables to illustrate clearly the shift of individ-
ual resonances. With this choice, the frequencies of the band gaps roughly follow
the 1/a curves, but they are strongly influenced by the individual resonances. Each
individual resonance is always contained inside a band gap.

In photonic bands, the real part of refractive index grows as a function of fre-
quency; from the beginning to the end of each photonic band, it gains a difference
of one Brillouin zone. The only way how N ′eff can descend by one Brillouin-zone
boundary is by means of an individual resonance. A simple arithmetic condition
for reaching negative index of refraction N ′eff(f1) < 0, at a given frequency f1, is
therefore that the number of photonic band gaps counted from f = 0 to f1 must be
strictly less than the number of individual resonances.

This simple rule eliminates the possibility of obtainingN ′eff < 0 from any higher-
order Mie resonances, although from Figs. 5.33 and 5.34 it can be seen that these
persist even for smaller unit cell sizes than a = 85 µ The author further conjectures
that the presence of two Mie resonances in the first band gap in the spectrum is a
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necessary and sufficient condition for N ′eff < 0 to occur in any known metamaterial
that can be described by local parameters.

Inspection of the frequency-dependent shape of the field While the PWEM plot
gives all information about the field shapes at the band edges (Fig. 5.32), it does not
tell anything for frequencies lying in the band gap. Inspection the fields within a
band gap is needed to explain the physical reason behind the peculiar disappear-
ance of Mie resonances. It requires a new kind of plots based on time-domain sim-
ulations which show how the electric field amplitude depends simultaneously on
the position on the z-axis, along which the wave propagates, and on the frequency.

A structure of dielectric rods arranged in three layers was used as a sample
sufficiently thick to illustrate the behaviour of the field in the metamaterial cells.
Since the above discussion is based on the phase advance of the wave across a cell,
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it is sufficient to observe the fields at the central line between the rods only, as drawn
in the inset drawing in Fig. 5.35. During the simulation, the electric field amplitude
was stored in each FDTD step and for each point along the line.

At the end of the simulation, the Fourier transform of the recorded field was
computed in each point and the magnitude of the temporal spectra |Ex(z, f)| was
plotted in Figs. 5.35a,b,c. To the author’s knowledge, such kind of plots has not
been published in any paper yet.

In Fig. 5.35a, the case of sparse rods clearly illustrates that beginning from
the lower edge of the first band gap, at 0.42 THz, up to the electric resonance at
0.745 THz, one nodal plane per unit cell crosses the line where field is recorded.
The nodal plane can be identified as sets of points where the field intensity drops
to very low values, and it introduces a +π shift of the field phase between adja-
cent cells. Unfortunately, the field pattern close to the resonant frequency is hard
to interpret due to boundary effects on the finite structure, but above the resonance
one can clearly see that no nodal planes are present. This is in accordance with the
predicted exponential decay of evanescent waves when N ′eff = 0 and N ′′eff < 0. The
electric dipole of the rods is opposite to the surrounding field in this region, but
the nodal planes form closed surfaces around each rod, and the phase difference
recorded along the line between the unit cells is zero. From 970 GHz onwards, the
second photonic band starts which allows the electromagnetic energy propagate
through the structure.

In the second case of the medium-density rod array (Fig. 5.35b), both resonances
are located in the first band gap. At the frequency of the first resonance, one nodal
plane per each unit cell is removed and the phase advance across the unit cell is
reduced from +π to 0. The second resonance further reduces this phase difference,
from 0 to −π, which introduces one nodal plane per unit cell again. Accordingly,
faint nodal planes can be observed again in the first band gap between 1100 and
1150 GHz.

Finally, upon reduction of the unit cell size to 80 µm (Fig. 5.35c), the number of
nodal planes becomes a constant over the whole band gap, with one nodal plane
dividing each unit cell.

The cause of the Mie resonances vanishing Fig. 5.35 shows that the disappear-
ance of Mie resonances for a . 85 µm is caused by a change in the nodal sur-
face topology. When the rods are far from each other (a & 85 µm), the individual
Mie resonances create closed regions dominated by the near field of the resonance,
which are delimited by roughly elliptical nodal surface. Thus in Fig. 5.35b, between
930 and 1100 GHz, no nodal plane is intersected by the line where the electric field
is recorded.

Upon reducing the unit-cell size (a . 85 µm) at the same frequency, the regions
of opposite fields start to overlap with those from the neighbouring cells and the
nodal surfaces interconnect with each other. The wave propagating through an unit
cell then changes its sign twice. This manifests itself as a 2π phase change compared
to the a = 90 µm case, and by a qualitative change of the N ′eff spectrum towards a
shape typical for one-dimensional photonic crystals.
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Figure 5.36: Scheme of band gaps and Mie
resonances similar to Fig. 5.34, but for (a)
halved dielectric permittivity εr = 50 and (b)
further reduced permittivity to that of silicon
εr = 12.
The Mie resonances shift to higher frequencies
relative to the band gaps and no N ′eff < 0 re-
gion is formed for any unit cell size.
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Lower dielectric permittivity Both individual Mie resonances and Bragg-type
band gaps depend on the dielectric permittivity εr. However, the frequency of
Mie resonances are more sensitive, and consequently the critical point where the
first and second Mie resonances merge shifts to the upper edge of the first gap (see
Fig. 5.36a) when εr is reduced from that of porous titanium dioxide in the terahertz
range (εr = 92) to a lower value εr = 50. As a result, the negative-index band then
cannot be found for any unit cell size. Thus, the dielectric permittivity contrast of
at least 50 appears to be essential for obtaining a negative refractive index from any
dielectric metamaterial.

Construction of an optical or near-infrared metamaterial restricts the choice of
dielectric permittivity compared to the terahertz range. The permittivity of silicon,
εr ≈ 12, is one of the highest available in the near infrared range. The band structure
corresponding to εr = 12 in Fig. 5.36b shows that for any unit cell size, the first Mie
resonance in silicon rod array would always be preceded by at least one band gap
of the Bragg type.

The above discussion also shows that the dielectric rods do not have to be geo-
metrically touching to start behaving like a dielectric slab in a 1-D PhC. This is in
line with the observation that the scattering cross-section of sub-wavelength objects
tends to be greater than their geometrical extent. Strong enough near-field interac-
tion is sufficient for a topological change of nodal planes. The exact critical ratio
of the radius to the unit cell size ρ/a depends on the dielectric permittivity. In the
array of rods parallel to the electric field, this qualitative change occurs for a partic-
ularly low filling fraction, but it should occur in other kinds of structures as well,
provided their unit cells are small enough to promote strong near-field interactions
between neighbouring resonant elements.

Rod-array metamaterials in the literature A very similar structure was studied
in Ref. [18] purely as a metamaterial; each rod was viewed as a separate dielec-
tric resonator, with an analytical formula used to establish the frequencies of Mie
resonances as if it were isolated in space. Since the inter-cell coupling is neglected
in the paper, its authors predicted that the electric and magnetic resonances would
be found even for a relatively low permittivity εr = 12. Based on this, its authors
concluded that a metamaterial with N ′eff < 0 can be built of silicon rods – which is
in direct contradiction with our results presented above, and in Ref. [99].

Ref. [109] presents a wedge-refraction experiment with a similar metamaterial,
made of bars with a square cross-section parallel to the electric field. The bars have
very high permittivity of εr = 600, but still the geometry of the bars is equivalent to
a dense array of cylindrical rods with a/ρ ∼ 4.5. Thus, it should exhibit no individual
resonances and no negative index of refraction. In this paper it is demonstrated
[109, Fig. 3bc] that negative refraction occurs at the wedge, and moreover it is more
or less maintained upon randomization of the rod positions. The discrepancy can
be explained by a relatively high angle of the wedge around 20◦, which actually
prevents the use of the effective index of refraction.

The impact of Mie resonances on the band-gap structure was studied earlier in
Ref. [45], but the related discussion neglected the near-field effect on the resonant
frequency. The somewhat coarse simulations in the paper unfortunately did not
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include sufficiently detailed scans of the a/ρ ratio and, thus, they could not resolve
the qualitative change in the structure behaviour in sufficient detail.

Finally, a similar structure was studied recently in Ref. [17]. Again, the Mie
resonance frequencies were deduced from the analytical formula, without taking
into account the near-field coupling. This paper correctly points out that different
choices of the rod parameters, εr and a/ρ, can exchange the position of the Bragg
and Mie resonances in the spectrum.

The relevant papers (Refs. [45, 109, 18, 17, 99]) come from the last ten years,
although they are based on experimental and numerical methods that could be
used already several decades ago. This confirms the author’s view that the pub-
lications are incited by relatively recent merging of the metamaterial and photonic
crystal paradigms as sketched in Fig. 2.18.

Implications for all-dielectric negative-index metamaterials In Refs. [17] and
[99], the structure is regarded as a metamaterial when the lowest band gap contains
one or both Mie resonances. Otherwise, when the first band gap is of Bragg type, the
structure should be classified among photonic crystals. The terminology difference
has been discussed in the theoretical section, with the conclusion that one struc-
ture can be a representative of metamaterials and photonic crystals simultaneously,
depending on the paradigm one prefers to use for its description.

This notation is rather formal, since it is based on the phase criterion introduced
on page 67 and it does not affect the flow of energy. The disappearance of reso-
nances in the spectra is, however, an objective reality; moreover, the fast resonant
changes in N ′eff are required for the spectra to conform to the Kramers-Kronig rela-
tions.

The sufficiently high permittivity required for the metamaterial regime can be
found in the microwave and terahertz ranges in a variety of materials, such as tita-
nium dioxide with εr ≈ 92 [125] or in various ferroelectrics like strontium titanate
[211]. However, practical applications of the high-permittivity dielectrics in the
THz range can be restricted by their high dielectric losses due to low-frequency
phonon absorption tails. To our knowledge, there is no material providing such
high permittivity in the near-infrared or optical ranges [205]. Our attempts to opti-
mize the rod profile, e.g., by leaving its core hollow, did not provide any improve-
ment in reduction of the minimum permittivity contrast. These facts suggest it is
likely not possible to use exclusively dielectrics to build an optical metamaterial
with N ′eff < 0.

5.9 Metallic sheet with slits

Low-frequency behaviour of a thin sheet When discussing the electromagnetic
behaviour of metallic wires parallel to the electric field, we mentioned that wires
with the opposite orientation – parallel to the magnetic field – would not appre-
ciably interact with the wave. The situation changes if the wires are widened into
stripes, with their transverse dimension (i.e., parallel to the electric field) not much
smaller than their periodicity ax. They may be then equivalently described as a

170



Figure 5.37: Amplitude of (a) reflectance and (b) transmittance of a single sheet of gold
dz = 20 µm thick with different width of slits dx. Unit cell size a = 100 µm. The grid
resolution was 1 µm.
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Figure 5.38: Side view of one unit cell of the slit array. (a) The geometry of the x-z cross-
section of a single unit cell, which was chosen to be centered to the slit between two metal
stripes. The metal stripes extend infinitely along the y-axis. (b) Sketch of the electric and
magnetic fields of the first resonance, (c) second resonance for a thicker structure (cf. upper
right corner of Fig. 5.40a)
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thin metallic sheet divided by slits that have a uniform width dx and are oriented
parallel to the magnetic field, as sketched in Fig. 5.38a.

When the wavelength is significantly longer than the slit width dx, a single sheet
partially reflects the incident radiation (Fig. 5.37). The reflectance amplitude |r| de-
creases monotonously with the slit width dx. It also vanishes in the low-frequency
limit for any dx > 0, since the macroscopic structure is not conductive in the direc-
tion of the electric field. The low-pass filtering capability of this structure is illus-
trated in more detail by the continuous scan through dx shown in Fig. 5.39a. The
unit-cell size in the x-direction for both presented figures was ax = 100 µm. The up-
per frequency limit in the plots was determined by the onset of the first diffraction
order, at c/ax = 3.0 THz.

At a frequency slightly below the onset of diffraction, a relatively narrow notch
in the reflectance spectrum is observed, which corresponds to an individual reso-
nance. The frequency where |r| drops near zero depends on the slit width dx, and
on the slab thickness dz as discussed later. In the above figures where dz was fixed to
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Figure 5.39: (a) Reflectance of a 20 µm thick metallic sheet, with slits of periodicity ax =
100 µm and of variable width dx. (b) The imaginary part of the retrieved refractive index for
a metamaterial built by stacking the same slits with periodicity az = 100 µm. The values
retrieved by the scattering parameter method become invalid near 3 THz, see accompanying
text.
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20 µm, the lowest frequency of the notch around 2.8 THz is reached for dx/ax ∼ 0.3
(see Fig. 5.39a).

For a narrower or wider slit, the frequency of the notch increases and it eventu-
ally approaches the diffraction limit of 3.0 THz. The notch also becomes narrower,
but in simulations with a high spectral resolution and low losses, it does not appre-
ciably reduce its depth – some frequency can always be found at which nearly 100
% of the energy is transmitted through the structure.

Standing surface plasmon resonance The effect, known as extraordinary transmis-
sion, is mediated by excitation of resonant fields on the metallic surface. The field
distribution is similar to surface plasmons-polaritons (SPP) propagating parallel to
the x-axis as sketched in Fig. 5.38b. It should be more precisely referred to as spoof
surface plasmons, since the wave is bound to the metallic sheet predominantly be-
cause of its corrugation rather than inductive response of the metal. If there were
no corrugation, the surface plasmons at terahertz frequencies would propagate in
the Zenneck regime [212] and their decay length above a flat metallic surface would
be much larger than their wavelength. The notch in reflectance is always observed
at the exact frequency where the plasmon wavelength is equal to the unit cell size
ax.

A closely related phenomenon on corrugated surfaces of metallic diffraction
gratings, the Wood’s anomaly, is also caused by surface plasmons. It was discovered
in 1902 as a sharp drop in the reflectance of metallic gratings [213] under incidence
angles that enable the incident wave to couple to surface plasmons. It has incited
many theoretical studies starting with that of Lord Rayleigh [214] from 1907.

Since the structure and the incident fields are both symmetric along the x-axis,
equal amplitudes of the surface plasmons propagating in the +x and −x directions
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are excited. They form a standing plasmonic resonance, with the points of maxi-
mum oscillating current (antinodes) located in the centres of metallic bars. The ex-
traordinary transmission relies on the incoming plane wave coupling to the spoof
surface plasmons, transfer of energy of SPPs to the spoof surface plasmons on the
rear side of the structure, and re-radiation of the plane wave.

In a numerical study of SPP-assisted transmission through a single slit, Lalanne
et al. have determined [215] the optimum slit width for wave-plasmon coupling as
dx ≈ 0.23λ, which matches noticeably well the slit width dx corresponding to the
lowest frequency of the zero-reflectance condition (see Fig. 5.39a). A stronger cou-
pling thus appears to down-tune the frequency, but it is not the main determining
factor for the peak transmittance efficiency; since the extraordinary transmission is
a resonant process, it can achieve a high amplitude of transmittance even through
arbitrarily narrow slits.

The extraordinary transmission in slit arrays requires strict periodicity of the
slits along the x-axis, and also symmetric front and rear sides of the structure along
the z-axis. Our numerical experiment (not shown here) has proven that the energy
transfer is suppressed when a dielectric substrate is added on one side of the struc-
ture. When the dielectric substrate was added symmetrically from both sides, the
extraordinary transmission was restored and its resonant frequency was lower than
without the dielectric.

We also observed that the dielectric does not have to touch the metal directly;
a distance similar to the unit cell size was sufficient for the reflectance notch to
be suppressed. We thus conjecture the approximate decay length of the surface
plasmons along the z-axis, both in front of the structure and behind it, is not much
smaller than ax.

Figure 5.40: (a) Reflectance of a metallic sheet with slits of periodicity ax = 100 µm and of
dx = 20 µm, with variable thickness dz. (b) The imaginary part of the refractive index for
a metamaterial built by stacking the same slits with periodicity az = 100 µm. The values
were retrieved by the scattering parameter method, so the upper part of the panel (b) is not
reliable, as commented in the text.
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Effect of the metallic slab thickness In the approximation of a thin slit with
dz � ax, the highest transmittance was observed when the surface plasmon wave-
length λSPP matched the unit cell size ax. In the limit of thin sheets, this frequency
approaches the diffraction limit of c/ax, since surface plasmons in the terahertz
range are only weakly bound to the metal surface and their phase velocity is simi-
lar to the speed of light in vacuum, c. Upon scaling the simulation into the optical
range, the limiting frequency for thin metallic sheets was reduced below c/ax and,
moreover, the exact behaviour of the structure has proven to depend on the choice
of metal.

For thicker sheets of metal, the effective optical path of surface plasmons travel-
ling across one unit cell is increased by its portion in the inner slit surface, as it was
shown experimentally in Ref. [216]. The frequency of the zero-reflectance notch
thus decreases when the sheet thickness is enhanced, since a longer SPP wave-
length is needed to compensate for the increased circumference of the cross-section
of the metallic bar. For thick enough slabs with dz & a/2, the frequency of the
zero-reflectance notch approximately follows the inverse of the thickness (see Fig.
5.40a). In the upper-right corner of Fig. 5.40a, the second zero-reflectance region can
be found, which corresponds to the second longitudinal waveguide mode drawn
in Fig. 5.38c.

Effective parameters of the sheet-slit array The previous paragraphs described
the reflectance and transmittance of a single layer. Multiple layers can be arranged
into an infinite stack with a given unit cell size az along the wave propagation, and
their effective parameters can be computed in the same way as with other metama-
terials.

However, one has to verify whether the scattering parameter method gives cor-
rect results, since the structures exhibit a strong coupling between the neighbouring
cells. A great portion of the resonant energy is transferred by the surface plasmons
that were shown not to be well localized in a single unit cell. On the contrary, they
couple strongly with those on nearby metallic surfaces, forming transversally prop-
agating slot-waveguide modes [216]. The current-driven homogenisation (CDH)
setup is more suitable for simulations of such structures with strong coupling be-
tween the neighbouring cells, since it simulates one unit cell in its periodic environ-
ment exactly. The results of the two methods are compared in Fig. 5.41a, with the
accurate CDH dispersion curves indicated by points, and the s-parameter results
overlaid as green curves.

The first photonic band is obviously accurately matched by both simulation se-
tups. In the second band, located close to the diffraction edge where the dispersion
is determined by excitation of surface plasmons, the scattering parameter method
completely fails to predict not only its exact shape, but even the sign of the group
velocity.
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Figure 5.41: Current-driven homogenisation results for (a) an infinite array of metallic
slabs 20 µm thick of periodicity az = 60 µm, divided by slits of dx = 20 µm with the
periodicity ax = 100 µm. (b) The same for a fishnet with the hole periodicity ax = ay = 250
µm, the slab periodicity az = 52 µm and the circular holes had radius of 55 µm (the same
proportions as in Ref. [217]). The CDH approach predicts a negative index of refraction
(points), whereas the s-parameter approach gives unrealistic values (green line).
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5.10 Fishnet

Extraordinary transmission in fishnets By adding conductive connections across
the slits in the above described structure, a perforated metallic sheet is formed
which is also denoted as a mesh, sub-wavelength hole array, or within the context
of metamaterials, as a fishnet. Already in the 1950s, an array of perforated metal-
lic sheets was proposed to form an artificial dielectric with an index of refraction
0 < N ′eff < 1, but the electromagnetic wave propagated parallel to the slabs [87,
p. 58]. The spectral selectivity of a single metallic mesh perpendicular to the wave
vector was employed in the 1960s to set up a microwave and far-infrared filter [218,
219, 220].

The interest in sub-wavelength hole arrays was revived when periodic pattern-
ing of a metallic surface near a sub-wavelength hole was shown [221] to enable the
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Figure 5.42: Micrographs of fishnets cut from a 5 µm thick stainless steel foil, (a) holes of
ca. 180× 200 µm, (b) holes of ca. 230× 255 µm, cut by a ”z”-shaped movement of the laser
beam. The periodicity of both fishnets is 300× 300 µm, real size of both images is 1.2× 0.9
mm.

(a) (b)

E

H
K

extraordinary optical transmission which can be orders of magnitude larger than
the transmission estimated from the geometrical hole dimensions. In a similar way
as in the slit array, the incident light couples to surface plasmons, the energy is effi-
ciently transferred through the hole, and finally re-radiated again at the rear side.

Negative index of refraction With a convenient choice of geometrical parameters,
the waves radiated from the opposite side of the sheet have negative phase advance
compared to the incident ones, leading to a negative phase advance along the unit
cell and to the formation of a N ′eff < 0 band. An important improvement over the
previous designs of negative-index metamaterials is that fishnets achieve relatively
low losses even in the near-infrared and optical ranges, since their simple geometry
is optimised for short conduction paths.

Simultaneously, the occurrence of N ′eff < 0 is relatively sensitive to the choice of
parameters of the structure, most importantly, to the spacing of the holes in the x-y
plane, to their dimensions and to the spacing of the metallic sheets along the z-axis,
in the following way:

1. The transverse periodicity of the holes determines the frequency of operation,
by a mechanism similar to that described in the previous chapter.

2. The dimensions of the holes influence the coupling strength, but the resonant
frequency is affected only weakly. Small holes lead to a weak coupling of the
surface plasmons and to a narrow photonic band with N ′eff < 0. In contrast,
too large holes lead to broad photonic bands which, however, never reach
N ′eff < 0.

If the holes are anisotropic, the described effect is more sensitive to the hole
dimensions parallel to the magnetic field. The anisotropic shape of the holes
was shown to influence the impedance, allowing one to suppress reflections
[222].
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Figure 5.43: Current-driven homogenisation results for two samples of fishnets shown in
Fig. 5.42; (a) holes of 180× 200 µm, (b) holes of 230× 255 µm
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3. Finally, the spacing of the metallic sheets along the z-axis determines the
strength of the interaction with the waves. When the layers are overly sparse,
the positive phase acquired between them overpowers the effect of plasmonic
resonances and prevents the formation of aN ′eff < 0 band. When they are very
dense, the near-field coupling apparently becomes the dominant mechanism
of energy transport, which is the case of numerous experimental samples. For
instance, in Ref. [223], the sheet distance (az = 83 nm) was less than 10 % of
the transverse hole periodicity (ax = ay = 860 nm). The scattering parameter
method is obviously not applicable for this kind of structures.

Comparison of homogenisation methods for fishnets The conventional explana-
tion is that the negative refractive index of fishnets arises from the combination of
negative effective permittivity and permeability. The former, ε′eff < 0 is attributed
to the inductive effect of the metallic connections which should develop an electric
dipole opposite to the incident electric field in a way similar to the wires oriented
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Figure 5.44: Experimental and simulated amplitude of transmittance for fishnets (a) with
180×200 µm holes, and (b) with 230x255 µm holes.
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along the x−axis. The magnetic response is formed by individual resonances lo-
calised close to the fishnet holes, which exhibit a magnetic dipole moment.

Some papers note that the s-parameter method may not be applicable to fish-
nets [222][199, p. 102], which is indicated by differences in retrieved parameters
depending on the number of layers. At the same time, this does not imply that the
infinite structure cannot be assigned a negative index of refraction; a wedge formed
of a fishnet metamaterial was demonstrated to refract terahertz rays under negative
angles [224] as predicted.

For illustration, we computed the dispersion curves of the fishnet from Ref.
[217] in Fig. 5.41b. To approximately match the frequency band of operation with
other structures described, we up-scaled the dimensions of their structure; the ex-
act numbers are given in the figure description. The dispersion curves indicated
by bubbles were retrieved using current-driven homogenisation. We believe this
homogenisation approach is free of artifacts also for this kind of structure.

This structure shows a narrow band between 980 and 1080 with a negative in-
dex of refraction. As indicated by the dashed green curve in Fig. 5.41b, even the
scattering parameter method detects this N ′eff < 0 band, but the found frequency is
erroneously shifted up by about 100 GHz. The error in higher bands is even more
pronounced. The scattering-parameter method eventually fails to predict anything
above the onset of diffraction at 1200 GHz.

Experimental results Two samples of fishnets, fabricated by femtosecond laser
machining of a steel foil, are photographed in Fig. 5.42. Their hole periodicity was
300×300 µm. They differed by their hole dimensions; the first one had approx-
imately elliptical holes with axes dx × dy = 180×200 µm, the second one featured
much narrower metallic bridges between the holes with dx×dy = 230×250 µm. The
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holes were cut to the shape of rounded rectangles, which however did not change
the electromagnetic behaviour.

The dispersion of such a metamaterial had again to be characterised using the
current-driven homogenisation. We chose the layer periodicity az = 200 µm and
presented the corresponding dispersion curves in Fig. 5.43a,b. For both samples,
the first photonic band was relatively well retrieved also by the scattering parame-
ter method (green curves). In the portion of spectrum approaching the diffraction
onset at 1 THz, only the CDH results seem to be valid.

For the fishnet with smaller holes in Fig. 5.43a, the second photonic band starts
with a positive group velocity at 920 GHz. The corresponding photonic band in the
right panel, however, starts with a negative group velocity, changing to the positive
one in the middle of the first Brillouin zone for Ka/2π ≈ 0.25. This effect can be
explained as anticrossing of two photonic bands.
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K

Figure 5.45: Electric field of the quadrupole mode in a
fishnet with 180×200 µm hole sizes. Field vectors are
represented by black arrows in the x-y plane of the fish-
net; due to symmetry, the Ez component in this plane
is zero. The colour map shows the magnitude of the
E vector, the brighter values correspond to more inten-
sive field. The surrounding light-gray area represents
the metal of the fishnet.

Quadrupole resonance in experimental spectra The corresponding experimental
transmittance spectra of single layers of both fishnet samples are presented in Fig.
5.44 (red curves). They were compared with the computed transmittance (green
curves).

Typically the voxel sizes of 2 or 4 µm were used throughout the thesis as a good
tradeoff providing reasonable simulation time and accuracy of results, including
the CDH computation of fishnets in Figs. 5.43a,b. In contrast, for the computation
of Figs. 5.43 and 5.44, the FDTD simulation was deliberately set to a very coarse
resolution, with a voxel dimension of 10 µm. Still, the lower-frequency part experi-
mental and computed reflectance spectra yielded a notably good match.

In the experimental spectra of fishnets, between 0.5 and 1.0 THz, a distinct notch
in transmittance was observed. The discretisation error has helped to explain its
origin. With a coarse simulation grid, the twofold mirror symmetry of the fishnet
unit cell was broken, since the simulation defined a different number of voxels in
the rounded hole edges.

Simultaneously, it also eliminated the symmetry of the fields in the first
quadrupole mode, introducing a slight electric dipole into its field pattern (see Fig.
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5.45). As a result, the quadrupole started to couple with the incident plane wave,
and narrow resonances emerged also in the simulated spectra at 880 and 710 GHz,
respectively (green lines in Figs. 5.44a,b). The resonance notches observed in the
experiment are thus conclusively explained by the simulations.

These resonances can be also observed in Fig. 5.43a,b as weak photonic branches
crossing the first photonic band in its middle, although the periodic boundary con-
ditions change their frequencies. The different symmetries of resonances stipulate
that the waves coupled to the quadrupole mode of the fishnet propagate with group
velocity direction opposite to that one coupled to the dipole mode.
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Chapter 6

Conclusion

“If you want to build a ship, don’t drum up people to collect wood
and don’t assign them tasks and work, but rather teach them to long

for the endless immensity of the sea.” — Antoine de Saint-Exupéry

Theoretical contributions The theoretical section of this thesis aimed to present
an accessible introduction to the electrodynamics of periodic structures. It started
from the fundamental Maxwell equations, developed the concept of waves prop-
agating in vacuum and in resonant media, and shown how the local medium re-
sponds to oscillating electric field as a damped oscillator and how it influences the
dispersion curves. In the following chapter, the nonlocal response was introduced,
and it was described how it causes the material properties to depend not only on
the frequency, but also on the magnitude of the wave vector, which is known as
spatial dispersion.

This phenomenon is common in optics, but in homogeneous materials it is usu-
ally negligible. When the electrodynamics of periodic structures is concerned, the
spatial dispersion is often particularly pronounced and should not be neglected.
More general shapes of the dispersion curves in spatially-dispersive media were
illustrated in several figures.

The dispersion curves were also shown to become periodic with regard to the
wavevector, which is a result of the Bloch’s theorem; the chapter further introduced
the concepts of isofrequency contours, Brillouin zones and high-symmetry points
in the reciprocal space, and discussed the conditions under which the notions of
group, phase and information velocity are applicable.

Nowadays, perhaps more than ever earlier, it is important to maintain an out-
look over the history of the rapid scientific development. A historical review fol-
lows which traces back the origin of numerous concepts much earlier than the ma-
jority of metamaterial-related papers advertise. The historical part promoted the
author’s view on the notions of artificial dielectrics and negative-index media, which
appear to have developed independently, to be unified around the middle of twen-
tieth century. In a similar manner, it was argued that the resulting paradigm of
negative-index metamaterials unified with the concept of photonic crystals around the
millennium. The process of unification always sheds new light on the physical in-
terpretation and is beneficial for conceptual development of the field. The historical
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review became a basis for outlining the boundary between metamaterials and pho-
tonic crystals, which concluded the theoretical section.

Methodological contributions The preparation of this thesis, which encompasses
over 90 plots that show the results from over 4000 separate computations, necessi-
tated the development of an efficient and convenient platform for numerical simu-
lations of electromagnetic waves in periodic structures. The computations are de-
fined in the form of scripts in the Python programming language. At the expense
of a possibly slower learning curve than the programs with a graphical user inter-
face may offer, a great advantage of scripting is a seamless integration with further
processing of the simulation results that would otherwise be prohibitively tedious.
The scripts can also be modified for automated parametric scans, optimisation of
the structure performance and to match experimental data.

All scripts, containing roughly 5000 lines of Python code in total, were published
online as open-source software [117] with the hope that they would be reused by
others for future numerical research.

In the Numerical chapter, the internal operation of the finite-difference time-
domain computation method is described in detail. Particular attention was paid to
a realistic definition of Lorentz-Drude models for dielectrics and metals, including
author’s empirical rules for the numerical stability of the FDTD simulation.

The second part of the section describes how the same numerical algorithm can
be used in different geometries to retrieve physical properties of the structure: the
customary scattering-parameter method is elaborated including its limitations and pit-
falls, and finally it is compared to the current-driven homogenisation method, which
is less computationally efficient, but more robust against artifacts. Both methods
were extensively employed and compared in the results.

The inherent ambiguity of the scattering parameters method is often cited in
the literature. We resolved the ambiguity in our own original way, based on the
purely mathematical consideration of the arccosine discontinuities in the complex
plane. The correction algorithm was incorporated in the simulation post-processing
scripts and its application to all presented results proved that it works reliably.

Summary of the results The Results chapter presented an overview of the elec-
tromagnetic behaviour of ten most common classes of metamaterials, in a didactic
approach that the author felt to be missing in the available literature.

1. It started with a one-dimensional photonic crystal, which can be viewed as
the simplest periodic structure. Its dispersion curves consist of alternating
photonic bands and band gaps, but no individual resonances can occur. The
conditions for the formation of a zero-width photonic band gap are shown in
parametric scans. The low-frequency and high-frequency limits for the effec-
tive index of refraction are demonstrated.

2. Replacing the dielectric layer with an array of metallic wires parallel to the
electric field does not change the high-frequency behaviour qualitatively, but
below the plasma frequency, it introduces a plasma-like response with nega-
tive effective permittivity. The resulting plasma frequency is determined by
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the geometry; Fig. 5.7 compared the numeric results with analytic models,
showing a good match.

3. Periodic gaps in the wires introduce the individual resonances with an elec-
tric dipole. Their spectra of effective parameters were described in detail,
since they are typical also for resonances in other structures. Parametric scans
through wire radius and cut distance were shown to have nontrivial effects
on the resonant frequency. Our experimental data from cut-wire array on sil-
icon substrate were compared to numerical model, and the difference was
explained as an effect of asymmetry and losses in the real sample.

4. The individual resonances with an electric dipole were compared to their
counterparts with a magnetic dipole forming the fundamental resonance of
split-ring resonators. The resonator with a single splitting in the ring is asym-
metric, and it was demonstrated that erroneous results for this structure are
retrieved by any homogenisation method that does not account for the asym-
metry. The version with a symmetric splitting, however, can be homogenised
to obtain negative permeability. Further, a combination of the double-split
ring resonator with the wire array was shown to yield the negative index of re-
fraction with compatible results between the s-parameters method a current-
driven homogenisation.

5. On the contrary, the discrepancy between these two approaches to homogeni-
sation cannot be neglected when a central shunt conductor is added to a sym-
metric split-ring resonator. Then the electric type resonance becomes the fun-
damental one, and by continuous changes in the geometry one can tune the
electric and magnetic resonance frequencies. While it might be intuitively ex-
pected that both resonances would form a region of negative refractive index,
the simulations shown that the spatial dispersion causes the dispersion curves
to bend into a concave shape instead, enabling the structure to support mul-
tiple modes at the same frequency. Consequently, the scattering-parameter
method cannot determine the effective index of refraction.

6. Dielectric spherical resonators were shown to exhibit individual resonances
of Mie type, the first of which is analogous to the resonance in split-ring res-
onator. With the exactly defined dielectric model of the constituent dielectric,
we could deduce minimum dissipative losses that can be achieved in an ex-
periment and shown what impact they have on the resonance spectra. Further
we accompanied the computed spectra with our experimental results, arguing
that the substantial deviation between these arose from the inhomogeneity of
the resonators in the sample. Taking the inhomogeneity into account yielded
a reasonable match with the experiment. Extended sieving of the spheres im-
proved the resonance deeper, but no negative permeability was reached.

7. The spectra of dielectric rods parallel to the magnetic field were compared to
that of dielectric spheres, pointing out their similarity. The resonant modes for
low- and high-permittivity dielectrics were compared, too, to illustrate that
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continuous changes in the dielectric permittivity lead to a qualitative change
– a crossover of the Mie and Bragg resonances in the spectra.

8. A similar, and even more pronounced, change was observed in the dielectric
rods parallel to the electric field. Depending on the filling fraction and per-
mittivity contrast, the structure can behave differently in different portions
of spectra: either as a one-dimensional photonic crystal, similar to a wire ar-
ray, or exhibit negative index of refraction. By extensive parametric scans we
demonstrated that the desirable latter mode of operation cannot be achieved,
for any known geometry, when the dielectric contrast is less than roughly 50,
which precludes building negative-index metamaterial solely from any low-
loss dielectric commonly used in photonics.

9. On the example of a metallic sheet with slits parallel to the magnetic field we
showed the effect of extraordinary transmission. We argue that it is medi-
ated by standing surface plasmons, frequency of which depends on the slit
periodicity and is almost independent of their width. Further we demon-
strated that with increasing the metal thickness, the extraordinary transmis-
sion down-tunes with accordance to the dispersion of slot-waveguide modes.

10. Finally, we showed that the extraordinary transmission mediates the prop-
agation of waves also in fishnet metamaterials made of stacked perforated
metallic sheets. Current-driven homogenisation plots for three different fish-
nets were compared to the scattering-parameter method, revealing that the
latter is hardly applicable to this kind of structures, due to strong near-field
coupling between neighbouring cells. Fishnets also support additional waves
carried by quadrupole resonances, which was also observed in terahertz spec-
tra of samples manufactured in our laboratory. Nevertheless, the simulations
predicted that under a careful choice of geometry and illumination, fishnets
exhibit a band of negative refractive index.

There remain many topics that are related to the subject of the present thesis, which
were not discussed here, such as other crystal families than the square/cubic one,
possibly including also quasicrystals or disorder. Except for the fishnet samples, the
discussion was restricted to structures sharing symmetries with the incoming fields;
more general classes of structures would involve bianisotropy/chirality. Also the
nonlinear response of all structures can be studied, but one has to be aware that
the Bloch’s theorem and most of the presented theory assume a strictly linear re-
sponse. However, direct numerical simulations of these phenomena can be pre-
sumably achieved with a relatively easy adaptation of the simulation scripts.

Another particularly useful direction of research would consist in adding the
support of gyrotropy into the MEEP library, i.e. non-hermitian form of the permit-
tivity or permeability tensors which breaks the time-reversal symmetry. This would
open wide research possibilities of linear metamaterial devices with pronounced
non-reciprocal effects.

Conclusions for metamaterial homogenisation Throughout the thesis, we en-
countered many structures that can be described by effective parameters corre-
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sponding to a virtual homogeneous medium with the same macroscopic behaviour,
and we argued that our decision to view the structure as homogeneous may form
a good criterion to define the notion of metamaterials. However, different kinds of
technical or conceptual difficulties arise during the homogenisation.

The observation of a negative refraction at the interface of air and a given structure
does not imply that it has a negative effective index of refraction, N ′eff < 0, since this
homogenised parameter may not be defined at all. Some form of anisotropy is
more or less present in all periodic structures; very often it is strong enough to
preclude the use of N ′eff. On page 27 we have argued that one exception is when
the light propagates nearly parallel to an optical axis of the anisotropic medium
– this warrants assigning effective parameters to most metamaterials. The zero-
width band gaps with a cusp in isofrequency contours present an exception from
this exception, as suggested on page 124.

Some metamaterials have such a strong spatial dispersion that their dispersion
curves allow additional waves sharing the same frequency and direction of propaga-
tion (Fig. 5.21a, 2.12), and this is another complication that precludes the descrip-
tion of the metamaterial by a single spectrum of Neff.

When a scientific method is used beyond its scope, sometimes it leads to a math-
ematical error or returns results which are obviously invalid. We showed on sev-
eral examples that the widely used scattering parameter method, unfortunately, does
not indicate its limits of applicability. By its means, a finite slab of a metamaterial
can always be assigned some effective parameters (see page 94). However, even
when the spatial dispersion is not strong enough to enable the existence of addi-
tional waves as is the case of Fig. 5.41a, the near-field coupling between neighbour-
ing cells may be relatively strong. Then the scattering-parameter method fails to
predict the behaviour of an infinite periodic lattice and Neff has to be determined by
a more robust approach, such as the current-driven homogenisation. We suggest
that the scattering-parameter method results should always be checked using the
basic criteria of validity, such as the absence of non-resonant skips in the spectra,
their compliance to Kramers-Kronig relations and their negligible sensitivity to the
number of simulated unit cells.

Finally, even when the scattering parameter method yields a physically sound
index of refraction, it does not guarantee that the retrieved effective impedance Zeff

is valid nor that the medium may described by means of the effective local permit-
tivity εeff and permeability µeff. These effective parameters require the unit cell to
be much smaller than the Bloch’s wavelength. In most metamaterials, this condi-
tion is fulfilled in one or few narrow portions of the spectrum only, namely where
|N ′eff| � c/(2af). Otherwise the spectra of εeff or µeff acquire typical antiresonance
artifacts, which have incited disputes stretching over several papers (starting with
Ref. [106]). We argued that the Landau-Lifshitz form of permittivity εLL

r (ω,K) is
required to fully account for the spatial dispersion.

The described non-implications are summed up by the following scheme:

negative
refraction 6⇒ ∃N ′eff < 0 6⇒

s-parameter
method

applicable
6⇒ ∃ε′eff < 0

∃µ′eff < 0
(6.1)
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Let us note that implications opposite to these shown may not hold, either. For
instance, in Figs. 5.20 and 5.21, the array of the combined split-ring resonators may
have clearly defined electric and magnetic individual resonances, yet the index of
refraction Neff is not applicable when they overlap.

Closing words While metamaterials were successfully tested in the
radio-frequency and microwave ranges, e.g., for compact antennas or magnetic
resonance imaging [225], probably the majority of related papers are dedicated to
achieving negative index of refraction or a cloaking effect, with as high frequency
and as low losses as possible. On the way to this tantalizing aim and to fast
publication, too often they use an overly simplistic theoretical description or
inadequate characterisation approach, or both.

The rapid growth of the number of papers related to metamaterials observed
in the last two decades is certainly beneficial for the overall growth of knowledge.
However, one should not forget about the price to be paid for it. Some of the con-
cepts which were developed decades ago seem to be re-invented and published
as novel. Aside of it, a significant portion of papers deals with the same class of
structures, presenting only a minute quantitative improvement over the previous
results, and they fail to bring any conceptual progress. This way, they dilute the
information density of even high-impacted journals. This is exacerbated by the fact
that, in the author’s experience, even the metamaterial monographs are mostly as-
sembled of separate papers that are unrelated to each other and by far not covering
all relevant theory.

In contrast, the genuinely tough issues seem to be rather underexposed. In the
infrared and optical range, these are most importantly the ubiquitous dissipative
losses. They are common for high-permitivity dielectrics and metals, while the
permittivity of any known low-loss material appears insufficient for metamaterial
behaviour [99]. Also, all contemporary superconductors lose their superconduct-
ing properties above terahertz frequencies. To the knowledge of the author, all
experimental demonstrations of such metamaterials are restricted to tiny samples
which remain relatively transparent. Active amplification in unit cells, using either
lumped components [202] or stimulated emission, may partially compensate the
losses, but it appears very hard to achieve necessary linearity and homogeneity.

The sub-diffraction imaging has yet another fundamental issue aside of the dis-
sipative losses. It requires to suppress the spatial dispersion, which arises from
nonzero dimensions of the unit cells. If the future progress in nanotechnology
succeeds in overcoming this obstacle, the question remains whether it would not
become also more than sufficient for the fabrication of superior measurement tech-
niques, completely eliminating the need of any metamaterial super- or hyper-lens.

The challenges which the metamaterial research faces nowadays may be over-
come once. However, it appears much more likely to the author that the related
research will be beneficial indirectly, by inciting development in an unexpected
direction, be it in nanofabrication, material science, solid-state physics, nonlinear
optics, theoretical electrodynamics, or any other field of physics and technology.

It would be beneficial to avoid regarding metamaterials as mere means for
putting into practice the notorious – but so far, mostly elusive – list of practical

186



tasks they seem to promise. Instead, in line with the quotation from the start of this
section, it can be much more inspiring and useful to long for the endless immensity of
different phenomena that emerge from the wave interaction with periodic
structures.
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Table 6.1: Table of abbreviations

Abbreviation Meaning
1-D, 2-D, 3-D One-, two- and three-dimensional
CDH Current-Driven Homogenisation
EDB (Formulation of Maxwell equations using the E, D and B vectors)
EOT Extraordinary optical transmission
FDFD Finite-difference frequency-domain (algorithm)
FDM Filter diagonalisation method (algorithm)
FDTD Finite-difference time-domain (algorithm)
FEM Finite-element method (algorithm)
FFT Fast Fourier transform (algorithm)
FOM Figure of Merit
FRoI Frequency range of interest
GVD Group velocity dispersion
IFC Isofrequency contours
LHM Left-Handed (Meta)Material
MM Metamaterial
NGV Negative group velocity
NRI Negative refractive index
NRW Nicolson-Ross-Weir (algorithm)
PBG Photonic band-gap
PhC Photonic crystal
PWEM Plane-wave expansion method (algorithm)
RHM Right-Handed (Meta)Material
SPP Surface Plasmon-Polariton
SRR Split-ring resonator
sSRR Symmetric split-ring resonator
STO Strontium titanate, SrTiO3 (ferroelectric material)
TDTS Time-domain terahertz spectroscopy

188



Table 6.2: Symbols used, approximately in the order they are introduced in text

Symbol Meaning
E Electric field
E0 Amplitude of the electric field
D Electric displacement
H Magnetic field
B Magnetic displacement

ε0 Vacuum permittivity, 8.85 · 10−12 F/m
µ0 Vacuum permeability, 1.25 · 10−6 H/m

r, t reflectance, transmittance
i Imaginary unit, i2 = −1
e Euler constant, e = 2.718 . . .
π π = 3.141 . . .
f Frequency
ω Angular frequency, ω = 2πf
k Wave vector in homogeneous media
K Wave vector of the Bloch wave in periodic media
t, τ Time
c Speed of light in vacuum, c = 2.998 · 108 m/s
f(t), F (ω) Function in the time domain, and in the frequency domain
χe, χm Electric and magnetic susceptibility in the local approximantion
εr(ω), µr(ω) Relative permittivity and permeability in the local approximation
εr(ω,k) Relative permittivity for nonlocal media
µr(ω,k) Relative permeability for nonlocal media
εLL
r (ω,k) Relative permittivity in the Landau-Lifshitz (EDB) formulation
Neff Effective index of refraction (of periodic media)
Zeff Effective impedance
εeff, µeff Effective permittivity and permeability (of periodic media)
r, ρ Position in space (radius vector)
a1,2,3, a Lattice vectors, unit cell size in the cubic lattice
R Real numbers
Z Integers
C Complex numbers
h Planck constant, h = 6.626 · 10−34 J s
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