
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Juraj Šib́ık
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Abstrakt: Práce se věnuje výzkumu metamateriál̊u pro terahertzovou spektrálńı
oblast vytvořených ze vzork̊u hluboko leptaného křemı́ku. Hlavńım ćılem je
teoretické navrhnut́ı a experimentálni realizace fázových destiček pro vybrané
terahertzové frekvence. Destičky jsou vyrobeny z křemı́kových substrát̊u s vylep-
tanou dvourozměrnou periodickou mikrostrukturou, jej́ıž elementárńı buňky
jsou menš́ı než vlnová délka použitého zářeńı. Teoretický návrh je optimalizován
pomoćı formalismu přenosových matic. V práci jsou navrženy a charakteri-
zovány čtvrtvlnné fázové destičky pro frekvence 0.5 a 1 THz a p̊ulvlnbá deštička
pro frekvenci 1 THz.
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Title: Application of metamaterial structures in terahertz spectral range
Author: Juraj Šib́ık
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Abstract: The thesis is devoted to a research on metamaterials for terahertz
spectral range based on deeply etched silicon. The aim of the work is a the-
oretical conception and experimental realization of wave plates for selected
terahertz frequencies. These wave plates are made of silicon substrates with
an etched two-dimensional periodic microstructure where the dimensions of an
elementary cell are below the considered wavelength. Theoretical proposal is
optimized using the transfer matrix formalism. We designed and experimentally
characterized quarter-wave plates for frequencies 0.5 THz and 1 THz and a
half-wave plate for frequency 1 THz.
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Chapter 1

Terahertz radiation and
spectroscopy

1.1 Introduction

Terahertz (THz) radiation fills the gap between the infrared and microwave
radiation, i.e. spectral range between 1011 Hz and 1013 Hz. THz radiation
is non-ionizing, non-destructive and low energy radiation. Given that 1 THz
corresponds to black body radiation at 48 K, it means no threat to human
body, because all living objects are hotter and therefore they are sources of
THz radiation.

Figure 1.1: Spectrum of electromagnetic radiation. After Ref. [1]

However, eligible THz sources are available only for around 20 years. For the
lower frequencies, including AM and FM radio frequencies up to microwave,
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2 1.2 THz sources

sources are based on classical electron transport. For higher frequencies, includ-
ing infrared radiation, visible light and ultra violet radiation, sources are based
on quantum transitions. For a long time THz range was not accessible neither
from electrical nor optical part of the spectrum. The exploration boom of the
THz started when a new method for the production and detection of bright
coherent THz pulses using ultrafast optical pulses were introduced (so called
opto-electronic approach to the THz spectroscopy).

1.2 THz sources

Photoconductive switches (photoconductive antennae) are one of the broadband
THz sources and they were introduced for generation of THz pulses by Auston
et al. [2]. A photoconductive antenna consists of two metal electrodes deposited
on a semiconductor substrate. A short (∼100 fs) optical pulse illuminates the
gap between the electrodes and generates photocarriers. Subsequently the free
carriers are accelerated in bias electric field. The rapid variation of the current
density rises a THz pulse. The carriers are then trapped or recombined and
the current density returns to its steady-state value. The lifetime of the free
carriers is crucial since the current density has to reach a steady-state value
before the next excitation pulse occurs.

(1)

(2)

(3)

Figure 1.2: Photoswitch TeraSED. (1) Interdigitated electrode structure. (2)
Optically opaque shielding of odd gaps between the electrode fingers. (3) GaAs
substrate.

Later on, a photoswitch consisting of an integrated interdigital metal electrode
structure was introduced [3], see Fig. 1.2. Every odd gap between the electrodes
is shielded so the free carriers are not generated there. As a result carriers



1.2 THz sources 3

are generated only in the parts of emitter with the same orientation of the
bias electric field. The device can be decomposed into a lot of small emitters
emitting THz radiation simultaneously and with the same phase.

Another way of generating broadband THz radiation is using a nonlinear
medium for optical rectification [4] and difference frequency generation. Both
these are second order nonlinear optical processes in which a THz photon of
frequency ωt is created by two optical photons ω1, ω2 such that ωt = |ω1 − ω2|.
The mixing occurs between the frequencies within the ultrashort femtosecond
pulse used as a source. Thus the shorter optical pulses are used, the broader
THz spectrum will be generated.

One of the monochromatic types of THz sources are quantum cascade lasers
(QCLs). QCL is a semiconductor heterostructure device composed of periodic
series of semiconductor thin layers forming a superlattice (see Fig. 1.3). In
typical interband semiconductor lasers the emission is based on the recombi-
nation of electron-hole pairs across the band gap, but the emission of QCL is
achieved by intersubband transitions. By using a suitable thicknesses of the
layers the active region and injector region can be engineered. The active region
has discrete electronic level and injector region has electronic subbands, both
are shifted by a voltage applied to the structure and electrons from injector
region fill the upper lasing level of the active region thus creating a population
inversion. The electrons then fall to the lower energy level of the active region
emitting a low-energy photon. After that they are injected into the next active
region and the procedure repeats. As a result one electron creates typically 25
to 75 photons per cascade transit. Photon emission in THz spectral range is
achieved by appropriately positioned energy levels in the active region.
QCL can work in pulsed as well as in continuous regime. However, the QCL

can work only at a low temperatures for now. The average output power of
QCL dramatically decreases with increasing the temperature but at liquid
helium temperature the output power reaches up to 100 mW. At present, the
highest operation temperature of THz QCLs is around 180 K [5].

Technique Mean power Freq. range Tunability Pulse vs. CW
THz-TDS 5 µW - 1 mW 0.1 - 5 THz broadband Pulse

Photomixing 10 nW - 1 µW 0.3 - 3 THz continuous CW
QCL 1 - 100 mW 1 - 5 THz discrete lines both

Table 1.1: Comparison of several kinds of THz sources
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Figure 1.3: Schematic diagram of the conduction band structure of the quantum
cascade laser. A THz photon with frequency ν = (E3 − E2)/h is generated.
After Ref. [1].

1.3 THz detectors

Photoconductive antenna can be used also as a detector of THz radiation.
The process is inverse: an optical ultrashort pulse generates free carriers in a
semiconductor between electrodes of the antenna and they are accelerated by
the electric field of simultaneously arriving THz pulse. This process generates
a current which is converted to a voltage by a current amplifier connected to
the antenna. The time resolution of the process is given by the length of the
ultrashort optical pulse and by the response of the detector. The photocurrent J
can be calculated from the transient photoconductivity σ and the THz electric
field ETHz in the photoconductor as J(f) = σ(f)ETHz(f) in frequency domain,
or as a convolution in time domain J(t) = σ(t) ∗ ETHz(t). To make the electric
field approximately proportional to the photocurrent the photoconductivity
response has to be much shorter than the THz waveform, i. e. σ(f) has to be a
flat function of f . Some suitable materials with such properties are radiation-
damaged silicon-on-sapphire [6] and low-temperature-grown GaAs (LT-GaAs)
[7]. LT-GaAs has a higher carrier mobility which leads to a stronger signal as
is hence preferred.

Other technique of detection is the electro-optic sampling based on the linear
electro-optic Pockels effect [8]. The birefringence of an electro-optic crystal is
induced by the applied THz electric field and is probed by the gating optical
pulse.

There are two basic configurations of the detecting system. In the first
one (Fig. 1.4(a)), the circularly polarized gating beam passes through the
crystal and the birefringence is then deduced from the ellipticity. The ellipticity
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is measured as a difference signal from a pair of balanced photodiodes. The
measured signal is linearly proportional to the THz field. This configuration is
stable with respect to fluctuations of the gating beam polarization.
In the second configuration (Fig. 1.4(b)) the ellipticity is measured near the zero-

THz pulse 

Circularly polarized gating pulse 

Electro-optic 
crystal 

Elliptical 
polarization 

Wollaston 
prism 

Balanced 
photodiodes 

Vertically polarized 
component 

Horizontally polarized 
component 

Induced 
optical axis

(a) 

THz pulse 

Linearly polarized gating pulse 

Electro-optic 
crystal 

Elliptical 
polarization 

Analyzer 

Single 
photodiode 

Resulting 
polarization 

Induced 
optical axis

(b) 

Figure 1.4: Basic schemes of electro-optic sampling systems. (a) Configuration
employing a pair of balanced photodiodes. (b) Configuration operating near
the zero-transmission point. After Ref. [9].

transmission point [10]. The detected signal becomes a non-linear function of the
applied THz field. This scheme is important for a single-shot measurements [11]
or in some imaging applications [12] where a single photodetector is required.

Often used crystals for electro-optic detection are ZnTe, DAST, LiTaO3 or
LiNbO3 [13–15].

1.4 Time domain THz spectroscopy

THz time-domain spectroscopy provides a very useful tool for characterization
of materials. It can be used to determine the optical constants in steady-state
when a sample is in equilibrium as well as for investigation of dynamics.

The former can be done by steady-state spectroscopy. Time-domain THz
transmission spectroscopy (TDTTS) is a standard method for characterization
of the dielectric properties of a materials that are transparent in THz range
like single crystals or thin films. We use this method in our experiments; the
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experimental setup and the process of investigation is explained in the section
5.2.

When a sample is not transparent the time-domain THz reflection spec-
troscopy (TDTRS) can be used. The reflection spectroscopy may be useful also
for investigation of thin films on substrates when the substrate is not suitable
for the transmission measurement. The main difficulty of TDTRS is that a
small mispositioning (∼1µm) of the sample with respect to the reference mirror
significantly influences the calculated dielectric function due to a change in the
reflectance phase [16].

The most common techniques for investigation of ultrafast dynamics (ultra-
fast photoconductivity) are optical pump-THz probe (OPTP) experiments
and THz emission spectroscopy. In OPTP spectroscopy, the carrier dynamics
photo-initiated by a pump pulse is probed by a delayed THz pulse [17]. The
photo-induced response of the sample can be extracted from the time-dependent
transient permittivity or conductivity. Since the energy of THz photons is low,
OPTP spectroscopy is an excellent non-contact non-destructive electrical probe
for various transport processes.

In the THz emission spectroscopy the THz pulses are emitted by the sample.
The analysis of the THz signal gives the information about photoinitiated
carrier dynamics in the sample. It is possible to examine evolution of carrier
density and/or time-dependent carrier velocity [9].

1.5 Industrial applications

The THz radiation is interesting also for many industrial applications. THz
radiation can penetrate through the materials like paper, clothing, ceramics,
plastic, wood or masonry. Important applications are security checks [18]. For
example airports can use THz radiation to uncover hidden weapons or dangerous
substances under the clothes or in the luggage. THz rays allows also the ceramic
knives to be uncovered that cannot be seen by metal detectors. Since a lot
of chemical substances show fingerprints in THz spectral range, narcotics or
explosives can be easy revealed [19], too.

THz radiation strongly interacts with water and therefore a skin cancer
can be imaged by terahertz pulse imaging [20]. It is estimated that more than
85% of all cancers originate in the epithelium. THz radiation can be used to
non-invasive molecular imaging of epithelial cancer. Moreover, the dentists can
use THz instead of X-Rays to detect a decay at an early stage [21].

Another interesting application, which THz radiation is suitable for, is
short-range wireless communication [22]. Most wireless gadgets use radiation
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at microwave frequencies (Wi-Fi operates at 2.4 GHz). A typical modulator
for a 2.4 GHz signal can only encode information at far lower frequencies, at
about 50 MHz. But a 2.4 THz wave oscillates a thousand times faster than a
2.4 GHz signal, and correspondingly, if terahertz modulators could be made,
the modulated signal would also be a thousand times faster.
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Chapter 2

Metamaterials

2.1 Principles and historical overview

Metamaterials (MMs) are novel materials. In this chapter we will discuss
metamaterials for electro-magnetic waves, although MMs approach goes beyond
the optics, e. g. there have been done some works in acoustic MMs [23, 24].

The definition of metamaterial is still not absolutely clear, but after ex-
amining the key concepts behind MMs it can be said [25]: ”A metamaterial
is an artificially structured material which attains its properties from the unit
structure rather than the constituent materials. A metamaterial has an in-
homogeneity scale that is much smaller than the wavelength of interest, and
its electromagnetic response is expressed in terms of homogenized material
parameters.”

The structural units of a MM are known as meta-atoms or meta-molecules.
Both meta-atoms and the average distance between neighboring meta-atoms
must be substantially smaller than the target wavelength; usually we talk about
MM when both are lower than λ0/10, where λ0 is the target wavelength in the
vacuum. Often, but not always, MMs are periodical ordered materials. The
light propagating through MM does not feel the microstructure; instead it
feels an effective response. Thus we are able to set up the response and when
creating an appropriate design, MMs can exhibit some optical properties that
are not common in nature.

Going back to history we can say that the MM research was started in 1968
by Veselago [26], who theoretically considered the medium with a negative
refractive index (NIM), i. e. n < 0. The Veselago’s question was: which sign for
n = ±√εµ is to be chosen when both ε and µ are equal to -1? For any realistic
medium there is a positive imaginary part for ε and µ even small. This has to
be in order to satisfy the causality condition. Considering ε = −1 + iq1 and

9



10 2.1 Principles and historical overview

µ = −1 + iq2 where 0 < q1, q2 � −1 we get

n = ±
√

(−1 + iq1)(−1 + iq2) = ±
√

(1− q1q2)− i(q1 + q2)

≈ ±
[
1− iq1 + q2

2

]
. (2.1)

The causality requires also that the real part of n has to be positive and thus
the minus sign has to be chosen. The negative real part of n implies that the
phase velocity is opposite to the flow of energy. NIM are also known as the
left-handed materials since the field vectors ~E , ~H and the wave vector ~k form a
left-handed system for such media. This can be clear from Maxwell’s equations
for a plane wave,

~k × ~E = ωµ0µ ~H (2.2a)

~k × ~H = −ωε0ε~E (2.2b)

considering the fact that ε and µ are negative.
As Veselago showed, the idea itself brings very interesting new physical

phenomena. The negative refractive index modifies the Snell’s law for refrac-
tion on a interface between two media, n1 sin θi = n2 sin θt. If we consider
the first medium with positive index n1 > 0 and the second medium with
negative index n2 < 0, the angle of refraction θt has to be negative. The
momentum conservation requests that at the interface of any two media the
tangential component of the wave-vector must be continuous. Since the vec-
tor ~k is oriented opposite to the Poynting vector, the ray coming from the
positive index medium into NIM has to be refracted in a way showed in Fig. 2.1.

E

H
k

E

k

H

q
i

q
i

q
t q

t

ε>0
µ>0

E

H
k

E

k

H

ε<0

µ<0

Figure 2.1: The refraction of ray coming from positive index medium to negative
index medium. After Ref. [25].

Additionally, several other interesting fundamental effects such as reversed
Doppler effect or reversed Cerenkov radiation were proposed in NIMs. Some of
these has been already experimentally verified [27, 28].
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Continuing in this work, Veselago predicted that using NIM it could be
possible to prepare ’perfect lens’, i. e. the lens with no dioptrical defects. In
2000, Pendry pointed out that a slab with negative refractive index n = −1
placed in vacuum beats the diffraction limit and allows imaging of objects
with a sub-wavelength precisions [29]. This is because NIM has an unique
property of amplifying evanescent waves. Evanescent waves are the waves with
the transverse wave-vector kt =

√
k2
x + k2

y that is higher than the wave-vector
k0 in free space. For these waves the wave-vector becomes imaginary and they
decay exponentially in the propagation direction. Thus they do not have any
contribution to the image obtained by standard lenses. Evanescent waves carry
the information of sub-wavelength features of the object. Since the conventional
imaging systems are unable to restore evanescent waves, they cannot provide a
sub-wavelength resolution [30].

I

a

b

I

d

c

n = – 1

n = – 1

Propagating waves

Evanescent waves

Figure 2.2: Comparison of the conventional lens and NIM slab lens. (a) A
conventional lens only collects the propagating waves. (b) The loss of the
evanescent waves in conventional imaging system. (c) The focusing ability of
a NIM slab. (d) The growth of evanescent waves in the NIM slab and the
restoration of both the propagating and evanescent waves. After Ref. [25].

Consider now a wave propagating in z-direction from an object. The field compo-
nent of each Fourier mode from the object can be expressed as exp(−iωt+ ikzz).

In free space, for propagating waves kz =
√
k2

0 − k2
x − k2

y is positive. For near-

fields components we have kz = iκz = i
√
k2
x + k2

y − k2
0, where κz is a positive

real number. According to the fact that kz in NIM is with the negative sign,
for evanescent waves we get kz = −iκz. This leads to an exponential grow
exp(κzz) of near-field components in NIM. We should notice that this fact
does not violate energy conservation since the evanescent waves carry no energy.

First experiments on NIM structures were done by Smith et al. in 2000 [31],
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where they presented work on structured materials with negative permittivity
and simultaneously negative permeability at microwave frequencies. Year after,
Shelby, Smith and Schultz published the experimental verification of a negative
refractive index [32] at microwave frequencies, showing the modified Snell’s law
(see Fig. 2.3).

(a) (b)

Figure 2.3: (a) The two-dimensional NIM at microwave frequency composed
from wires and split rings. (b) The experimental result verified the modified
Snell’s law. After Ref. [32].

At the beginning of MMs research almost all of the works were connected
with NIM and thus in the first years MM and NIM were almost synonyms.
Nevertheless, nowadays approach goes far beyond NIM, although this is one of
the biggest challenges of MMs research.

2.2 Metamaterial structures and effective re-

sponse

The response of MM is crucially dependent on the architecture of meta-atoms.
The theoretical description of metamaterial properties cannot be written in a
simple way. The system of boundary conditions in such microstructures make
Maxwell’s equations practically impossible to be solved analytically. Neverthe-
less, under certain conditions the situation can be simplified. When studying the
optical properties of a system composed of individual sub-wavelength particles,
electromagnetic scattering is overshadowed by the average response of the whole
structure and we can investigate the properties of microscopically heteroge-
neous composite by evaluating the effective properties of the macroscopically
homogeneous medium.

Although the electric and magnetic response of MMs is considered to be
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dependent on the structure of MM, we cannot forget that used materials play
some role, too. It is clear that MMs made of dielectrics will exhibit different
optical properties than MMs made from metals. The most of the MMs are
composites of metals and dielectrics.

2.2.1 Quasi-static regime

Let us firstly consider some composite with sub-wavelength particles. In the
quasi-static approximation, when the particles are substantially smaller then
the wavelength of used electromagnetic radiation both in vacuum and in the
components of the composite, the response does not show any additional reso-
nances and we can express the field in the composite by some mean value. The
sample can be described as an effective medium.

We will work with such samples later in this thesis, when we will try to
compose the wave plates of an silicon substrates with etched metamaterial
layers (see section 4.1).

The two of the most significant effective medium theories for such composites
are the Maxwell-Garnett theory (MGT) [33] and the Bruggeman effective
medium theory (EMT) [34]. In fact, EMT is an enhancement of MGT. The
volume proportion of individual constituents in a composite is described by
filling factor f .

Both theories consider a composite of two materials as a percolation of
inclusions in the host medium. However, while in MGT one constituent repre-
sents the inclusions and the other represent the host medium, in EMT a single
particle of any constituent is described as an inclusion in the whole structure
that represents the host medium. In spite of EMT, when using of MGT we
must say which component represents the inclusions and which component
represent the host medium. Therefore MGT can be used only for well-percolated
inclusions.

Considering the spherical inclusions the Bruggeman EMT expression reads
[34]:

f1
ε1 − ε
ε1 + 2ε

+ f2
ε2 − ε
ε2 + 2ε

= 0. (2.3)

where f1, f2, ε1, ε2 are the filling factors and relative permittivities of first and
second component, respectively, and ε is the effective permittivity of composite.
This equation can be generalized to any number of components:∑

i

fi
εi − ε
εi + 2ε

= 0,
∑
i

fi = 1. (2.4)
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Figure 2.4: Scheme of a layered structure, with the permittivities of the two con-
stituents given as ε1 and ε2, respectively. Two principal effective permittivities
are marked as ε⊥ and ε||. After Ref. [25].

As an advantage, EMT predicts a critical filling fraction for metal, which is
usually referred to as the percolation threshold. For a three-dimensional metal-
dielectric composite it corresponds to f = 1/3. Electronically, when f < 1/3,
the composite acts as an insulator with an extremely low DC conductivity,
and the composite becomes a conductor for f > 1/3 because there is formed a
continuous metallic path across the sample and the metal component forms an
infinite cluster [35].
When the shape of the inclusion particles is notably non-spherical, we must
modify the form of EMT 2.3 by using a screening factor kappa that is related
to the Lorentz depolarization factor L:

κ = (1− L)/L. (2.5)

The EMT formula then becomes [25]:

f1
ε1 − ε
ε1 + κε

+ f2
ε2 − ε
ε2 + κε

= 0. (2.6)

If the wavelength of used radiation in composite (not in free space) is com-
parable with the size of inclusions (i. e. the components exhibit high real
permittivities or filling factor is above the percolation threshold), the reso-
nances in electric and magnetic field can occurs. In these cases the EMT is
not sufficient in determining the composite permittivity and permeability and
numerical methods like multi-dimensional transfer matrix formalism [36] must
be used to determine the effective response.

Nevertheless, EMT can be used for evaluating the permittivity of layered
structure, when the thickness of the layers is below the wavelength (in the
structure) as in Fig. 2.4. For i-th layer the flux density reads

Di = εiE . (2.7)
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When the incident wave is polarized parallel to the interfaces, the electric fields
at boundaries of layers are continuous and thus same:

E1 = E2 = Eeff. (2.8)

The effective density flux of one pair of layers is volume averaged sum of density
fluxes in individual constituents

Deff = f1D1 + f2D2 (2.9)

and the effective permittivity reads

ε|| = f1ε1 + f2ε2. (2.10)

On the other hand, for incident wave with polarization perpendicular to the
interfaces of the layered structure the electric flux has to be continuous at the
boundaries and so

D1 = D2 = Deff. (2.11)

The electric field is weightened average of the individual fields,

Eeff = f1E1 + f2E2 (2.12)

From equations (2.7), (2.11), (2.12) we gets effective permittivity

ε−1
⊥ = f1ε

−1
1 + f2ε

−1
2 . (2.13)

We should notice two things. First, equations (2.10), (2.13) are the equations
for the permittivity of parallel and serial condensators, respectively. However
this computation could be done only in quasi-static approximation. Second,
equations (2.10) and (2.13) can be achieved from (2.6) as two extremes: when
κ→∞, it corresponds with zero screening and ε||; when κ = 0, it corresponds
with full screening and ε⊥.

2.2.2 Metamaterial resonances

At higher frequencies resonances of electric and magnetic response occurs in
MMs due to the geometry of the pattern. For example, inside a dielectric MM,
the wavelength is comparable to the dimension of the meta-atom and so called
Mie resonances occur which may be observed either in ε or in µ or in both [48].

Let now focus on metal MMs. One way to reach negative ε is using a rodded
metal media by W. Rotman [37], see Fig. 2.5. Such a medium is designed to
produce a plasma resonances. The plasma frequency of wire array depends
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Figure 2.5: 2-dimensional array of rodded media for z-polarized field. After Ref.
[25].
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Figure 2.6: The dielectric function of a silver wire array with r = 5 µm and
a = 40 mm. The horizontal axis represents the wave frequency f = ω/2π. The
effective plasma frequency is ωp = 2π × 1 GHz. After Ref. [25].

mostly on the geometrical properties of wires, i. e. diameter 2r and the length
of the unit cell a. It can be shown [25] that the plasma frequency ωp reads:

ω2
p =

2πc2

a2 ln(a/r)
, (2.14)

where c is the speed of light in vacuum. The effective permittivity of wire
medium can be written in Drude form:

εeff(ω) = 1−
ω2
p

ω(ω + iε0a2ω2
p/πr

2σ)
, (2.15)

where ε0 is the vacuum permittivity and σ is the conductivity of the used metal.
One example of the permittivity for such media with plasma frequency in GHz
range is in Fig. 2.6.

While the permittivity of metals is usually negative under the plasma
frequency, the magnetic permeability is in optics usually close to its free space
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value. However, there have been works on challenging magnetic response of
artificial structures. Pendry et al. [38] predicted, that the pair of split ring
resonators (SRRs) with subwavelength dimensions can lead to a non-unity
effective permeability

µeff = 1− πr2/a2

1− 3l/π2µ0ω2Cr3 + i(2lρ/ωrµ0)
, (2.16)

where ρ is the resistance per unit length of the rings measured around the
circumference, ω is the frequency of incident radiation, l is the distance between
layers, a is the lattice parameter, r is internal radius of internal split ring (see
Fig. 2.7).

is enhanced con-
near

the low frequency side of the resonance and, most strik-
near the high frequency side of the

is of particular interest,
not only because this is a regime not observed in ordinary
materials, but also because such a medium can be combined

to form a “left-handed” material
for propagat-

ing plane waves). In 1968, Veselago [7] theoretically in-

negative and concluded that such
a medium would have dramatically different propagation
characteristics stemming from the sign change of the group
velocity, including reversal of both the Doppler shift and
Cherenkov radiation, anomalous refraction, and even re-
versal of radiation pressure to radiation tension. However,

Figure 2.7: Resonance curve of an actual copper split ring resonator. c = 0.8
mm, d = 0.2 mm, r = 1.5 mm. The SRR has its resonance at about 4.8 GHz.
After Ref. [31].

In fact, the NIM for GHz range that Shelby [32] used for an experimental
achieving of negative refractive index was a combination of the wire medium
together with the SRRs (see Fig. 2.3).

Use of metal wires and SRRs is not the only option for NIMs, neither for
MM concept. In fact, NIMs based on electric and magnetic resonances are
not promising since the system is lossy and plasmonic resonance frequency
for electric and magnetic field can overlap. THe most promising structure,
especially at optical frequencies, is ’fishnet’ structure (see Fig. 2.8) [39]. There
are several other MM structures with magnetic response at THz frequencies,
such as staple-shaped nanostructures [40] or single planar SRR structure [41].
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+ =

µ<0 (resonant) ε<0 (non-resonant) n<0 (resonant)

Figure 2.8: The fishnet structure: resonant magnetic strips combined with a
non-resonant electric grating. After Ref. [25].

2.3 Applications

As mentioned in the first section, one of the interesting applications of MMs
is creation of perfect lens. Unfortunately, the NIMs based on resonances are
highly dissipative, lossy and anisotropic and thus practically do not make the
perfect lens. The near-field version of the perfect lens, ’near-field superlens’,
does not require optical magnetism and is easier to achieve. Such lens should
be used in biomedical imaging (surface-enhanced Raman scattering, near-field
scanning optical microscopy) or nanolithography. There is also an effort to
create far-field superlens [42, 43].

The other possibility of big interest is using MMs in transformation optics.
Transformation optic proposed several conceptual devices of a big interest such
as hyperlens or cloaking devices. The brief overview can be found in [44].

The idea of cloaking device is in designing an optical element that trans-
forms path of light so it will go around the object which we want to hide. It is
somehow interesting that the Maxwell’s equations are form-invariant under a
space-deforming transformation. The strategy of cloaking device is based on
a such coordinate transformation. In the first step, we apply a form-invariant
transformation to Maxwell’s equations in the real space with emphasis on
required functionality. Then we transform the permittivity and permeability
tensors back to the real space and fabricate resulting medium. Considering
the fact that permittivity and permeability tensor will be very complicated
it is clear that such medium is difficult to prepare, although experimental
demonstrations at microwave frequencies were done [45].

Going beyond the NIM, MMs can be used to construct some devices op-
erating at designated frequencies, like switches, modulators or detectors. Such
structures are especially important for THz spectral range since many common
materials do not respond to THz radiation at all. As mentioned in the previous
chapter, THz radiation has huge application potential and therefore MM struc-
tures for THz range are in a big interest of researchers. In 2006, H.-T. Chen
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et al. proposed [46] active THz device consisted of an array of gold electric
resonator elements (the metamaterial) connected by wires and fabricated on
a semiconductor substrate (n-GaAs). The substrate and metamaterial array
effectively formed together a Schottky diode which enable the modulation of
THz transmission by 50% using a reverse gate voltage bias. Thus this sctructure
can serve as an electrical modulator for THz frequencies.

Later Chen et al. showed, that by using a similar geometry of resonator
array fabricated on ErAs/GaAs nanoisland superlattice substrates it is possible
to create an ultrafast optical switch for THz radiation with a recovery rate of
∼10 ps [47].

Some terahertz metamaterials can be tuned also by temperature. In 2009
Němec et al. presented [48] dielectric metamaterials exhibiting a tunable range of
negative effective permeability in the terahertz spectral region. The structures
consisted of arrays of intrinsically nonmagnetic rods made of an incipient
ferroelectric SrTiO3 which a high tunable permittivity by temperature control.
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Chapter 3

Polarization of light

3.1 Polarization of light

The light is an electromagnetic wave. The polarization of light is determined by
the time course of the direction of the electric vector ~E(~r, t). For monochromatic

light, at each position ~r the endpoint of the vector ~E(~r, t) moves in a plane and
traces an ellipse, but the plane, the orientation and the shape of the ellipse
generally vary with position. However, in paraxial optics, if the medium is
isotropic, the polarization ellipse is approximately the same everywhere and
the wave is said to be elliptically polarized.

Consider monochromatic plane wave of frequency ν traveling in the z di-
rection with velocity c. The electric field lies in the x− y plane and is generally
described by

~E(z, t) = Re
{
~A exp

[
j2πν

(
t− z

c

)]}
. (3.1)

Here the complex envelope

~A = Ax~x+ Ay~y (3.2)

is a vector with complex components Ax, Ay. These components can be ex-
pressed in terms of their magnitudes and phases,

Ax = ax exp (jφx) , (3.3a)

Ay = ay exp (jφy) . (3.3b)

Substituting (3.2) and (3.3) into (3.1), we obtain

~E(z, t) = Ex~x+ Ey~y, (3.4)

21
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where the x and y components of the vector ~E are

Ex = ax cos
[
2πν

(
t− z

c

)
+ φx

]
(3.5a)

Ey = ay cos
[
2πν

(
t− z

c

)
+ φy

]
(3.5b)

Equations (3.5) are the parametric equations of the ellipse

Ex
a2
x

+
Ey
a2
y

− 2 cosφ
ExEy
axay

= sin2 φ, (3.6)

where φ = φx − φy is the phase difference, also called the relative phase. The
shape of the ellipse determines the state of polarization and depends on two
parameters: the ratio of magnitudes ax/ay and the phase difference φ = φy−φx.
The light is right polarized if sinφ > 0 and left polarized if sinφ < 0. To
describe polarization we may implement new parameters χ (ellipticity), ψ
(angle of rotation) and α (see fig. 3.1), where:

tan 2ψ =
2axay cosφ

a2
x − a2

y

(0 ≤ ψ ≤ π) , (3.7a)

tanα =
ay
ax

(0 ≤ α ≤ π/2) , (3.7b)

tanχ = sgn [sinφ]
b

a
(−π/4 ≤ χ ≤ π/4) (3.7c)

where a and b are ellipse’s semimajor and semiminor axes, respectively. For us

-

-

Figure 3.1: Ellipse of polarization
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there are two interesting states of polarization, linear and circular.

Light is LINEARLY POLARIZED if one of the components vanishes (ax = 0
or ay = 0) or sinφ = 0, i. e. φ = kπ, k is an integer. Ellipse is reduced to a line,
χ = 0.

Light is CIRCULARLY POLARIZED if ax = ay and φ = ±π/2 (’+’ for
right circularly polarized and ’−’ for left circularly polarized). Ellipse is reduced
to a circle, χ = π/4.
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3.2 Jones-vector representation

Complex envelopes Ax, Ay completely characterize a monochromatic plane wave
traveling in z direction. Since they represent orthogonal components, they can
be written in the form of a column matrix known as the Jones vector

J =

[
Ax
Ay

]
(3.8)

Some states of polarization expressed as Jones vectors are shown in table 3.1.

Linearly polarized wave in x direction

[
1
0

]

Linearly polarized wave in y direction

[
0
1

]

Linearly polarized wave with plane of
[
cos δ
sin δ

]
polarization making angle δ with x axis

Right circularly polarized wave 1√
2

[
1
j

]

Left circularly polarized wave 1√
2

[
1
−j

]
Table 3.1: Jones vectors

Polarization device or another optical system can be expressed as the Jones

matrix, T . Jones matrix is a 2x2 matrix that transforms input wave J1 =

[
A1x

A1y

]
to output wave J1 =

[
A2x

A2y

]
as

[
A2x

A2y

]
=

[
T11 T12

T21 T22

] [
A1x

A1y

]
(3.9)
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The normal modes of polarization system are the states of polarization that
are not changed by the system, i. e. satisfying condition

TJ = γJ, (3.10)

where γ is a constant.

3.3 Wave retarders

Wave retarders are optical devices able to change relative phase φ of the
incident wave. The change of polarization is caused by a birefringence of the
wave retarder. In general, a wave retarder has two normal modes, linearly
polarized waves in x and y direction (called fast and slow axes of the retarder,
respectively). At the beginning, an incident wave is decomposed to these
normal modes, then each component propagate independently and finally these
components are recomposed into an output wave (see fig. 3.2). Since a wave
plate is birefringent, each mode travels different optical path length. This leads
to a different phase shift of each component and thus to a change of relative
phase. A wave retarder can be descripted in Jones-vector representation as a
matrix

T =

[
1 0
0 exp(−jΓ)

]
(3.11)

where Γ is a relative phase change.

3.3.1 Half-wave plate

In case of Γ = π, the retarder is called half-wave retarder or half-wave plate.
Substituting Γ into (3.11) one can easily get Jones matrix of half-wave plate
T1/2

T1/2 =

[
1 0
0 −1

]
. (3.12)

Half-wave plate converts linearly polarized light

[
cos δ
sin δ

]
into linearly polarized

light

[
cos(−δ)
sin(−δ)

]
, i. e. rotates plane of linearly polarized wave from angle δ

to angle −δ (see fig. 3.2 ). The half-wave plate also converts right circularly

polarized light

[
1
j

]
into left circularly polarized light

[
1
−j

]
and reversely.
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Figure 3.2: Linearly polarized wave passing through a half-wave plate. Half-wave
plate rotates plane of polarization.

3.3.2 Quarter-wave plate

In case of Γ = π/2, the retarder is called quarter-wave retarder or quarter-wave
plate. Substituting Γ into (3.11) one can easily get Jones matrix of quarter-wave
plate T1/4

T1/4 =

[
1 0
0 −j

]
. (3.13)

Quarter-wave plate converts linearly polarized light

[
1
1

]
(δ = 45◦) into left

circularly polarized light

[
1
−j

]
, and reversely, right circularly polarized light[

1
j

]
into linearly polarized light

[
1
1

]
. Further, one can easily see that

T1/4T1/4 = T1/2, (3.14)

and thus a system composed of two quarter-wave plates with same fast and
slow axis behave as a system composed of a half-wave plate.
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Wave plates

The aim of the work was to develop quarter-wave plate and half-wave plate
working in THz range. The idea was to design such device by using anisotropic
metamaterial layers made of silicon and optimize its transmission using transfer
matrix formalism.

4.1 Etched layers for THz radiation

Based on recent work of Kadlec et al. [49], strongly birefringent metamaterials
in THz range can be prepared by etching of patterns with appropriate filling
factors in a dielectric substrate. The idea is simple and fresh, by deep etching
of subwavelength periodic parallel lines (walls) we create metamaterial with
chosen refractive indices for two orthogonal light polarizations: along the walls
and perpendicular to the walls. By etching another set of lines perpendicular
to the first set one obtains an additional degree of freedom to define the values
of refractive indices. If a structure filling factor is same in both directions, we
can create an isotropic metamaterial layer with refractive index of any value
between 1 (air) and the substrate refractive index. Such layer looks like a
2-dimensional grid of pillars, see fig. 4.1(c). When the dimensions of the unit
cell (fig. 4.1(a)) are much smaller than the target wavelength (typically ≤ λ/10),
the structure can be described by effective permittivity values. Within the quasi-
static approximation, the unit cell can be replaced by an equivalent electrical
circuit (fig. 4.1(b)) that simplifies calculations of effective permittivities ε1,2 for
two orthogonal linear polarizations. As a result we get [49]:

~E⊥x1 : ε1 = 1 +
x1x2
ε
ε−1
− x2

≡ n2
1 (4.1a)

~E⊥x2 : ε2 = 1 +
x1x2
ε
ε−1
− x1

≡ n2
2 (4.1b)

27
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where ε is the material permittivity (i. e. εSi for silicon) and x1 and x2 denotes
filling factors (fig. 4.1(a)) , i. e. material and vacuum proportion within a period.
These two linear polarizations represent normal modes of the layer. If filling
factors x1 and x2 are different from each other, effective permittivities ε1,2 are
different from each other as well. This leads to effective anisotropic optical
(THz) properties of such layer.

Figure 4.1: (a) Scheme of a unit cell of an etched material with permittivity
ε placed in air; (b) equivalent circuit applicable for evaluating its effective
response. The dimensions are in relative units. (c) Scanning electron microscope
picture of the structure with an array of pillars. After Ref. [49].

Special case of etched layers are layers etched in one direction, i. e. x1 = 1,
x2 = x < 1. Such layers are composed of walls separated by vacuum. This
leads to a higher birefringence than in structures with an array of pillars. The
birefringence amounts up to ∆n = 1.25 for the filling factor x = 0.65 when
using Si as a substrate [49]. Equations (4.1a), (4.1b) are simplified:

~Es ≡ ~E⊥x1 : εs =
ε

ε− x (ε− 1)
= n2

s (4.2a)

~Ep ≡ ~E⊥x2 : εp = 1 + x (ε− 1) = n2
p (4.2b)

where we used ’s’ and ’p’ indices instead of ’1’ and ’2’ since these indices
intuitively indicate, within the usual optical convention, the polarization of
light with respect to the wall direction. Equations (4.2a) and (4.2b) recall the
expressions for serial (s) and parallel (p) capacitors, respectively (compare with
equations (2.10), (2.13)). As a rule, ns < np because for serial capacitors the
low-permittivity layer (air) substantially decreases the effective permittivity of
the composite (so called ”dead layers” in the literature).
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4.2 Design of a wave plate

To obtain a wave-retarder we need to set the correct phase delay between
eigenmodes Ep, Es and to achieve the same transmittance for these modes. First,
let us consider dielectric etched walls a on dielectric substrate (fig. 4.2).

Figure 4.2: Scheme of a sample with etched walls. Part A is a bulk material,
part B is an etched material.

The sample comprises three interfaces: air/substrate, substrate/etched-layer,
etched-layer/air. The first interface exhibits a high reflectance due to the high
impedance mismatch between the air and the material. To increase the trans-
mittance we can add an antireflective layer for the substrate. The antireflective
layer can be designed as another etched-layer with appropriately chosen re-
fractive index and thickness. This layer will be isotropic (x1=x2). Also we can
try to avoid losses on etched-layer/air interface by using another birefringent
etched-layer. As we will see later, it will not be perfectly antireflective, but with
this layer we will be able to reach transmittance almost 100%. This layer also
comes along with a new substrate, so we will need to add another antireflective
layer for the substrate. The final desingn of wave plate can be splitted into 5
parts: A, B, C, D, E (see fig 4.3). We will give a detailed look into each part in
the next subsections.

4.2.1 Layer C

Layer C is an isotropic etched layer that behaves like a single-layer antireflective
coating. As mentioned above, it is used to increase the absolute transmittance
of the wave plate and to suppress the Fabry-Perot interference of the whole
structure. For a given frequency f0, the layer is antireflective if it satisfies two
conditions [50]:
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Figure 4.3: Scheme of a wave plate. A,E - bulk material, B,D - etched walls, C
- antireflective layer (isotropic etched pillars). In experiment there will be no
space between B and D.

1. refractive index of the layer narl

narl =
√
nino, (4.3a)

2. thickness of the layer darl:

darl =
λ0 (2m+ 1)

4narl
; m ∈ {0, 1, 2, . . .} , (4.3b)

where ni and no are the refractive of media above and below the layer, respec-
tively, λ0 is the wavelength of radiation in vacuum, λ0 = c/f0, where c is the
speed of light in vacuum. Since ni = 1 (air) and no = 3.415 (Si) we found that
refractive index of layer C is

nc =
√

3.42 ≈ 1.85.

Using (4.1a) and (4.1b) we find the appropriate filing factors xc1 = xc2 = 0.815.
The depth of etching is given by (4.3b). By using Occam’s razor we find that
m = 0 and

dc = 40.5 µm for 0.5 THz

dc = 81.0 µm for 1 THz.

4.2.2 Layers A and E

Layers A and E are substrate layers (bulks of Si that hold the etched layers). In
fact, each of them is composed of two substrates: one substrate holds the layer
C and the other holds the layer B or D. This is because a structure etched from



4.2 Design of a wave plate 31

both sides is more difficult to prepare than a substrate etched from one side.
Experimentally we need to eliminate the air layer between these two substrates
to obtain an optically homogeneous thicker substrate.
Since the layer C suppresses Fabry-Perot interference, we do not need to
optimize thicknesses of layers A and E. Nevertheless, we assume that substrates
will be 200-300 µm thick, therefore layer A and layer E will be approximately
500 µm thick.

4.2.3 Layers B and D

Layers B and D are both anisotropic and thus are birefringent. Thinner layers
are easier to prepare than thicker ones so we will not discuss a deeper etching
than necessary. Our target frequency is about 1 THz (λ0 = 300 µm); the size of
the unit cell of the etched pattern should not then exceed a = 30 µm in order
to satisfy the condition a ≤ λ0/10. From the technological point of view the
walls should by separated by at least a few microns (3-5 µm). Therefore the
filling factors will never exceed 0.9. Further, the depth of etching should not
exceed approximately 100 µm.

In fact, without a D layer there is nothing to optimize as the B layer
must ensure alone the correct phase delay. In this case the reflection losses
on A/B and B/air interfaces will differ for ’s’ and ’p’, which means that the
transmittance of the whole wave plate for these two polarizations will differ,
too.

Below we show that using 2 birefringent layers provides sufficient degree of
flexibility to optimize the design. The phase retardation of a wave plate is a
sum of partial contributions, i. e.

∆φ = ∆φb + ∆φd =
2πdb (nbp − nbs)

λ0

+
2πdd (ndp − nds)

λ0

. (4.4)

B and D layer should have equal orientations of slow and fast axes. If not, the
phase retardation of B layer goes against the phase retardation of D layer. First,
let us assume the layer D defines some phase delay and serves at the same time
as an antireflective layer between B and silicon E. Since we prefer thinner layers
rather than thicker, we will assume that layer B shows the highest possible
birefringence, 1.25, i. e. filling factor xb = 0.65. Thus the refraction indices of
B are nbs = 1.57 and nbp = 2.82 and by satisfying condition (4.3a) we can find
that refraction indices of D are ndp = 3.10 and nds = 2.32 with corresponding
filling factors xd1 = 0.99 and xd2 = 0.89. We are unable to etch layer with filling
factor equal to 0.99, but instead we can prepare a layer with xd1 = 1 by etching
walls instead of pillars. This leads to a little mismatch in ndp and nds, but it is
not critical (ndp = 3.24 instead of 3.10, mismatch in nds is lower than 0.01).
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A more serious problem in this case comes from a high predicted value
of the D-layer thickness (substantially higher than 100 µm. Since we have to
accomplish the condition (4.3b) for both polarizations simultaneously, we find
that the lowest acceptable thickness is dd ≈ 161 µm for f0 = 1 THz. Even
though we reach theoretical filling factors and depths, losses still remain because
of the reflection on A/B interface.

Instead of making D antireflective we will follow an optimization procedure
in order to reach the same transmission close to 100%.

4.3 Optimization of transmission

Our plan is to develop quarter-wave plate operating at target frequencies f0 =
0.5 THz and f0 = 1 THz. Additionally, we can made a half-wave plate working
on frequency f0 = 1 THz just by appropriately changing the antireflective C
layers in a quarter-wave plate designed for f0 = 0.5 THz. The optimization
of transmission is done by preparing appropriate script (defining the optical
and geometrical properties of the target structures) for the computer software
developed by Petr Kužel and his colleagues at the Laboratory of Terahertz
Spectroscopy. The software uses transfer matrix formalism described below.

4.3.1 Transfer matrix formalism

The optical properties of layered structures can be described by the transfer
matrix formalism [51, 52]. The transfer matrices relate the tangential compo-
nents of the electric E and magnetic H field at input and output interfaces, i.
e. [

Ein
η0Hin

]
= M

[
Eout
η0Hout

]
, (4.5)

where M is the appropriate transfer matrix and η0 =
√
µ0/ε0 is the vacuum

impedance. For the case of the normal incidence, the transfer matrix of a single
dielectric homogeneous layer reads:

S =

[
cos(nk0d) i/n sin(nk0d)
in sin(nk0d) cos(nk0d)

]
, (4.6)

where n is the complex refractive index of the layer, d is the thickness of the
layer and k0 = ω/c is the wave vector in vacuum. The field distribution in the
layer can be expressed as

E(ω, z) = Ein(ω) cos(nk0z)− iη0Hin(ω)

n
sin(nk0z), (4.7)
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with 0 ≤ z ≤ d.
The transfer matrix of the whole multi-layer stack equals the product of
the transfer matrices of all constituents. For any general layered structure
surrounded by air the amplitude transmission t and reflection r coefficients
read

t =
2

m11 +m12 +m21 +m22

, (4.8a)

r =
m11 +m12 −m21 −m22

m11 +m12 +m21 +m22

, (4.8b)

where mij are the components of transfer matrix of the structure.

4.3.2 Optimization results

Finally, we have found optimal parameters of each layer of quarter-wave plates
on target frequencies 0.5 THz and 1 THz, see Tab. 4.1. Using these parameters
we computed theoretical values transmissions for ’s’ and ’p’ polarizations,
relative transmission and phase retardation of each considered wave plate.
Rather then in this section we prefer to show this data in the next chapter in
the contrast to the experimental results.

f0 [THz]
C B D

dc [µm] xc1 xc2 db [µm] xb dd [µm] xd
0.5 81.0

0.82 0.82 20.0 0.75
119.0 0.85

1 40.5 46.6 0.85

Table 4.1: Optimized parameters of etched layers

Our idea was to make design as simple as possible and thus we have used one
type of layer B for both wave plates. On the other hand this implies high depth
of etching of layer D for f0 =0.5 THz.

For theoretical calculations the filling factor is considered as a parameter
but for manufacturing we have to define the period of etching a and the width
of etched lines (space) s or the width of etched walls (Si) w, see fig. 5.3. Lines
must be at least s = 4 − 5 µm wide and they can be prepared with ∼ 1 µm
precision due to the technological limits.

As we have mentioned before, to consider a layer as a metamaterial the
period of etching a should not exceed ∼30 µm. Besides, simulations using 3D
transfer matrix (3DTM) formalism [9] show that for a > 20 µm an increase of
ns occurs at higher frequencies within our experimentally accessible spectral
range. It means that for f0 = 1 THz and x = 0.85 an increase of period
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∆a = 6.7 µm corresponds to an increase of refractive index ∆ns = 0.04 (see fig.
4.4). A small increase of the refractive index for ’p’ polarization also occurs,
but it is much lower than for ’s’ polarization.

In figure 4.4 we also show the static value of refractive indices calculated
using (4.2a) and (4.2b). The static value of the permittivity calculated by
3DTM formalism depends on the discretization of space (distance between the
mesh points where the permittivity and fields are evaluated). Especially εs
depends on this factor. This is observed in fig. 4.4 as a small increase of ns
calculated by 3DTM compared to the static value evaluated through (4.2a).

Considering this we proposed to decrease the aimed values of filling factors
(and thus the refractive indices) appropriately. Due to high filling factors, layers
C are designed with a large period a = 27 µm. The target width of etched lines
is s = 5 µm, so filling factor xc = 22/27 = 0.815.

Layer D has even higher filling factor than the layer C; to reach the desired
refractive indices we need to etch lines that are s = 5 µm wide with period a
between 28 µm and 30 µm. Because layer D is deep enough close to the upper
technological limit, we try to etch lines with a = 28 µm and a = 30 µm and
then pick better one.
Layer B is designed with etched lines s = 4 µm wide and period a = 15 µm
(instead of the theoretical one of 16 µm which would imply xb = 0.75).
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Figure 4.4: Computation of refractive indices np, ns using 3D transfer matrix
formalism.
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Chapter 5

Experiments and results

Characterization of samples and wave plates was done by THz time-domain
spectroscopy in transmission geometry.

5.1 Experimental setup

For a detailed look into our experimental arrangement see figure 5.1. Our laser
system consists of the Coherent Mira Seed femtosecond oscillator pumped
by the Coherent Verdi pumping laser. Verdi is a solid-state diode-pumped,
frequency-doubled Nd:vanadate (Nd:YVO4) laser with continuous-wave output
power of 5.5 W at 532 nm. The Mira Seed is a modelocked ultrafast laser
oscillator that uses Titanium:sapphire (Ti:Al2O3) as a gain medium to produce
ultrashort wide-bandwidth pulses. Ultrashort pulses are generated using Kerr
Lens Modelocking technique. Mira Seed laser generates 80 fs long pulses at
the wavelength of 805 nm with average output power 600 mW and with the
repetition rate of 76 MHz. The output pulses are horizontally polarized.

The optical pulse from the laser system is divided into two separate branches
by a beam-splitter (see fig. 5.1) . One part goes directly to the THz emitter,
GaAs photoswitch TERASED [3]. THz emitter emits linearly polarized pulses
that are around 1 ps long and contain frequencies from 0.1 THz to 3 THz. THz
pulses are focused by elliptical mirror to a sample fixed on a diaphragm with
aperture located in the focal point of the mirror. THz pulse is transmitted
through the sample and focused by another elliptical mirror to a sensor behind
a pellicle beam splitter. Pellicle beam splitter is transparent for the THz beam
and simultaneously it partially reflects the optical sampling beam.

The second part of optical pulse goes through a delay line, then its polar-
ization is changed to vertical by a half-wave plate and a polarizer, and upon a
reflection on a pellicle beam splitter it is directed to the sensor as a sampling
beam (collinear with the THz beam). The sensor is a ZnTe crystal where the

37
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electro-optic Pockels effect can occur. Electric field of THz pulse dynamically
modifies the permittivity tensor of the sensor, so the sensor becomes birefringent
and changes the polarization of an optical sampling pulse. The polarization
of sampling pulse is then changed by a Soleil-Babinet compensator used as
an adjustable quarter-wave plate (this is because we wish to measure a zero
difference signal from photodiodes without THz pulse). Using a Wollaston
prism as an analyzer (fig. 5.1), the horizontal and the vertical polarizations are
spatially separated and detected by two balanced antiparallel slow photodiodes.
The difference signal from photodiodes is processed to a lock-in amplifier. By
changing the delay of the sampling pulse we can measure the change of the
permittivity tensor in time and from this a time dependence of the electric
field of the THz pulse can be retrieved; the difference signal of photodiodes is
linearly proportional to the electric THz field in ZnTe. The THz part of the
experiment, i. e. from the emitter to the sensor, is placed into a vacuum box to
avoid water vapor absorption of THz radiation.

                                                              

 

 

                                                                               ...THz polarizer/analyzer 
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Figure 5.1: Setup of THz steady-state transmission spectroscopy in the time
domain.

Total thickness of each sample is measured by mechanical thickness probe with
micrometer precision. Then we can easily compute substrate thickness just by
substracting the depth of etching from the total thickness of the sample.

5.2 Data processing

Let us assume that the next experiments are done within the normal incidence.
Time-domain THz transmission spectroscopy requires two measurements to be
done for each sample: measurement of a THz waveform Esam(t) transmitted
through the investigated sample and measurement of a reference waveform
Eref(t) transmitted through a sample with known properties or through a free
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space. The complex transmittance t(f) is then calculated as the ratio of Fourier
transformations of these waveforms:

t(f) =
Esam(f)

Eref(f)
. (5.1)

We assume that a sample (investigated sample, reference) is a planparallel slab
of a homogeneous material. A part of THz beam passes directly through the
sample, another part exits the sample after a series of internal reflections (see
Fig. 5.2(a) and (b)). For thick samples these reflections appear as echoes well
separated in time. The total transmittance of the sample can be expressed as a
sum of all contributions [9]:

t(f) =
∞∑
k=0

tk(f) = t1t2.
e2πifdn/c

1− (r1r2.e2πifdn/c)
2 (5.2)

where the individual contributions read

tk(f) = t1t2.e
2πifdn/c

(
r1r2.e

2πifdn/c
)2k

, (5.3)

where d is the thickness of the sample, n is its refractive index, c is the velocity
of light in vacuum, t1, t2 are the amplitude transmittances of the input and
output interface and r1, r2 are internal amplitude reflectances for the input
and output interface, respectively. In the case of a homogeneous sample (also
the reference) we obtain:

t1 =
2

n+ 1
(5.4a)

t2 =
2n

n+ 1
(5.4b)

r1 = r2 =
n− 1

n+ 1
(5.4c)

Our samples consist typically of a substrate and of an etched layer. The optical
thickness of the etched layer is quite small, such that all the echoes originating
from multiple reflections inside the layer overlap in time. In contrast, the
substrate is optically thick and the individual echoes are resolved in time.
Equations (5.2) and (5.3) may be used for the retrieval of the refractive index of
etched layers, provided t1 and r1 are appropriately defined as the transmission
through air/etched-layer/substrate interface:

t1 =

[
4ns,p

(ns,p + 1)(ns,p + n)

] e2πifns,pdel/c

1−
(
ns,p−1

ns,p+1

)(
ns,p−n
ns,p+n

)
e4πifns,pdel/c

 (5.5a)
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and internal reflection on an etched layer

r1 =

(
ns,p−1

ns,p+1

)
e4πifns,pdel/c − ns,p−n

ns,p+n

1−
(
ns,p−1

ns,p+1

)(
ns,p−n
ns,p+n

)
e4πifns,pdel/c

(5.5b)

where del is the thickness of etched layer (depth of etching), ns,p is the effective
refractive index of the etched layer for s or p polarization and n is the refractive
index of the substrate.

In order to improve the spectral resolution long time-scans are needed (see
example in Fig. 5.2). In these scans we distinguish echoes (internal reflections)
coming from the emitter and sensor. To remove these artifacts we need to
measure a long time-scans of a reference and then process the signal from the
sample using deconvolution (see Fig. 5.2(b) and (c)). Using the clear signal (i. e.
without these echoes) of the sample and reference we can determine refractive
index of the etched-layer by using numerical solution of equations (5.2) or (5.3)
with (5.5a) and (5.5b) where t(f) is obtained from the experiment.
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Figure 5.2: (a) Illustration of internal reflections in the sample. The directly
passing wave has index k = 0. (b) Example of measured waveforms in the
presence and absence of a thick sample with etched walls (red and blue lines,
respectively). In this case, internal reflections and echoes are clearly separated
in time. * We can see a modulation due to the multiple reflections inside
the etched layer (following (5.5a)). (c) Example of measured deconvoluted
waveforms of reference and sample. Emitter echo is removed. The highlighted
part shows the internal echo of the sample for ’s’ polarization; since the etched
layer is deep, the echo consists of partially separated peaks.
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5.3 Anisotropy of an etched layer

What is the anisotropy of a sample composed of walls? Can it be described
by a permittivity tensor and by an indicatrix? This was the first problem I
solved within my master work as an introduction to the optical properties of
our samples.

Theoretical approach:

• According to section 4.1, for angle of incidence θ = 0◦ (see Fig. 5.3) the
effective permittivity of etched walls reads (equations (4.2a), (4.2b)):

εs =
εSi

εSi − x (εSi − 1)
= n2

s (5.6a)

εp = 1 + x (εSi − 1) = n2
p (5.6b)

• For angle of incidence θ = 90◦ (propagation perpendicular to the walls,
through a layered medium with a subwavelength period) condition nk0d <<
1 is satisfied and transfer matrices (4.6) of Si and air layers can be ap-
proximated by

SSi ≈
[

1 ik0dx
iεSik0dx 1

]
, (5.7)

Sair ≈
[

1 ik0d(1− x)
ik0d(1− x) 1

]
, (5.8)

where x is the filling factor. The bilayer is described by

S = SSiSair ≈
[

1 ik0d
ik0d ((1− x) + εSix) 1

]
, (5.9)

which means that the effective permittivity for this geometry reads

εeff = (1− x) + εSix ≡ εp. (5.10)

From the theoretical point of view our metamaterial should behave like a
negative uniaxial crystal with effective permittivity tensor

ε̂eff =

εs 0 0
0 εp 0
0 0 εp

 . (5.11)

Thus ns corresponds to extraordinary refractive index, which depends on the
incident angle of the beam, and np corresponds to ordinary refractive index,
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which does not depend on the incident angle of the beam. As a result, the
dependence of ns on (outer) incident angle θ reads

n2
s(θ) = n2

s + sin2(θ)

(
1− n2

s

n2
p

)
, (5.12)

where ns denotes the refractive index of the wave with a polarization perpen-
dicular to etched walls for normal incidence, i. e. for θ = 0◦.
For the experimental verification of this hypothesis we used one of the samples
studied previously in [49], thus we knew all necessary parameters (see fig. 5.3):
del = 80 µm (depth of etching),
dsub = 310 µm (substrate thickness),
w = 6 µm (width of walls),
s = 6 µm (width of lines),
and thus the corresponding filling factor is x = 0.5. Using equations (5.6a) and
(5.6b) we could calculate the expected refractive indices for normal incidence:
ns = 1.36 and np = 2.52.

Figure 5.3: Scheme of a measured sample.

To fix the sample in the focal point of elliptical mirror (see fig. 5.1) we used
diaphragm with aperture of 6 mm, glued sample on it and put it into a holder
located in the focal point. We have made measurements for incidence angles θ
= 0◦, 30◦, 45◦. THz beam was linearly polarized in horizontal direction, thus
each measurement was done twice: one with horizontally oriented etched walls
(’p’ polarization) and the other one with vertically oriented etched walls (’s’
polarization). The results of measurements are shown in fig. 5.4. Theoretical
values of ns(θ) were computed using eq. (5.12). We chose to compute this
data from measured values of ns and np for normal incidence rather than from
values computed from filling factor since the former gives a better picture of



44 5.3 Anisotropy of an etched layer

the frequency dependence. The theoretical values fits well the experimental
values.

From graphs in Fig. 5.4 we see that refractive index increases (decreases)
for ’s’ (’p’) polarization at lower frequencies; these frequencies are diffracted
by a diaphragm because the wavelength is comparable to the diameter of the
diaphragm. Since we assume that metamaterial layer behaves as a negative
uniaxial crystal (ns < np) ns will increase, however np will decrease for lower
frequencies. We must emphasize that the results at lowest frequencies are
measured with a high error and therefore do not go against the theory. The
measurement is affected by a systematic error in the positioning of the sample
in the focal point; we estimate the error of the incident angle ∆θ ≈ 1◦.
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(a)

(b)

Figure 5.4: Dependence of refractive index of etched layer on incident angle;
(a) ’s’ polarization, (b) ’p’ polarization
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5.4 Samples

Samples were prepared using reactive ion etching (RIE) by our collaborators at
University of Lille, Lille, France. Our thanks go to Karine Blary who prepared
all the samples for my experiments.

A sample looks like a plate (wafer) of 9 mm x 9 mm with an approximately-
centered etched square area of 7 mm x 7 mm. The first step was an experimental
characterization of effective properties of the samples. We need to know the
refractive indices of each layer for ’s’ and ’p’ polarization, the depth of etching
and the thickness of the substrate. We selected four samples for each type of
structure and measured them. Samples 1 and 2 were used as obtained , samples
3 and 4 were rinsed in acetone for two hours prior to the measurement in order
to remove possible traces of resist from inside the structure. We did not find
any significant difference between these two kinds of samples. For THz time
domain measurements we centered samples on a diaphragm with an aperture
of 5 mm to the focal point of THz radiation as shown in Fig. 5.1. All samples
were measured in transmission under normal incidence. The total thickness d
(i. e. sum of thicknesses of etched and unetched part) of each sample is in table
5.1. Absolute error of thickness measurement is estimated to 1 µm and reflects
mainly systematic errors (dust, planparallelity of etched layer).

d [µm] 1 2 3 4
Walls 20 µm 459.6 454.6 458.1 455.4

Walls 48 µm (a = 28 µm) 455.0 453.5 441.1 452.8
Walls 48 µm (a = 30 µm) 439.4 450.1 444.6 439.8
Walls 119 µm (a = 28 µm) 529.7 530.7 529.4 529.8
Walls 119 µm (a = 30 µm) 533.1 531.2 530.4 530.1

Pillars 40.5 µm 463.1 459.6 464.1 458.4
Pillars 81 µm 449.5 447.3 448.8 449.2

Table 5.1: Total thickness of measured samples.

5.4.1 Walls 20 microns

The layer B is composed of periodic etched walls that are db = 20 µm deep and
16 µm wide (space between two walls is 4 µm wide). The measured refractive
indices are in figure 5.11.

All measured samples have similar value of the refractive index which is
close to the theoretical value. Mismatch is caused mainly by two reasons: error



5.4 Samples 47

in total thickness of sample (which is critical when evaluating refractive index
from measured spectrum) and mismatch in the filling factor. The former was
discussed previously and corresponds to a systematic error of 1 µm; the latter
can be deduced from SEM images, see fig. 5.5. The period of etching was
decreased from 16 µm to 15 µm to compensate for an expected increase of the
refractive index at higher frequencies. After the experiments we observe that
this was not necessary and as a result we obtain both refractive indices slightly
below their theoretical values. However, the layer B is only 20 µm thick, so this
will not cause large errors in wave plates.

5.4.2 Walls 48 microns

This type of sample is made twice: with period a = 28 µm and with period
a = 30 µm. The measured refractive indices are in fig. 5.12 (a = 28 µm) and
fig. 5.13 (a = 30 µm).

Refractive index np is rather constant, but we can see the expected increase
of ns for frequencies above 1.5 THz. Samples with period a = 30 µm are closer
to theoretical values than those with period a = 28 µm. We suppose that this
is a result of a small underetching, i. e. etched lines between walls are wider
than planned. This is found for both types of samples, but for the larger period
we obtain a smaller mismatch.

Samples 3 and 4 in 5.13 have lower refractive indices than samples 1 and 2.
We suppose that this is because some resist have been removed by acetone, or
because of different etching. In fact, all samples (of one type) are etched in a
single flat silicon wafer at the same time and etching in the middle can differ
from etching on the edges.

Regardless the photo on fig. 5.6 shows a testing sample with a different
period of etching we assume that our samples are made in a same qualitative
manner.

5.4.3 Walls 119 microns

Same as walls 48 microns, this type of sample is made twice: with period
a = 28 µm and with period a = 30 µm. The measured refractive indices are in
fig. 5.14 (a = 28 µm) and fig. 5.15 (a = 30 µm).

The characteristics of these samples are similar to those with 48 microns
walls. Refractive indices are lower due to strong underetching which can be seen
from the photos of testing samples (Fig. 5.7 and Fig. 5.8). The first photo (Fig.
5.7) is a sample with proposed depth and filling factor but different period.
The sample in the second photo (Fig.5.8) was etched with a higher period and
clearly the underetching is tempered however not completely eliminated.
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The lower values of the indices than planned in this type of sample are not as
tolerable as in the case of 20 µm walls because these walls are much deeper and
a little mismatch in refractive indices causes much different phase retardation.
On the other hand, one can see that the difference between theoretical and
measured values is almost the same for both polarizations and since phase
retardation is defined by a relative difference of these indices (birefringence),
a wave plate that uses this type of samples should give good phase shift near
central frequency.

5.4.4 Pillars 40.5 microns

Samples with etched pillars serve as antireflective layers for air/silicon interface.
Especially, samples with pillars depth of 40.5 µm are used for f0 = 1 THz. The
measured refractive indices are in figure 5.16.

Since pillars are isotropic we use ’1’ and ’2’ notation instead of ’s’ and
’p’, however, polarizations ’1’ and ’2’ remain orthogonal. We expect the same
value of refractive index for both polarizations (and thus for any polarization).
Graphs in Fig. 5.16 show that between 0.3-1.7 THz the refractive indices are in
a good agreement with theoretical values.
Photo of testing sample in Fig. 5.9 shows that there is a little relict of silicon
between the pillars but we do not except that this should break our next
experiments.

5.4.5 Pillars 81 microns

These samples are designed to be an antireflective layers for air/silicon interface
for f0 = 0.5 THz and shows similar characteristics as the pillars with depth of
etching 40.5 µm. The measured refractive indices are in figure 5.17.

The photo of testing sample on Fig. 5.10 shows that there is a little under-
etching under the mask, but since refractive indices are in a good agreement
with its theoretical values and the depth of etching is quite precisely 81 µm we
suppose that these samples will work as expected.

5.4.6 Summary

For all samples there is a higher noise in measurement at the lower frequencies
due to the diffraction on the input aperture (holder). This is because the
corresponding wavelength is comparable to the diameter of the diaphragm. The
diffraction losses prove the non-zero extinction coefficient. In the range of 0.5-2
THz the extinction coefficients for both polarizations vanish, thus there are no
losses due to absorption or scattering on an etched structure or a substrate. For
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the frequencies higher than 1.5 THz and high period of etching the increase of
the refractive indices occurs as predicted in the section 4.3.2.

From the graphs showing the results we can see that the lower the depth
of etching is, the higher the dispersion of refractive index is. On the other hand,
a wave plate is more sensitive to changes in the samples with high depths of etch-
ing. Therefore we can say that all etched layers plays similar role in a wave plate.

To see the differences between the measured parameters of the etched lay-
ers and their theoretical values we summarize the results in table 5.2. The
depths are measured in the SEM photos of testing samples and thus they show
an estimate of depths of used samples rather than the precise values. The filling
factors were calculated form the average value of the measured THz refractive
indices.

f0 [THz]
C B D

dc [µm] xc1 xc2 db [µm] xb dd [µm] xd

0.5
81.6 124.6 0.75

(81.0) 0.80 0.80 20.7 0.72 (119.0) (0.85)

1
39.7 (0.82) (0.82) (20.0) (0.75) 46.6 0.83

(40.5) (48.0) (0.85)

Table 5.2: Comparison of experimental and theoretical parameters of the etched
layers. Theoretical values are in the brackets.

Although some of the parameters differ from their theoretical values we find
the samples quite good and the results provide us with a new knowledge that
can be used as a basis for the next work.

5.4.7 SEM photos and graphs
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Figure 5.5: SEM photo of testing sample with 20 µm deep etched walls.

 
Figure 5.6: SEM photo of testing sample with 48 µm deep etched walls.
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Figure 5.7: SEM photo of testing sample with 119 µm deep etched walls and
periode a = 15 µm.

 
Figure 5.8: SEM photo of testing sample with 119 µm deep etched walls and
periode a = 28 µm.
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Figure 5.9: SEM photo of testing sample with 40.5 µm deep etched pillars.

 
Figure 5.10: SEM photo of testing sample with 81 µm deep etched pillars.
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Figure 5.11: Refractive indices np, ns and extinction coefficients κp, κs of etched
walls with depth 20 µm.
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Figure 5.12: Refractive indices np, ns and extinction coefficients κp, κs of etched
walls with depth 48 µm and periode a = 28 µm.
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Figure 5.13: Refractive indices np, ns and extinction coefficients κp, κs of etched
walls with depth 48 µm and periode a = 30 µm.
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Figure 5.14: Refractive indices np, ns and extinction coefficients κp, κs of etched
walls with depth 119 µm and periode a = 28 µm.
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Figure 5.15: Refractive indices np, ns and extinction coefficients κp, κs of etched
walls with depth 119 µm and periode a = 30 µm.
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Figure 5.16: Refractive indices np, ns and extinction coefficients κp, κs of etched
pillars with depth 40.5 µm.
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Figure 5.17: Refractive indices np, ns and extinction coefficients κp, κs of etched
pillars with depth 81 µm.
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5.5 Antireflective bilayers

By merging two antireflective layers C (etched pillars) it is possible to prepare an
antireflective CC bilayer (see Fig. 5.18) that should transmit central frequency
f0 with amplitude transmission equal to 1. By measuring such a bilayer we can
determine whether the layer C works as an antireflective layer between air and
Si (substrate). We completed the measurements for both frequencies, i. e. for
f0 = 0.5 THz (layer C = pillars 81 µm) and for f0 = 1 THz (layer C = pillars
40.5 µm).

Figure 5.18: Scheme of a CC bilayer.

The amplitude transmission spectra of antireflective bilayers are in Fig. 5.19.
We can see that the transmission for f0 is in each case equal to 100 %. In
addition to this the transmission of 1st and 2nd internal echoes of the bilayer
is equal to 0 % which demonstrates the antireflective character of the bilayer
since the whole intensity on central frequency passes in direct pass. The obvious
periodicity of transmittance is given by the periodic condition on thickness of
C layer, see Eq. (4.3b). The small modulation of the transmission function is
caused due to a Fabry-Perot interference that is more significant in the whole
transmission function of the bilayer (including all internal reflections) in Fig.
5.20.
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Figure 5.19: Amplitude transmission spectra of direct pass and two internal
echoes of antireflective CC bilayers.
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Figure 5.20: Amplitude transmission spectra of antireflective CC bilayers in-
cluding interference of all internal reflections.
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5.6 Wave plates

The samples with etched layers were assembled in an appropriate order and
orientation in a holder that consisted of two brass diaphragms with a clear
aperture of 5 mm. The samples were not glued together, they were just in a
physical contact due to the mechanical screwing of the diaphragms in order to
avoid the air layers between samples.

To do this we used a spacer between diaphragms with a thickness equal to
the total thickness of a wave plate. Then we recognized that samples are stiff
enough to be pressed without any spacer when the diaphragms are screwed
using a moderate force. In order to ensure that wave plates are properly assem-
bled and pressed together some preliminary measurements were made before
the main experiments.
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Figure 5.21: The effect of the air spaces between the layers in a wave plate.
The screwing force increases with increasing number.

Such test measurements are shown in Fig. 5.21. All four testing experiments
were done using a double quarter-wave plate for 1 THz which consisted of 6
pieces (see section 5.6.4). First of all, we screwed the holder slightly and then
we used a little more force to screw the diaphragms in each next test until
there was no obvious difference in the tests (test 3 and 4). Similar preliminary
measurements were performed for each wave plate.
The air layers cause two effects in the THz spectra. Firstly, the internal inter-
ference in a wave plate is more complicated and more significant. Secondly,
the samples can be in a skewed incidence instead of a normal incidence. Both
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of these effects result in a decrease of amplitude transmission and in deeper
interference minima in the measured spectral range (see test 1 in comparison
with test 4 in Fig. 5.21).

By a complete wave plate characterization we mean knowledge of the ab-
solute values of amplitude transmission for ’s’ and ’p’ polarizations (ts and
tp, respectively), the relative amplitude transmission (tp/ts) and the phase
retardation (Γ = φp − φs). We expect that for central frequency f0 both ts
and tp amplitude transmissions of a wave plate are equal to 100%, relative
amplitude transmission of a wave plate is equal to 1 and phase retardation
is equal to π/2 ≈ 1.57 for a quarter-wave plate, or to π ≈ 3.14 for a half-
wave plate. In the next figures we compare theoretical values computed from
optimized parameters (theory), theoretical values computed from measured
refractive indices of the samples (theory with corrections) and experimental
values (experiment). The theoretical data computed from measured refractive
indices are expected to fit the experimental data better than the theoretical
values computed from optimized parameters. We did not use measured depths
of etching for computation since the SEM photographs provide us only with an
estimation, instead we used the theoretical values of depths. The parameters
used for these calculations are in Tab. 5.3 where del denotes the thickness of
the etched layer and d denotes the thickness of the sample (etched layer +
substrate). All samples D have periode a = 30 µm.

Quarter for 0.5 THz Quarter for 1 THz
Sample del µm d [µm] np ns del [µm] d [µm] np ns

C: pillars 81 448.8 1.81 40.5 465.0 1.82
B: walls 20 458.1 2.90 1.80 20 458.1 2.83 1.65
D: walls 119 533.1 2.98 1.87 48 439.4 3.00 2.05
C: pillars 81 449.2 1.73 40.5 458.0 1.82

Half for 1 THz Double quarter for 1 THz
Sample del µm d [µm] np ns del [µm] d [µm] np ns

C: pillars 40.5 458.4 1.82 40.5 465.0 1.82
B: walls 20 461 2.80 1.65 20 458.1 2.83 1.65
D: walls 119 530.9 2.93 1.85 48 439.4 3.00 2.05
D: walls 48 450.1 2.98 2.04
B: walls 20 459.6 3.00 1.84
C: pillars 40.5 459.6 1.82 40.5 458.0 1.82

Table 5.3: Parameters of the samples used for corrections in theoretical calcula-
tions.
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We prepared two specimens of quarter-wave plates for 0.5 THz and 1 THz and
two specimens of half-wave plates for 1 THz. Since there were no significant
differences between twins we show only one of them in the plots. We also pre-
pared a double quarter-wave plate for 1 THz that should behave as a half-wave
plate for 1 THz.

5.6.1 Quarter-wave plate for 0.5 THz

Complete characterization of a selected quarter-wave plate is in Fig. 5.22. The
measured transmission of ’p’ polarization fits the optimized theory well; it is
only slightly affected by the manufacturing errors.

On the other hand, the measured transmission of ’s’ polarization is slightly
lower than the optimized theoretical results around the central frequency.
Moreover there is a local minimum of transmission ts at f = 0.5 THz that
amounts 90%. Therefore the relative transmission at central frequency equals
to 1.1 instead of 1.

The wave plate is the most sensitive to the properties of the D layer, where
high underetching occurred, as seen in section 5.4.3. A small difference in the
birefringence leads to a shift of phase retardation as seen in Fig. 5.22. The
correct phase shift occurs approximately at f = 0.43 THz, where also the
relative transmission is close to 1 and its absolute value is above 95 % for both
polarizations. We can conclude that this element operates as a quarter-wave
plate at f0 = 0.43 THz. The manufacturing errors lead to a shift of the operative
frequency instead of breaking the whole functionality. The wave plate can be
operated in a relatively narrow spectral range of ±5 GHz (while the optimized
theory shows good results in the range ±40 GHz).

5.6.2 Quarter-wave plate for 1 THz

Complete characterization of a selected quarter-wave plate is in Fig. 5.23.
Transmission for both polarizations are close to the theoretical values and thus
a relative transmission is so.

The correct phase retardation is moved approximately by 60 GHz from
the central to a higher frequency but we can conclude that this wave plate is
in a good match with the optimized theory and the mismatch in the phase
retardation is due to a small mismatch in birefringence of B and D layers. We
can see that the corrected theory fits the experiments very well and this fact
just supports our conclusions.
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5.6.3 Half-wave plate for 1 THz

Complete characterization of a selected quarter-wave plate is in Fig. 5.23. This
element is very close to the quarter wave plate for 0.5 THz since they differ
only in the antireflective C layers.

However we completed this wave plate from a different B and D samples
of the same type as one can see from the table 5.3. Thus small differences
occur, but the results are the same: transmission of ’s’ polarization is lower
than the optimized theory and as a result the relative transmission and phase
retardation does not match the correct values at the central frequency. In this
case the relative transmission is close to 1 at approximately 1.1-1.2 THz but the
phase retardation is shifted slightly to a lower frequencies than 1 THz like in
the case of quarter-wave plate for 0.5 THz. The conclusion is that this element
is seriously affected by the manufacturing errors in the samples (D mainly)
and does not operate as a designated wave plate at 1 THz nor at frequencies
around. At the frequencies around 0.96 THz the phase retardation between the
two polarizations is equal to the π. As a consequence the element will turn the
polarization plane of a linearly polarized radiation at this frequency. However,
the angle of the polarization rotation will slightly differ from 2φ (where φ is
the angle between the input polarization and principal axes or the device).

5.6.4 Double quarter-wave plate for 1 THz

The satisfactory match in the theory and experiments for quarter-wave plate for
1 THz evoked the idea of building the half-wave plate for 1 THz by multiplying
the birefringent B and D layers in the quarter-wave plate. In the terminology
of the samples the design of this element looks like ’CBDDBC’, see the Tab.
5.3 for more details.

Such a structure should exhibit approximately correct phase retardation
since the quarter-wave plate does. Indeed it does, as seen in the last graph in fig.
5.25. But on the other hand, the Fabry-Perot interferences for ’s’ polarization
even in optimized theory do not vanish and modulate the transmission. Since
the samples are not perfect the modulation for both polarizations occurs.
Nevertheless we can see a good match between the corrected theory and
experiments. Moreover the relative transmission exhibits a flat plateau around
the central frequency.

We can conclude that it is possible to build a half-wave plate by multiplying
the birefringent samples in the quarter-wave plate.

5.6.5 Graphs
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Figure 5.22: Characterization of a selected quarter-wave plate for f0 = 0.5 THz.
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Figure 5.23: Characterization of a selected quarter wave-plate for f0 = 1 THz.
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Figure 5.24: Characterization of a selected half-wave plate for f0 = 1 THz.
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Figure 5.25: Characterization of a double quarter-wave plate for f0 = 1 THz.
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5.7 Next research

Our results show that it is possible to prepare a wave plate in the THz range
as an etched-Si based composite. The amplitude transmission at the central
frequency can be relatively high, above 95 %. On the other hand, the phase
retardation is very sensitive to any mismatch in a birefringence of etched layers,
especially for the deep ones.

In sec. 4.3.2 we proposed some corrections in the period of etching and filling
factors with respect to the theoretical results obtained within the quasi-static
approximation. After the experiments we observe that this was not necessary
for the B layer and in the next step we would prefer a period of 16 µm instead
of 15 µm (with the same air gap width). On the other hand, the compensation
for the increase of refractive indices at higher frequencies in layers D (30 µm
period instead of 28 µm period) was useful.

Technologically, the most difficult procedure was the etching of D layers,
which are deep and where, despite of all efforts, underetching is observed leading
to a lower filling factor of the prepared structures. The next iteration in the
design of wave plates would be to keep the current protocol for the preparation
of D layers and slightly modify the properties of the B layers (which benefit of
much better control during fabrication) to obtain the correct phase shift and
tp/ts ratio at the target frequencies.

In fact, in the current work we designed B layers to be identical for all
prepared wave plates. Probably, this would be no longer possible for re-optimized
structures with new B layers.



72 5.7 Next research



Chapter 6

Conclusion

In this work we combined THz time domain spectroscopy technique together
with metamaterials to prepare structures with demanded electric response. We
continued the recent work of Ch. Kadlec et al. [49] and we presented a detailed
design of a wave plate using birefringent etched layers on Si substrates.

We used the transfer matrix formalism for theoretical optimization of
parameters of individual layers in a wave plate and it can be easily used again
for optimization of any other wave plate of the same design.

We have experimentally characterized the samples with etched layers and
determined their refractive indices and losses (which are negligible) in THz
range. Some values of the measured indices differ from theoretically proposed
values (<10 %) because of manufacturing errors (mainly underetching).

We have experimentally realized quarter-wave plates for frequencies 0.5
THz and 1 THz and a half-wave plate for 1 THz. The manufacturing errors in
samples (especially in D layers) shifted the correct phase retardation to a slightly
modified frequencies than considered. The functionality of a quarter-wave plate
for 0.5 THz was shifted to 0.43 THz. In similar manner the central frequency of
half-wave plate was 0.96 THz instead of 1 THz and the quarter-wave plate for
1 THz have shifted retardation to approximately 1.06 THz. The quarter-wave
plate for 1 THz worked as expected at a slightly shifted frequency but still with
amplitude transmission higher than 90%. We showed that by using two pairs of
birefringent layers (B and D) from a quarter-wave plate for 1 THz it is possible
to prepare a half-wave plate working at approximately the same frequency. The
manufacturing errors also significantly narrowed the THz spectral width of
high transmission around the central frequency.

We also demonstrated that by etching an isotropic structures the antireflec-
tive layers can be created.
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[48] H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, P. Mounaix:
Tunable terahertz metamaterials with negative permeability, Phys. Rev. B
79, 241108(R) (2009).



BIBLIOGRAPHY 79
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