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Abstrakt: Tato práce se zabývá terahertzovou (THz) spektroskopíı s časo-
vým rozlǐseńım. Je provedena rešerše metod generace a detekce THz puls̊u
a jsou popsána základńı experimentálńı schémata. Navrhli jsme experimen-
tálńı uspořádáńı pro emisńı spektroskopii, umožňuj́ıćı správnou interpretaci
změřených dat. V tomto uspořádáńı jsme studovali ultrarychlou dynamiku
v GaAs pěstovaném molekulárńı epitax́ı při ńızkých teplotách. Z tvaru emi-
tovaných THz pulsu jsme určili jak doby záchytu elektron̊u pastmi, tak po-
hyblivosti elektron̊u v závislosti na teplotě r̊ustu. Posledńı část práce je
zaměřena na metodologii experiment̊u optické excitace a THz sondováńı při
slabé nerovnovážné odezvě. Aplikace dvojrozměrné Fourierovy transformace
umožňuje př́ımý výpočet nerovnovážné zobecněné susceptibility popisuj́ıćı mj.
solvatačńı dynamiku či dynamiku fotoexcitovaných nositel̊u v polovodič́ıch.
Kĺıčová slova: THz spektroskopie, časové rozlǐseńı, GaAs, nerovnovážná
odezva, excitace–sondováńı.

Title: Application of methods in time-domain terahertz spectroscopy for
investigation of ultrafast dynamics in condensed matters
Author: Hynek Němec
Department: Department of electronic structures
Supervisor: Dr. Petr Kužel
Supervisor’s e-mail address: kuzelp@fzu.cz
Abstract: This work is focused to the terahertz (THz) time-domain spec-
troscopy. A bibliographic research of methods of generation and detection of
THz pulses is presented and basic experimental schemes are described. We
proposed an experimental setup for emission spectroscopy, which allows cor-
rect interpretation of measured data. In this setup, we studied an ultrafast
dynamics of low-temperature grown GaAs. From the shape of the emitted
THz pulse we determined electron trapping times as well as mobilities of elec-
trons for several growth temperatures. The last part of this work deals with
methodology of optical pump – THz probe experiments for weak nonequilib-
rium response. Application of two-dimensional Fourier transformation allows
a direct extraction of nonequilibrium generalized susceptibility describing e.g.
solvation dynamics or dynamics of photoexcited carriers in semiconductors.
Keywords: THz spectroscopy, temporal resolution, GaAs, nonequilibrium
response, pump–probe.
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Part 1

Introduction

This diploma work deals with a relatively novel spectroscopic method —
terahertz (THz) time-domain spectroscopy. There is a lot of surprising phe-
nomena in the THz region. The water is practically opaque here; on the other
hand, most of the plastics (like polyethylene) are transparent and lenses are
often fabricated from it in this region. Nothing interesting happens during
propagation in the vacuum of a 1 ps pulse of visible light collimated to 1mm,
as the central period is much shorter than 1 ps (see Fig. 1.1a). However, the
THz pulses are practically single-cycle transients with central period near
1 ps and wavelength 0.3mm. Due to diffraction effects, the beam spreads
and the shape of the pulse completely changes during propagation on few
centimetres (Fig. 1.1b).

Figure 1.1: Shape of the electric intensity of a (a) visible and (b) THz pulse.

(b) THz pulse

(a) Light pulse

Propagation
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The THz region is relatively narrow (see Fig. 1.2), however, it is of great
importance in condensed matter physics, as many interesting phenomena fall
right to this region. These are especially soft lattice vibrations in dielectrics.
The THz region bridges the millimetre wave region and infrared region (see
Fig. 1.2). The millimetre wave region is accessible via conventional radiofre-
quency methods, which cannot be extended as the frequency of synthesizers
is limited. In the infrared region, the optical devices are used. However,
while the frequency is lowered, the brightness of common infrared radiation
sources practically vanishes.

Figure 1.2: Overview of frequency regions.

105 106 107 108 109 1010 1011 1013 1014 1015 1016 1017 1018 1019Frequency
(Hz)

Region Radio & TV Microwaves Infrared UV RTG

1020

���������������������������������������������������������������������

THz

1012

Visible

How can be expressed 1 THz:
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The rise of THz time-domain spectroscopy is dated by the development
and spread of femtosecond laser sources, i.e. this method is barely 20 years
old now. A block scheme of a THz time-domain spectrometer is given in
Fig. 1.3. The whole spectrometer is driven by a femtosecond laser. An
ultrashort pulse from it is divided into two parts by a beam splitter (BS1 in

Figure 1.3: Block scheme of a THz time-domain spectrometer. The whole apparatus
(i.e. the emitter, detector and pump beam eventually) is synchronized by the femtosecond
laser pulse.
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Fig. 1.3). The first part (probe pulse) irradiates the transmitter, generating
a THz electric transient. The second part (called gating or sampling pulse)
gates the detector, i.e. the detector tells us, what was the instantaneous THz
field in the moment of the gating pulse arrival. By delaying the gating pulse,
we can measure the shape of the whole THz pulse. That’s why we are talking
about the time-domain spectroscopy.

As the THz spectroscopy is a time-domain method, the pump – probe
experiments can be performed very easily. The sample can be excited by the
optical pump beam (thick lines in Fig. 1.3), which is split from the femtosec-
ond laser beam — the pump beam is perfectly synchronized with the THz
probe pulse and gating pulse. During last few years, the femtosecond optical
amplifiers and parametric generators became commercially available. The
first enabled us to generate a very intense excitation pulse and the latter to
tune the excitation wavelength.

This makes the THz time-domain spectroscopy very suitable for inves-
tigations of ultrafast dynamics on the subpicosecond time scale. This very
new technique has been already employed for studies of dynamics in semi-
conductors and superconductors. Currently, very challenging problems are
studies concerning the solvation dynamics in liquids. However, up to now,
the interpretation of the measured data still remains an opened problem.

This work is structured in the following way. A bibliographical research
concerning THz time-domain spectroscopy is provided in part 2: sections 2.1
and 2.2 deal with the sources and detectors of the THz radiation, section
2.3 describes the most important techniques based on the THz time-domain
spectroscopy and section 2.4 presents a brief overview of problems solved
in condensed matter physics via THz spectroscopy. The major part of this
diploma work is devoted to the development of the THz emission spectro-
scopic technique and its application on ultrafast semiconductors and to the
methodology of optical pump – THz probe experiments. Thus, in part 3 an
investigation of an ultrafast dynamics in a semiconductor GaAs by the THz
time-domain emission spectroscopy is reported. It describes a new setup,
in which it is possible to establish a straightforward relation between the
measured THz waveform and the dynamics of photoexcited free carriers in
the sample. Part 4 deals with the development of methods relating the gen-
eralized nonequilibrium susceptibility and the measured THz waveforms in
optical pump – THz probe experiments. Finally, the boon of this work is
summarized in part 5.
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Part 2

Principles and applications of
THz spectroscopy

2.1 Sources of THz radiation

Most of the sources of coherent THz transients are based on mechanisms,
which are triggered by ultrashort laser pulses. The first sources of coherent
THz transients were based on photoconductive switches irradiated by 100 fs
laser pulses [1]. The photogenerated carriers are accelerated in an electric
field (external bias or a surface depletion field), thus radiating into material
or free space. With the development of high-power ultrafast lasers it became
possible to generate THz radiation via optical rectification [2]. The spectrum
of THz pulses generated by optical rectification can be now extended to cover
a spectral range from 100GHz to 70THz [3].

The emission process itself can be an object of the scientific investiga-
tion. For example, charge oscillations involved in quantum beats [4] or Bloch
oscillations [5] produce THz radiation and can be studied through the THz
waveform analysis.

Besides these optically gated devices, there are other sources of THz ra-
diation based on oscillations of an electron beam. Most of them generate
narrow band coherent tunable radiation. Namely backward wave oscillators
and free electron lasers are involved in condensed matter research.

2.1.1 Biased and unbiased photoconductive emitters

All photoconductive emitters are based on the same principle. An incoming
laser pulse with a photon energy above the band gap excites free carriers to
the conduction band. These free carriers are immediately being accelerated
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due to the presence of an electric field inside the emitter (see Fig. 2.1a),
i.e. the current density rapidly increases (Fig. 2.2a) and radiates into the
material or free space (Fig. 2.2b). Finally, the photoexcited free carriers are
trapped or recombine and the current density returns to its steady value —
the emitter is prepared for the emission of the next pulse.

Figure 2.1: (a) Principle of generation of THz pulses in photoconductive emitters. (b)
Dimensions of large and (c) small aperture emitter.
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The very first emitters were biased small aperture ones [1] (Fig. 2.1c),
i.e. the wavelength of THz radiation is larger than the aperture of the emitter.
Such sources can by well approximated by an elementary Hertzian dipole p(t).
The electric field at a distance r, and angle θ relative to the dipole axis is
then [1]

E(t) =
1

4πε0N2

(
p(t)

r3
+

N

cr2

∂p(t)

∂t
+
N2

c2r

∂2p(t)

∂t2

)
sin θ, (2.1)

where c is the velocity of light, ε0 is permittivity of vacuum and N is the
refractive index of the medium in which is placed the dipole. The first term
can be identified with the quasistatic field, the second with the near field and
the last one with the far field. The on-axis radiated field far from the dipole
is thus simply described by

E(t) =
µ0

4πr

∂2p(t)

∂t2
(2.2)

or by E(t) = − eµ0

4πr

∂I(t)

∂t
(2.3)

using the current I forming the dipole. A typical example is shown in
Fig. 2.2. The radiated field deduced via Eq. (2.3) from the current wave-
form (Fig. 2.2a) is depicted in Fig. 2.2b and appropriate spectra of both are
drawn in Fig. 2.2c and d respectively.
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Figure 2.2: (a) Evolution of the current flowing through the emitter. (b) Shape of the
electric transient far from the emitter. (c) Spectrum of the current and (d) spectrum of
the radiated field.
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The directional characteristics of the radiation into the free space are
more complicated then the dipole radiation due to the presence of the sub-
strate. Common property of these kinds of sources is a high divergence.
Thus a collimating lens attached directly to the emitter is used to enhance
the radiated power in the forward direction [6]. The radiation patterns are
calculated and measured in [7] and [8].

Later on, with the development of high-power ultrafast lasers, it became
possible to use large aperture emitters (Fig. 2.1b), which allow generation of
intense THz pulses at lower divergence. The radiated field can be calculated
as a superposition of elementary dipoles [9]. Such calculations show, that
these sources radiate more directionally, and thus higher intensity can be
easily achieved. Expressions (2.2) and (2.3) (far from the emitter) remain
valid, but the proportionality constant is different.

Initially, the radiated electric field scales linearly with the optical fluence.
However it saturates at high fluence [10, 11], thus sufficiently large emitters
are required to make use of the whole fluence. The scaling with the bias
electric field is practically linear [11,12], but a breakdown can occur at high
voltages.

The electric field for accelerating carriers is very often produced by an
external electric source — this is referred to as biased photoconductive emit-
ters in the literature. Such emitters are based on radiation damaged silicon
on sapphire (RD-SOS) [1], InP [12], Cr-doped GaAs [8], GaAs grown at low
temperatures [13] and others.
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It was demonstrated, that also the surface depletion field can act as the
bias for the carrier acceleration [14]. Such an electric field is perpendicular to
the emitter surface and the emitted THz field vanishes for normal incidence
of the excitation optical beam. Consequently, arrangements with oblique
incidence (e.g. near the Brewster angle) are required. This type of THz
generation was investigated in a large number of materials, e.g. arsenic-ion-
implanted GaAs [15], Fe-doped InP, semi-insulating GaAs and CdTe includ-
ing the effects of doping [16].

2.1.2 Optical rectification

Optical rectification in potassium dihydrogen phosphate (KDP) and potas-
sium dideuterium phosphate (KDdP) was first demonstrated to produce ra-
diation in MHz region using 0.1µs laser pulses [17]. Later, this method was
extended to picosecond regime due to optical rectification on Cu++ ions in
LiTaO3 [18]. Further development allowed generation of freely propagat-
ing radiation [2] and thus easy implementation to various THz experiments.
Nowadays, optical rectification is a method allowing to generate ultrashort
pulses with a spectrum extending up to 70THz [3].

Optical rectification takes place in noncentrosymetric materials. We can
look upon this effect as an inverse process to the Pockels effect: in fact, the
optical field generates the THz field, i.e. nearly DC voltage comparing to the
carrier frequency of the optical field. In order to describe this phenomenon, it
is convenient to treat it as a special case of a difference frequency generation,
where optical photons with close frequencies ν1 and ν2 produce far-infrared
photon with frequency f = |ν1 − ν2|. The generated nonlinear polarization
may be described by formula

PTHz
i =

∑

j,k

χ
(2)
ijkEjEk (2.4)

where E represents the incident optical field and χ(2) is the second-order
nonlinear susceptibility tensor. Obviously, the polarization, and thus the
radiated field (Eq. (2.2)) is proportional to the intensity of the optical beam.
The spectrum of the optical pulse broadens when shorter pulses are used.
Thus more distant frequencies can mix and also the THz pulse spectrum
may broaden.

It is convenient to distinguish mechanisms by which the THz waveform
generation occurs in different materials. When the optical frequency is high
enough to cause a band-to-band transition, free carriers are generated and
moved, the nonlinear susceptibility has a high value because it is resonant.
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Otherwise, when the transition is virtual, only bonded carriers are anhar-
monically displaced. In this case, the nonlinear susceptibility is nonresonant,
and consequently smaller. The fact how closely a phase-matching condition
is satisfied becomes very important. This property is usually characterized
by the pulse walk-off defined as

|Ng(ν)− nTHz(f)|
c

, (2.5)

where Ng is the group refractive index of the optical pulse and nTHz is the
refractive index of the THz component with the frequency f . The phase-
matching condition reads Ng(ν) − nTHz(f) = 0. In several materials, the
phase-matching condition is not satisfied, though intense THz radiation may
be generated.

Let us enumerate the main cases:

• The optical transition is nonresonant, and the phase-matching con-
dition is satisfied. The representative materials is ZnTe [19] (pulse
walk-off ∼ 140 fs/mm as measured in our laboratory) which is now
very widely used. The accessible frequency region with ZnTe usually
spreads from millimetre waves (0.1GHz) up to 3THz [19]. Other ma-
terials, like poled copolymer [20] and GaSe [21] are under investigation.

• Resonant optical transition occurs. Then the optical beam is ab-
sorbed typically within few microns, and the phase-matching condi-
tion becomes meaningless. The appropriate nonlinear coefficient is
usually very high, leading to the generation of an intense THz radi-
ation. This type of optical rectification can be observed for example
in GaAs [22, 23], InP and CdTe [24] when the photon energy of the
excitation beam exceeds the band gap.

• Even for nonresonant transitions with phase-matching condition
not satisfied, a significant THz radiation can be produced via po-
larization shock-wave. This is commonly referred in the literature as
the Čerenkov-like radiation. It was predicted by Askayran et al. al-
ready in 1962 [25]. In most materials, the refractive index for the THz
beam is higher than the group refractive index for the optical beam
due to polar-phonon contribution to the dielectric constant. Then the
waves with low frequencies propagate slower than the incident opti-
cal pulse. This leads to the formation of the polarization shock-wave
on a Čerenkov-like cone generated via optical rectification effect. A
setup producing far-infrared radiation up to 4THz in LiTaO3 was re-
ported [26] and a free-space propagation of such THz waves was also
demonstrated [27].
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• There are some crystals composed of organic molecules with very high
electronic polarizabilities, and consequently with high nonlinear coef-
ficients. As these nonlinearities have purely electronic origin without
vibronic contribution, the relevant nonlinear coefficient responsible for
the optical rectification is huge compared to anorganic crystals. The op-
tical rectification signal can thus be detected even if the phase-matching
condition is not satisfied. This is the case of monoclinic organic crys-
tal DAST (dimethyl amino 4-N-methylstilbazolium tosylate) [28] and
derivatives of MNA (2-methyl-4-nitroaniline) [29].

• Optical rectification on the surfaces was observed in 〈100〉 and 〈111〉
oriented InP [30] — the presence of the surface depletion field can
induce the linear electrooptic effect even in centrosymmetric crystals.
Of course, this effect is related to the quadratic electrooptic effect, i.e.
one can describe it in terms of four-waves mixing:

0surface + ν1 + (−ν2)→ f. (2.6)

2.1.3 Sources of continuous radiation

There is also a variety of devices based on electron beams. Unlike preced-
ing sources, these do not generate few-cycle transients, but rather chunks
of nearly monochromatic waves (free electron laser, gyrotron) or continuous
monochromatic wave (klystron, magnetron and backward wave oscillator).
Their wavelength can be usually less or more tuned. Most of them gener-
ate very intense radiation, but the cost is low operating frequency. Only
backward-wave oscillators and free electron lasers and gyrotron can access
THz region. frequencies above 100GHz. Their typical parameters are sum-
marized in Tab. 2.1.

Experimental arrangements having a backward-wave oscillator are fre-
quently used in the condensed matter research. The source generates high-
power (10mW at 0.5THz) and tunable highly monochromatic ∆f/f ∼ 10−5

radiation covering the range from 35GHz to 1THz [31]. These methods also
allow measurements of the complex transmission and reflection (and thus
complex optical constants). However, the amplitude and phase are measured
separately in slightly different setups, i.e. the measurements are separated in
time. Though this method is very suitable when spectroscopic measurements
with high frequency resolution are required.

Free electron laser generates tunable, coherent and high-power radia-
tion over a large part of the electro-magnetic spectrum, ranging from mil-
limetre waves, up to potentially X-rays. However, it is a large scale device
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requiring a high energy electron beam. More detailed info can be found [32],
where are links to most of free electron laser sites.

Table 2.1: Parameters of devices based on electron beams: free-electron lasers operat-
ing in THz frequency region (FIR-FEL and MM-FEL on University of California, Santa
Barbara, [33]) and backward-wave oscillators (BWO, [31]).

Quantity FIR-FEL MM-FEL BWO
Range (µm) 338 – 63 2500 – 338 8500 – 300
Range (THz) 0.89 – 4.76 0.12 – 0.89 0.035 – 1.0
Peak power 6 – 1 kW 15 – 1 kW > 10mW
Pulse length 1 – 20µs 1 – 20µs continuous
Repetition rate 0 – 7.5Hz continuous

2.2 Detectors of THz radiation

Once the THz pulse is generated, it is possible to reconstruct through photo-
conductive or electrooptic gating the shape of its electric (or magnetic) field
Etrue(t) at a given position in space. It means, that in contrast to common
optical methods, where only the light intensity ∝ |Etrue(f)|2 at particular
frequency f is measured, one can access here both amplitude and phase of
any frequency component constituting the temporal waveform.

The first phase-sensitive detector for the THz range was based on a pho-
toconductive antenna [1] built on the same block of material as the emit-
ter. The THz transients were detected also via conventional electrooptic
sampling [34]. Nowadays, the freely propagating THz radiation is detected
usually by photoconductive antennas [35] and free-space electrooptic sam-
pling [36]. The latter technique is able to work up to mid-infrared region [3].
Recently, a magnetooptic sampling was employed to measure directly the
shape of magnetic field of THz pulse [37]. Techniques that do not provide in-
formation about the phase are used only rarely. These are usually bolometric
and autocorrelation methods [38].

Due to several effects (like dispersion in the sensor), the measured wave-
form Emeas in THz spectroscopy practically always differs from the true one.
These effects can be described by the response function D of the detector.
The measured waveform can be written as

Emeas(t) = Etrue(t) ∗ D(t). (2.7)
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Fortunately, it is not necessary to know the response function for processing
measured data, when equilibrium spectroscopy (sections 2.3.1 and 2.3.2) is
being performed. However, knowledge of the detector response D becomes
an important point for emission and pump – probe experiments (sections
2.3.3 and 2.3.4).

2.2.1 Photoconductive receiving antennas

Photoconductive detectors are based on the inverse mechanism to the
photoconductive transmitter (section 2.1.1). The optical gating pulse gener-
ates free carriers in the photoconductive medium, the THz electric field acts
as the bias voltage and the generated current is measured. For simplicity,
let us assume very short carrier lifetimes. In this situation, the current flows
through the detector only in the simultaneous presence of the laser pulse and
THz electric field. Assuming the validity of Ohm’s law, the total amount
of the transported charge is proportional to the instantaneous THz electric
field when the gating pulse arrived (see Fig. 2.3). Scanning of the time delay
between the THz pulse and the optical gating pulse allows to determine the
whole THz waveform Emeas(t).

Figure 2.3: Operation of the photoconductive antenna. The total charge transferred
during one pulse is proportional to the amplitude of THz beam at the moment of the
sampling pulse arrival.

THz transient

Sampling beam

Current transient Transfered charge

As we have mentioned in the introduction, this technique was first used
by Auston [1] using radiation-damaged silicon on sapphire. The common
materials are low-temperature grown GaAs [39], semi-insulating GaAs [40,
41] and semi-insulating InP [40]. However, the detectors based on long-
lifetime photoconductors (like semi-insulating GaAs) measure directly only
the primitive function of the THz field, thus a diferenciation needs to be
performed. This results in f−1 sensitivity for higher frequencies. On the other
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hand, this suggests that carrier lifetime limits the speed of photoconductive
detectors only partially. Photoconductive antenna based on low-temperature
grown GaAs with carrier lifetime 1.4 ps was reported to be sensitive up to
20THz using 15 fs gating pulses [39].

2.2.2 Electrooptic sampling

Electrooptic sampling is based on the linear electrooptic effect. In an elec-
trooptic crystal, the THz transient ETHz induces an instantaneous birefrin-
gence

∆n ∝ ETHz. (2.8)

which influences the propagation of an optical sampling beam. In a crystal
with thickness L, the phase shift between the ordinary and extraordinary
part of the sampling beam is

∆ϕ =
2πν

c
∆nL, (2.9)

where ν is the frequency of the sampling beam. This can cause, for example,
a conversion of a linearly polarized sampling pulse into a slightly elliptically
polarized pulse (Fig. 2.4). This ellipticity is then detected. As the sampling
pulse is usually very short, the measured ellipticity gives access to the in-
stantaneous electric field ETHz at the moment of the sampling pulse arrival.
Similarly as in the case of photoconductive detection, time-delay scans of the
sampling pulse allow to determine the THz waveform Emeas(t).

Figure 2.4: Principle of the electrooptic sampling technique: setup with single photode-
tector.
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In the setup depicted in Fig. 2.4, the change in the detected sampling
pulse intensity is related to the electric field ETHz, or rather to the induced
phase delay ϕ via formula

Is ∝
Is,0
2

(1− cos∆ϕ). (2.10)

There are two problematic points in this setup. First, this formula holds
only in the ideal case. If the polarization of the sampling beam is not exactly
linear and exactly vertical, an additional phase shift will appear in Eq. (2.10).
The imperfections of the crystal further complicate the extraction of the
THz field [42]. Second, changes of the sampling beam intensity are very
low. Such setup may be thus sensitive to other light sources and parasite
reflections of the laser beam. Though this setup may be preferred when
single photodetector is to be used, like in THz imaging applications. This
technique was also used for single shot measurements in conjunction with
chirped sampling beam [43].

Figure 2.5: Electrooptic sampling: detection of ellipticity by a pair of balanced photodi-
odes gives a signal proportional to the THz field ETHz.
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An essentially higher signal and a linear response is achieved in the setup
shown in Fig. 2.5, where a circularly polarized sampling beam is used. The
deviations from circular polarization are detected by a pair of balanced pho-
todiodes. It can be simply derived, that the difference ∆Is between the in-
tensity of horizontally (IH) and vertically (IV) polarized part of the sampling
beam is given by

∆Is = IH − IV ∝ Is,0 sin∆ϕ (2.11)

and is thus proportional to the THz electric field ETHz for reasonable THz
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signals (e.g. for 1mm thick ZnTe sensor a 1% deviation from linearity occurs
at 10 kV/cm).

The most popular materials for free space electrooptic sampling are ZnTe
[44–46] which is commonly used in the range from 0.1THz to 3THz, GaP [47]
and DAST [48]. Materials like LiTaO3 [49] and LiNbO3 [50] were used for
both conventional and free space electrooptic sampling. Reflective electroop-
tic sampling in low-temperature grown GaAs was used to study the changes
of surface electric field [51].

2.2.3 Magnetooptic sampling

Magnetooptic sampling is a technique based on Faraday rotation effect,
caused by transient magnetic field. Its reported sensitivity is 10−7 T [37]. The
experimental setup requires orthogonal geometry (Fig. 2.6), as the magnetic
field needs to be parallel with the sampling beam propagation direction. The
induced elipticity is proportional to the magnetic field. Sensors built from
terbium-gallium-garnet and amorphous glass SF-59 were investigated [37].

Figure 2.6: Scheme of the free-space magnetooptic sampling technique.
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2.2.4 Other methods

The bolometric methods are of limited usage due to few information pro-
vided at high expense. Bolometers are usually used in the interferometric
setups. The interferograms of THz pulses give the amplitude spectrum of
the THz transient only, but still not the information about the phase. This
does not allow the reconstruction of the pulse shape in the time domain.
The first interferometric characterization of THz transients was reported by
Greene et al. [38].
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2.3 Various setups in THz spectroscopy

THz time-domain spectroscopy was successfully applied to the investigation
of both equilibrium and nonequilibrium systems. For equilibrium systems,
the main aim is to obtain the complex refractive index N or complex relative
permittivity ε or complex conductivity σ of the studied material in the far-
infrared and submillimetre frequency range. These quantities are connected
via relations

ε(f) =
√
N(f) and σ(f) = 2πifε0(1− ε(f)). (2.12)

These properties are usually extracted from the measurements of the THz
transmission. Measurements of reflectivity are of limited usage as they are
very sensitive to the positioning of the sample and to the stability of the
apparatus.

For nonequilibrium systems, an effort is made to obtain the tempo-
ral evolution of the current density or of the polarization directly from the
shape of the THz waveform. This approach is usually related to the emission
spectroscopy [8,52] or to the optical pump – THz probe experiments [53,54].

2.3.1 Transmission spectroscopy

The transmission spectroscopy (Fig. 2.7a) is probably the most widespread
method in the THz region. It was used for studying a great variety of ma-
terials, including dielectrics [55], semiconductors [56], superconductors [57],
organic materials [58], liquids [59], gases [60] and flames [61]. As this method
is a prototype of most of the methods in THz time-domain spectroscopy, fol-
lowing paragraphs discuss this method in detail.

Optical spectroscopy is usually carried out by measuring the relative in-

tensity of monochromatic light passing through the sample. This allows a
determination of the appropriate optical constant at this wavelength. Simi-
larly, in THz time-domain spectroscopy, the optical constants are extracted
from the transmission defined as

T (f) =
Esam

meas(f)

Eref
meas(f)

, (2.13)

where Esam
meas(f) and Eref

meas(f) are the detected fields with and without the
presence of the sample, respectively. Unlike in optical spectroscopy, we are
able to measure the shape of the waveforms Emeas(t). This implies, that both
the amplitude and the phase of Fourier components Emeas(f) are determined
and thus the complex refractive index of the sample can be extracted.
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Figure 2.7: Basic setups for each type of THz spectroscopy: (a) transmission, (b) re-
flection, (c) emission and (d) optical pump – THz probe. Instead of the pair of elliptical
mirrors (represented by arcs in the picture), four parabolic mirrors are often used.
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The measured waveform can be described (in the frequency domain) by
the formula

Emeas(f) = Eemit(f) · Pbef(f) · T (f) · Paft(f) · D(f). (2.14)

Here, Eemit is the waveform emitted by the emitter, functions Pbef and Paft

describe the reshaping due to the propagation before and after the sample
respectively, T stands for the propagation through the sample and D is
the detector response. Except of T , functions on the right-hand side of
Eq. (2.14) cannot be usually simply constructed or measured. That’s why two
measurements are performed. After substitution of Eq. (2.14) to Eq. (2.13)
these unknown apparatus quantities cancel out:

T (f) =
Esam

meas(f)

Eref
meas(f)

=
Eemit(f)Pbef(f)T sam(f)Paft(f)D(f)
Eemit(f)Pbef(f)T ref(f)Paft(f)D(f)

=
T sam(f)

T ref(f)
.

(2.15)
Though all of them still indirectly affect this quantity. In the range, where
they become small, they significantly increase the relative error of the mea-
sured waveform Emeas and thus do not allow a precise measurement of the
transmission function T .
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The propagation T sam through the sample can be simply constructed
assuming (a) the sample is placed in the air, (b) THz beam is collimated,
(c) the sample is a plane-parallel plate and (d) the THz beam irradiates the
sample at normal incidence. Then

T sam(f) =
4N

(N+1)2
exp

(
2πif Nd

c

) ∞∑

k=0

(
N−1
N+1

)2k

exp
(
4πif Nd

c
k
)
, (2.16)

whereN ≡ N(f) is the complex refractive index (frequency dependent) of the
sample and d is its thickness. The first term stands for Fresnel losses due to
transmission through the boundaries, the exponential for direct propagation
through the sample and the last sum describes the contribution of internal
reflections (see Fig. 2.8). The reference transmission (sample = air) then
simply yields

T ref(f) = exp
(
2πif d

c

)
. (2.17)

The transmission T (Eq. (2.13)) is thus related to the refractive index N by

T (f) =
4N

(N+1)2
exp

(
2πif d

c
(N − 1)

) P∑

k=0

(
N−1
N+1

)2k

exp
(
4πif d

c
k
)
. (2.18)

As we are dealing with a time-domain method, we can sometimes (usually
for thick samples) resolve the internal reflections of the transients in the
sample (see Fig. 2.9a). This enables us to apply temporal windowing to the
measured waveform and construct the transmission using only specific echoes:
only corresponding terms are taken into account in the sum in Eq. (2.18).
When the internal reflections cannot be resolved (usually for thin samples),
it is necessary to sum up to infinity.

The final step is the solution of the inverse problem, i.e. extraction of the
refractive index N from the transmission T . A fast numerical procedure for
its calculation is described in [62]. For samples where the temporal echoes
are well resolved, the thickness of the sample can be also refined from the
THz results [63] — this allows further refining of the refractive index, too.

Figure 2.8: Meaning of the terms in Eq. (2.16).
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Figure 2.9: (a) Internal reflections in a dispersive sample. The spatial separation of
echoes is used only for their graphical resolution; practically, it vanishes. The waveform
reflected from the sample is not drawn for simplicity. (b) The reflections can be resolved in
thick samples, thus we may apply temporal windowing. The numbering of echoes coincides
with the k value indexing terms in the sum in Eq. (2.18).
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2.3.2 Reflection spectroscopy

There are only few differences in reflection geometry (Fig. 2.7b) comparing to
the transmission setup. Also the measured quantities are very similar: from
the reflectivity R defined as

R(f) =
Esam

meas(f)

Eref
meas(f)

, (2.19)

it is in principle possible to extract the complex refractive index.
In frame of this diploma work, we made an evaluation of systematic errors

in N = n+iκ due to misalignment of experimental setup in view of potential
applications of the THz reflection spectroscopy. If an ideal mirror is used as
a reference sample, the expressions for reflectivity R are

R =
N2 cos θ −

√
N2 − sin2 θ

N2 cos θ +
√
N2 − sin2 θ

TM polarization (2.20)

R =
cos θ −

√
N2 − sin2 θ

cos θ +
√
N2 − sin2 θ

TE polarization, (2.21)

where θ is the angle of incidence of the THz beam. However, the extracted
refractive index is significantly affected even by extremely small changes of
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the optical path of THz beam. These changes will take place at least due to
replacement of the sample by the reference mirror. Let us assume that the
path increases by the length l. A displacement L of the sample with respect
to the reference mirror may cause a change L/ cos θ in the optical path. The
relation between the true reflectivity R and the measured one Rmeas will be
thus

Rmeas = exp
(
2πif l

c

)
R(N) = exp

(
2πif L

c cos θ

)
R(N). (2.22)

In order to evaluate the error due to the displacement to the first order in L,
we have to calculate the derivative dN/dL. This can be simply done using
theorems about the derivative of implicit and inverse functions:

dN

dL
= − 2πif

c cos θ
· R

dR
dN

. (2.23)

After substitution for R we obtain

TM:
dN

dL
=

2πif

c cos θ
·
√
N2 − sin2 θ

2N cos θ
· N

4 cos2 θ −N2 + sin2 θ

2 sin2 θ −N2
(2.24)

TE:
dN

dL
=

2πif

c cos θ
·
√
N2 − sin2 θ

2N cos θ
· (1−N 2) (2.25)

Primarily, these expressions predict unacceptable sensitivity to displace-
ment of the sample for big angles of incidence via 1/ cos2 θ behaviour. Second,
the error scales linearly with frequency, and grows as N 2 for higher N . For
samples with very low losses (κ→ 0), the expressions are purely imaginary.
This implies, that the real part of the refractive index is not significantly
affected by the displacement. However, the effect of the displacement on the
absorption is high, and is depicted in Fig. 2.10.

Behaviour of errors for lossy samples is more complicated. However, it is
possible to draw a set of refractive indices leading to the same modulus of the
reflectivity. These points differ only by the phase of reflectivity, which is via
Eq. (2.22) related to different displacements of the sample. Some examples of
these sets are depicted in Fig. 2.11 (p. 28). It is evident, that as the samples
become lossy, both parts of the complex refractive index become affected by
the displacement. Expansion of the error in refractive index to the first order
can be justified only for very small displacements.

Due to these problems, the performance of reflection measurements is still
questionable. Only few successful measurements of the complex refractive
index via reflection spectroscopy were done [64–67].
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Figure 2.10: Influence of a displacement of the sample: a special case of sample with
negligible absorption: The graph shows the expressions 1

f
dκ
dL
given by Eq. (2.24) and

(2.25).
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2.3.3 Emission spectroscopy

The THz emission spectroscopy investigates ultrafast processes which lead
to the THz pulse radiation. The shape of the THz waveform emitted from
the sample after the irradiation by ultrashort optical pulse holds an infor-
mation about transient current density or polarization (Eq. (2.3) or (2.2)).
This technique was used for example to investigate quantum structures [68],
semiconductor surfaces [16], cold plasma [69] and influence of magnetic field
on carrier dynamics [70].

The measured waveform Emeas generally differs from the emitted one Eemit

due to the reshaping during propagation described by a function P and due
to the detector response D:

Emeas(f) = Eemit(f) · P(f) · D(f). (2.26)

This makes the interpretation a little tricky. In several cases, when the emit-
ted spectrum is narrow and only the central frequency is of the primary
interest (e.g. Bloch oscillations [5]), both the influence of propagation and
detector response may be estimated only very roughly. However, when the
emitted spectrum is broadband, or when directly the true time evolution of
the current density or polarization has to be studied, a careful determina-

27



Figure 2.11: Graph of complex refractive indices corresponding to the same modulus
of the reflectivity. The angle of incidence is θ = 45◦. The frequency is supposed to be
1THz, the distance between points corresponds to displacement of 1µm. Different colours
correspond to different modulus of reflectivity. The graphs are plotted for (a) TM and (b)
TE polarization.
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tion of the influence of the propagation P and the detector D becomes an
important point for correct interpretation of measured waveforms.

The situation in the frequency domain is similar to that in transmission
or reflection spectroscopy. We are able to determine the complex spectrum
Eemit(f) in a limited frequency range. This prevents from a complete recon-
struction of the emitted waveform Eemit(t) in the time domain as it is related
to Eemit(f) via integral transformation. The best scheme thus seems to be a
construction of a theoretical model for Eemit(t), which enables to predict the
measured waveform via inverse Fourier transformation of Eq. (2.26). This
allows a direct comparison with the experimental data.

The third part of this work concerns the development of this technique
and its applications to the investigation of ultrafast dynamics in semiconduc-
tors, i.e. especially to the evolution of the current density.

2.3.4 Optical pump – THz probe experiments

In an optical pump – THz probe experiment the changes of the response of
the sample induced by an intense ultrashort optical excitation are studied
via probing the sample by a delayed THz pulse. The setup (see Fig. 2.7d)
is based on the transmission geometry; an optical excitation beam is added.
The excitation and THz beams are perfectly synchronized as they may be
triggered by the same ultrashort laser pulse. This method was successfully
applied to several problems including carrier dynamics in semiconductors
[53], superconductors [71] and liquids [72].

In this type of experiments, generalized response function is usually stud-
ied. In addition to the equilibrium experiments, it also takes into account
the causal influence of the excitation beam. Thus the polarization may be
described [73] by the formula

P (t, te) = ε0

t∫

−∞

E(t′)χ(t− t′, t− te) dt′, (2.27)

where te is the time of the excitation of the sample and t the time of measure-
ment (sampling beam arrival). Unlike in equilibrium situation, the integral
in Eq. (2.27) does not represent a convolution. That’s why application of the
Fourier transformation in the time t does not lead to a product of electric
intensity and susceptibility. This in turn prevents from using the formalism
developed for the transmission spectroscopy.
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2.4 Applications in condensed matter physics

2.4.1 Quantum structures

The THz radiation can be produced by charge oscillations due to quan-
tum beats. These can occur already in a three-level system, whose two
levels are very close, thus the beating frequency may lie in the THz spectral
range. The THz emission then proves directly these charge oscillations. This
phenomenon was first directly observed in double quantum wells [4]. The
emission from a single quantum well due to the excitation of the light hole
and heavy hole excitons was also reported [68].

Long ago it was predicted, that an electron in a periodic potential in
the presence of uniform electric field E would periodically oscillate with the
Bloch frequency fB = eEd/h, where d is the period of potential. Due to
the scattering, the coherence of the Bloch states is destroyed before a single
oscillation cycle is completed. However, Esaki and Tsu expected, that these
Bloch oscillation should also occur in superlattices. The first direct observa-
tion of this phenomena was reported in 1993 by Waschke et al. [5] using THz
emission spectroscopy. The spectrum emitted from these types of emitters is
usually narrower than that of conventional emitters.

2.4.2 Dielectrics

For studies performed on dielectrics in THz region, the THz time-domain
transmission spectroscopy is commonly used. It establishes connection be-
tween radiofrequency and infrared regions. The number of investigated mate-
rials is high, let us name at least common substrates like e.g. sapphire, quartz
and fused silica [74]. For many materials, this spectral range contains pre-
cious information about the behaviour of low-frequency (soft) polar phonons
and relaxational mechanisms (central modes) which are often responsible for
structural (namely ferroelectric) phase transitions. Recently, the THz time-
domain spectroscopy was applied to the study of high-permitivity microwave
ceramics [75], where it makes a feedback to the technological protocols: (i)
The presence of a second unwanted phase in the ceramic samples may cause
additional peaks in the submillimetre region [76]; (ii) intrinsic losses of the
ceramics in the microwave region can be estimated directly through THz
time-domain spectroscopy [75]. An important phenomenon contributing to
dielectric properties in the THz region is a strong mixing of transversal op-
tic phonons and photons near frequencies of transversal optic phonons: the
technique offers a possibility to characterize precisely the polariton disper-
sion and dephasing [77]. THz spectroscopy is also sensitive to presence of
residual free carriers and defects [74].
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2.4.3 Semiconductors

Concerning the equilibrium, the THz frequency range is particularly inter-
esting for doped semiconductors, as the majority of the oscillator strength of
the Drude conductivity falls here. This is important, as it allows noncontact
characterization of doping concentrations and scattering rate of the free car-
riers using THz transmission spectroscopy. The pioneering studies of GaAs,
silicon and germanium were performed by Grischkowsky et al. [74].

THz based methods are also successfully used for the investigation of the
dynamics in semiconductors. For this purpose, the optical pump – THz probe
or THz emission spectroscopy is used. Nowadays, there is a rapidly increasing
number of studies concerning the free carrier dynamics [53, 69, 78–80] and
influence of magnetic field on it [70,81].

2.4.4 Liquids

The phenomena in liquids with a time-scale falling into the THz region are
especially molecular motion and bulk dielectric relaxation. These features
can be very simply observed in polar liquids due to the strong interaction
between the electromagnetic radiation and molecular dipoles. However, in
nonpolar liquids the absorption related to dipoles induced by collisions be-
comes the dominant process. The important liquids like water [59,82], CHCl3,
CCl4 and their mixtures [83] and methanol, ethanol, 1-propanol and liquid
ammonia [59] were investigated by THz transmission spectroscopy.

Nowadays, the studies of a solvent dynamics due to the charge trans-
fer of optically excited solute becomes a challenging experimental problem.
This dynamics can be composed of various phenomena including vibrations,
solvation or e.g. conformational changes in proteins. Up to now, only few
preliminary measurements concerning n-hexane [84], betain [72, 85] and p-
nitroanilin [72] were performed.
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Part 3

Study of GaAs grown at low
temperatures by THz emission
spectroscopy

The GaAs grown by molecular beam epitaxy at low temperatures (LT GaAs)
is an important ultrafast photoconductive material. First, it was studied
for its semi-insulating property, which is important for the fabrication of
buffer layers in GaAs MESFETs, as it provides excellent device isolation, thus
eliminating backgating effects and reducing short-channel effects in GaAs
MESFETs with submicron-long gates [86]. Further structural investigations
were then done [87,88] and ultrafast dynamics in LT GaAs was observed [89]
and used to construct a picosecond switch [90].

Nowadays, the properties of LT GaAs are further being improved (differ-
ent deposition and annealing conditions, beryllium doping [91]). A detailed
understanding of the mechanisms of the ultrafast response is thus a crucial
point that allows to optimize the elaboration and to control the properties.

3.1 Structure of LT GaAs

GaAs films with good crystalline and electric quality are grown by molec-
ular beam epitaxy at substrate temperatures ∼ 600◦C at the growth rate
∼ 1µm/h. However, decreasing the substrate temperature below 500◦C and
preserving the growth rate dramatically changes the property of GaAs lay-
ers [92] — such material is then referred as low-temperature grown GaAs.
Further annealing above 450◦C of these layers also significantly affects their
properties [93].

A variety of characterization techniques was employed for investigating
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LT GaAs. For structure analysis, let us name X-ray studies [88, 94], trans-
mission electron microscopy [88,95–97], scanning tunnelling microscopy [98],
Auger electron microscopy [94], electron paramagnetic resonance and related
techniques [93, 99] and slow positron spectroscopy [100]. The optical and
electronic properties were studied namely by resistivity and breakdown mea-
surements [101, 102], infrared absorption spectroscopy [94, 99, 102, 103], Hall
effect [94,102,103], photoluminescence [104] and magnetic circular dichroism
of absorption [99].

Though the first investigations started already about 1989 [88], there are
still doubts about the structure of both as-grown and annealed LT GaAs [94].
The microstructure of LT GaAs is primarily determined by the growth tem-
perature, arsenic pressure during the growth and by the annealing conditions
(temperature and time) [87, 93, 105, 106]. Anyway, the common property of
this material is an exceptionally high excess of arsenic (like 1%). It can be
incorporated in the crystal matrix in a form of arsenic antisite point defects,
arsenic interstitials, gallium vacancies and arsenic clusters. Schematic band
structure of LT GaAs is depicted in Fig. 3.1.

Figure 3.1: Scheme of the band structure of (a) GaAs and (b) as-grown LT GaAs. The
annealed LT GaAs differs from this scheme by lower density of donors and presence of
arsenic clusters. All values correspond to measurements at room temperature.
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Concerning the ultrafast response of this material, the most important
seems to be the concentration of ionized arsenic interstitial point defects
(As+Ga). For low concentrations of photogenerated carriers, only the dynamics
of electrons is important due to low mobility of holes. For high concentrations
of carriers the traps (As+Ga) can be filled with electrons. The rate of the
dynamics thus becomes determined by the rate of further ionization of traps,
which is closely related to the rate and mechanism of capturing the holes. In
this situation, the dynamics of holes may be dominant.

In as-grown LT GaAs, the most important defect is arsenic antisite,
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which acts as a deep donor. The increase of the lattice parameter is also
attributed to this point defect. The gallium vacancies are assumed to act
as acceptors, thus partially ionizing the donors, which then serve as traps
responsible for the ultrafast behaviour. The dark resistivity in as-grown
samples is quite low due to a strong hoping conduction [101]. On the other
hand, due to high neutral-defect density, the mobility of photogenerated
carriers is low.

Processes in annealed LT GaAs seem to be more complicated. The ar-
senic antisite and arsenic interstitials tend to form precipitates during anneal-
ing. Thus it seems, that there is a high-quality GaAs matrix with embedded
arsenic precipitates, which behave as metallic clusters. Their wavefunctions
do not overlap. This results in a high dark resistivity comparable to the
semi-insulating GaAs, and simultaneously in an increase of the mobility of
photogenerated electrons comparing to LT GaAs. However, the density of
ionized point defects As+Ga becomes lower, resulting in longer electron trap-
ping times.

3.2 Investigation of ultrafast properties

There is a great effort to fabricate an ultrafast material with high free carrier
mobility and high dark resistivity. In bulk semi-insulating GaAs, the fast
dynamics is determined by recombination, which leads to nanosecond carrier
lifetimes. In order to shorten the carrier lifetimes, it is necessary to create a
high density of traps, i.e. high density of defects. Concerning GaAs, several
technologies like impurity doping [107], growth of amorphous material [108]
or damage by proton implantation [109] were used. However, growth by
molecular beam epitaxy at low temperatures and successive annealing seems
to produce a very suitable material [110].

As the carrier lifetime in LT GaAs is usually shorter then 1 ps, rather
optical than electric techniques need to be employed for its characteriza-
tion. Following optical methods offering sufficient time resolution of carrier
dynamics are more or less commonly used:

• Time-resolved photoluminescence spectroscopy

• Optical pump – optical probe methods (both reflection and transmis-
sion geometry is commonly employed)

• Optical pump – THz probe technique (up-to-day only transmission
geometry has been used)

• THz emission spectroscopy (introduced by us).
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Signal from time-resolved luminescence is related to the product of
free electron and hole densities. However, this technique is of very limited
usage, as the electron trapping in LT GaAs is a nonradiative process. This
results in a very low photoluminescence intensity [92], thus the time resolved
luminescence becomes practically nonapplicable technique even at very high
carrier densities. On the other hand, it has been shown, that the beryllium
doping increases the luminescence intensity: the time resolved luminescence
technique can thus be applied only to the investigation of heavily beryllium
doped samples [111].

Optical pump – optical probe is probably the most widespread
method giving the greatest amount of information. The interpretation of
data measured by this method remains a very complex problem. High exci-
tation intensities are required to obtain a measurable signal; it then leads to
a large number of secondary effects, which should be accounted to in a model.
A very complex study (measurements at different pump – probe wavelengths
and intensities) should be carried on in order to draw a reliable picture of the
involved processes. In the simplest experimental scheme, pump and probe
are degenerate (usually around 800 nm): the pump pulse produces band-
to-band transitions and the delayed probe pulse exhibits a delay-dependent
decrease of the reflectivity due to the conduction-band filling. On the other
hand, large number of effects like electron trapping, electron cooling, trap
filling, carrier recombination, Auger recombination, bandgap renormaliza-
tion and band filling can contribute simultaneously to the measured signal.
One needs to take into account namely the trap filling. The most important
effects related to high excitation intensities are discussed in [106,112,113].

This method is used both in reflection and transmission geometry. By the
proper choice of wavelengths of the pump and probe beam, phenomena like
carrier cooling, trapping, recombination [114–119] or dynamics of holes [120]
were studied. The time resolution of this method is determined only by the
length of incident laser pulses. That’s why it offers a resolution of tens of
femtoseconds.

In optical pump – THz probe experiments the free carriers are again
generated by the optical pump pulse. However, the THz probe beam is ab-
sorbed namely due to the interaction with free carriers. Their concentration
and mobility can be simultaneously deduced from the measured data. The
measurements show that much lower excitation densities are necessary to ob-
tain a measurable signal. However, the time resolution is determined by the
length of the THz probe pulse, resulting in a typical value of approximately
400 fs. Recently, this method has been used for investigation of carrier dy-
namics in LT GaAs [53,78], GaAs [54] and proton-bombarded InP [79].

The optical pump beam irradiates a biased sample in THz emission
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spectroscopy. As the carriers are being generated, trapped, or accelerated,
an emission in THz region occurs. Time resolution of this method is limited
by the response of the sensor and by the length of the optical pump and
sampling pulses, which can in principle lie in the order of tens femtoseconds
[3]. Again, it is a method sensitive to free carrier density, and it also allows to
determine the mobility if a simple Drude-like behaviour of carriers is assumed.
Only low free carrier densities are necessary to produce a reasonable signal.
Unlike preceding methods this one requires building electrical contacts.

In our case, the THz emission spectroscopy is especially useful, as we
are interested in the determination of free carrier trapping times and their
mobilities at low carrier concentrations. This method also offers sufficient
time resolution.

3.3 Experimental setup

Our setup for THz-emission measurements is depicted in Fig. 3.2. The whole
system is driven by a Ti:sapphire oscillator (wavelength 800 nm, pulse dura-
tion 100 fs, repetition rate 76MHz and mean output power 300mW). From
this beam, 96% of the power irradiates the emitter under investigation and
the remaining part is used in the electrooptic-sampling detection with 1mm
thick 〈110〉 oriented ZnTe crystal. The ellipticity of the sampling beam po-
larization is measured by a pair of balanced photodiodes.

The experimental setup we have proposed allows to evaluate the de-
tector response and the function describing the influence of propagation in
Eq. (2.26). No THz focusing optics is used, as the description of the THz
pulse propagation is very difficult even in very simple cases [121]. The whole
path of the THz beam is enclosed in a box pumped with nitrogen in order
to avoid absorption on water vapour which results in oscillatory tails of the
measured waveforms.

In order to reduce effects caused by fluctuations of the laser power and/or
polarization, two additional reference signals are recorded. The first one
monitors the power of the laser (diode D3) and the second one measures power
of the sampling beam reflected from the pellicle beam splitter. As the THz
signal is negligible comparing to the optical bias of the diodes, signal from
D1 or D2 can be used instead. In our experiments, the signal from the lock-in
amplifier was consequently normalized by the product of the signals in D2 and
D3. In order to justify the first reference, we measured at different excitation
densities and checked, that the signal varies linearly with the optical fluence.
Also Eq. (3.2) and following support this view. Justification of the latter
reference is obvious from the section about electrooptic sampling, Eq. (2.11).
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Samples were grown on 0.5mm semi-insulating GaAs substrate. After
deposition of a 72.5 nm GaAs buffer layer at 600 ◦C, the 1.3µm layer was
grown at substrate temperature Tg at the growth rate 1.76µm/h. Four sam-
ples grown at temperatures Tg = 175, 200, 225 and 250 ◦C were investigated.
All the samples were annealed for 10min at 600 ◦C. We used two different
spacings (4 and 6mm) of gold planar electrodes, which were prepared by
sputtering. The bias voltage applied to them during the experiment was
ranging from 800 to 2500V. The space between electrodes was irradiated by
the mentioned femtosecond laser source with different pulse energies. The
commonly used free-electron densities were in the range 1014 to 1015 cm−3.
All measurements were performed under nitrogen atmosphere without any
optics focusing the THz beam. Different distances between the emitter and
sensor were tried in order to avoid eventual near field effects.

3.4 Model of dynamics in LT GaAs

The most important fast processes that can occur in LT GaAs due to the
absorption of an infrared 800 nm photon are depicted in Fig. 3.3. (1) The
photon generates an electron-hole pair or (2) reexcites the trapped electron
up to the conducting band. An electron in the conducting band can (3)
recombine, (4) be trapped or (5) cooled. Finally, the electron in a trap can
recombine with a hole (6).

Figure 3.3: Processes taking place due to the absorption of an infrared photon.

Traps
(1)

(2)

(6) (3)

(4)

(5)

From Eq. (2.3) it is obvious, that the quantity we are able to measure is
current density, i.e. we are able to determine evolution of the product of the
carrier density n and the carrier velocity v:

j(t) = ene(t)ve(t) + enh(t)vh(t), (3.1)

where indices e and h denote electrons and holes respectively. As our ex-
citation density (below 1015 cm−3) is much lower than the density of traps
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(. 1018 cm−3), we can neglect the changes in the occupancy of traps and
thus assume the free-electron lifetime to be constant. Also the occupancy
of both conduction and valence band does not change significantly, thus the
rate of the carrier generation depends only on the optical fluence. Finally,
we neglect the contribution of holes [122], as their mobility is much lower
than that of electrons. This suggests a very simple equation describing the
evolution of free electron density (from now, n and v denote the free electron
density and velocity respectively):

dn

dt
= − n

τc
+G(t, r), (3.2)

where τc is the free electron trapping time and G the rate of electron gen-
eration, which is proportional to the intensity of the optical pulse. We are
interested only in phenomena which change the dynamics on a time scale
∼ 10 ps or shorter, hence both the recombination rate (∼ 160 ps in traps [51]
and . 2 ns in bulk GaAs [54]) and the diffusion processes were also completely
neglected. Neither the surface recombination can be significantly involved in
the dynamics as the diffusion is very slow process [54].

We based the description of evolution of the free-electron velocity on the
Drude-Lorentz model, which was already successfully applied to a similar
problem [8]:

dv

dt
= − v

τs
+
eEloc(t, r)

m
− vG(t, r)

n
. (3.3)

Here, τs is the velocity relaxation time, m the effective mass and Eloc = −∇ϕ
the local electric field. The Drude-Lorentz model for the velocity can be well
justified in our case, as the electron energy is very low and the screening
is negligible due to low carrier densities involved in the experiments. The
last term was added in order to correctly describe the mean velocity v of
free carriers during the generation process. The mean velocity of the free
carriers just generated is zero thus the mean velocity of all free carriers is
decreased by the generation process. This treatment is necessary when the
carrier scattering time τs is longer or comparable with the excitation pulse
length. We do not construct an equation for the whole vector of velocity, as
the carriers move dominantly in the direction of the bias electric field.

The low-temperature grown (LTG) layer is not thick enough to absorb
the whole incident power (see Fig. 3.4), but a significant amount of radiation
penetrates to the bulk GaAs. Thus there will be a contribution to the THz
radiation from the transient currents in the bulk. Later, it will be evident
that this allows determination of the relative carrier mobility of the LTG
layer. The same model (Eq. (3.2) and (3.3)) can be employed for the carrier
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Figure 3.4: Distribution of the incident power.
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dynamics description in bulk GaAs assuming the carrier lifetime to be much
greater than that in the LTG layer. The carrier scattering time in bulk GaAs,
τs = 270 fs was taken from [123]. Effective masses in bulk and LTG layer are
assumed to be the same. Let us summarize the equations we should solve
(the upper index L or B refers to the LTG layer or to the bulk GaAs):

LTG layer:
dnL

dt
= −n

L

τL
c

+GL(t, r) (3.4)

dvL

dt
= −v

L

τL
s

+
eEloc(t, r)

m
− vLGL(t, r)

nL
(3.5)

Bulk:
dnB

dt
= −n

B

τB
c

+GB(t, r) (3.6)

dvB

dt
= −v

B

τB
s

+
eEloc(t, r)

m
− vBGB(t, r)

nB
(3.7)

The remaining quantity in the model which is necessary to describe is
the local electric field. Generally, it is necessary to solve it from Poisson’s
equation (for example, to describe the effects of screening which may occur
for higher excitation densities). Together with system (3.4–3.7), it forms a
system of coupled equations, the solution of which would be very complicated
and time consuming. However, far from the emitter, the emitted waveform
can be related to the total current I (see Eq. (2.3)):

ETHz(t) ∝
∂I(t)

∂t
. (3.8)

In the following paragraphs we prove, that under reasonable assumptions
the total current density can be calculated in a such way, that any spatial
dependence in the system (3.4–3.7) can be omitted.
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Obviously, the total current I can be written as a sum of contributions
from LTG layer and bulk:

I(t) =

∫

sample

j(t, S, z) dV =

∫

L

jL(t, S, z) dV +

∫

B

jB(t, S, z) dV =

=

∫

surface




h∫

0

jL(t, S, z) dz +

H∫

h

jB(t, S, z) dz


 dS (3.9)

When the excitation pulse irradiates the surface perpendicularly, its spatial
and temporal profile can be factorized to the form

G(t, r) = g(t)f(S) exp (−αz), (3.10)

where α is the absorption coefficient, g describes the temporal and f the
spatial profile of the excitation pulse. As the free-electron density can be
assumed to vanish before the pulse arrival, the solution of Eq. (3.2) can be
factorized as well:

n(t, r) = n̂(t)f(S) exp (−αz), (3.11)

where n̂(t) is its temporal profile, which is in general different from that of
the excitation pulse.

We neglect the screening of the local electric field. The local electric
field is then time independent. Let us assume, that its spatial profile can be
factorized as

Eloc(t, r) = E · s(S)k(z), (3.12)

where the dimensionless functions s and k represent the surface and depth
profile and E stands for the field strength. In this situation, also the velocity
v given by Eq. (3.3) can be factorized as well:

v(t, r) = v̂(t)s(S)k(z), (3.13)

where v̂ is the temporal profile of the velocity. Substitution of Eq. (3.11) and
(3.13) to Eq. (3.9) yields

I(t) = eE

∫

S

f(S)s(S)


n̂L(t)v̂L(t)

h∫

0

e−αzk(z) + n̂B(t)v̂B(t)

H∫

h

e−αzk(z)




(3.14)
Obviously, if the local electric field does not vary with the depth z signifi-
cantly on a dimension comparable with the absorption length, this equation
becomes

I(t) ∝ βLjL(t) + βBjB(t), (3.15)
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i.e. it is a linear combination of contributions from the known bulk material
and LTG layer under the investigation, with the weights equal to the amount
of optical power absorbed in appropriate parts of the sample. The goal is
that the overall proportionality constant is independent of time. Let us recall
the assumptions under which this expression is valid:

1. The fast dynamics is described by Eq. (3.2) and (3.3) in the whole
sample. That’s why the performed factorization is possible.

2. The local electric field does not vary significantly with the depth. This
assumption may not be fully satisfied near electrodes. However, most
of the THz radiation is generated elsewhere, thus this violation should
not influence the results.

Our model is fully determined by three parameters, which we fit from the
measured data. Two of them, the carrier trapping time τ L

c and the carrier
scattering time τL

s are directly related to the properties of the LTG layer.
The last one is a proportionality constant, which is related to the intensity
of the THz radiation. As we measured only its temporal profile and not
its absolute value, this parameter does not hold any information about the
properties of the sample.

3.5 Influence of free space propagation and

detection

In order to compare the measured waveforms and the model, it is necessary
to describe the influence of the free space propagation and the detection
(Eq. (2.26)). In our experimental setup, we measure under the nitrogen
atmosphere, thus eliminating the absorption caused by water vapour [124].
We also did not use any focusing optics, because describing its influence is
difficult even in very simple case [121]. However, this lowered the signal, and
consequently the signal to noise ratio became poorer. The only influences
we cannot omit are thus the free space propagation and the response of the
detector.

3.5.1 Propagation of elliptic beam

We suppose that the THz radiation pattern from the emitter may be well
approximated by the Gaussian profile, due to the same pattern of the exciting
laser beam. In order to describe the influence of propagation by the distance
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z, we have to calculate the diffraction integral [9]

E(f ;x, y, z) =

∫∫
1

z
E0(f ;x

′, y′) exp

(
−ikr + ik

xx′ + yy′

r

)
dx′ dy′ (3.16)

where k = 2πf/c is the wave-vector, r =
√
x2 + y2 + z2 and E0 is the pattern

of electric field at z = 0. Substitution for the initial pattern

E0(f ; x, y) = E0(f) exp
(
− x2

w2
x
− y2

w2
y

)
(3.17)

and a few manipulations yield

E(z, f) = E0(f)
iπf

zc

wx√
1 + iπfw2

x

zc

wy√
1 +

iπfw2
y

zc

−−−−−→
z→∞

iπf

zc
wxwy. (3.18)

Here only the on-axis field was calculated for simplicity. In our experimental
setup wx = 1.8mm, wy = 1.2mm and z = 5 to 15 cm. Though it seems that
the expression under the square root are not negligible, it was experimentally
shown that the approximation marked by arrow holds very well [121].

3.5.2 Response of electrooptic detector

The response of the electrooptic detector was already studied in the time
domain [45, 47]; very general situation was solved by Gallot et al. [125]. For
our purposes, we derive the response function in the frequency domain. We
take into account (a) Gaussian sampling pulse, (b) THz and optical dispersion
in the sensor and (c) phase-matching effects. The shape of the THz pulse
evolves according to the formula (see Fig. 2.8)

E(z, f) = E0(f) ·
2N

N + 1
· exp

(
2πifzN

c

)
, (3.19)

where E0(f) is a THz wave irradiating the sensor, N is the refractive index
of the sensor and z is the path travelled in the sensor. The middle term
stands for Fresnel-reflection losses and the last one for the propagation in
the sensor. The refractive index N is in principle frequency dependent. As
the intensity of the THz field is low, the detected signal can be written as
(see Eq. (2.11))

Emeas ∝ ∆I(t) ∝
L∫

0

∞∫

−∞

I(t− t′, z)E(z, t′) dt′ dz, (3.20)
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where I is the intensity of the sampling beam, L thickness of the sensor and
t the delay between the sampling and THz pulse. We assume the sampling
pulse to be Gaussian:

I(t, z) ∝ 1√
τ
exp

(
t− zNg/c

τ

)
, (3.21)

where τ is related to the width of the pulse and Ng is the group refractive
index of the sensor. We substitute Eq. (3.21) and (3.19) to Eq. (3.20) and
apply the Fourier transformation to Eq. (3.20). This leads to the response
of the electrooptic detection D:

D(f) = Emeas(f)

E0(f)
∝

∝ 2N

N + 1
e−(πτf)2 sin

(
(N −Ng)πf

L
c

)

(N −Ng)πf
L
c

eπif(N−Ng)
L
c . (3.22)

The refractive index N(f) of ZnTe in the THz range was measured in our
laboratory by THz time-domain spectroscopy. This is necessary, as due to
different conductivity of each particular crystal these indices may differ quite
significantly. We also measured the group refractive index Ng. The value
agrees very well with the previously reported one [126]. The amplitude of
the response given by Eq. (3.22) for our detector is plotted in Fig. 3.5.

Figure 3.5: Response of the electrooptic detector with 1mm thick 〈100〉 oriented ZnTe
crystal. The full-width half-maximum of the sampling pulse was 110 fs and the central
wavelength 800 nm.
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3.6 Results and discussion

The current in Eq. (3.15) was computed by numerical solution of the system
of differential equations (3.4–3.7) by the fourth order Runge-Kutta method.
After that we performed the convolution (Eq. (2.26)) with the free space
propagation (Eq. (3.18)) and with the detector response (Eq. (3.22)). These
time-domain data were then fitted to the experimental results by the least
square method. The measured data along with corresponding fits are de-
picted in Fig. 3.7–3.10 (pp. 48–49). Decomposition of the fit to the contri-
bution from the substrate and the LT layer is also presented.

In order to check our model, we varied several parameters involved in
the experiment. We checked, that the shape of measured waveforms was
independent of the optical pulse intensity over a decade, spacing between the
electrodes (4 and 6mm), applied bias voltage (in the range 800 to 2500V),
distance between the emitter and the sensor (varied from 5 to 15 cm) and
spatial profile of the optical beam (it was broadened by insertion of a concave
lens). The THz signal scaled linearly with the applied bias voltage and the
intensity of the optical beam (the estimated carrier concentration was varied
in the range 1014 and 1015 cm−3). All these facts corroborate our model.

The results of fits (i.e. free-electron lifetimes, scattering times and mobili-
ties) are summarized in Tab. 3.1 and also plotted in Fig. 3.6. Both quantities
have similar values as those reported previously [101,127]. We attribute the
higher mobility of the sample grown at 200◦C to the lower precision of the
measurement and we do not consider it as to be the property of the sam-
ple. The fit for the sample grown at 175◦C yielded so high tolerance for
its mobility, that only the carrier lifetime is presented. Also its precision is
significantly worse. The trapping time τc can be related to the density of
defects N by the formula [122]

τc =
1

Nvthσ
=

1

πNR2svth

, (3.23)

Table 3.1: Carrier lifetimes, mobilities and carrier scattering times obtained via THz
emission spectroscopy.

Tg (◦C) τc (fs) µ (cm2V−1s−1) τs (fs)
250 660± 50 2250± 100 87± 4
225 450± 50 2350± 100 91± 4
200 375± 50 3000± 500 115± 20
175 280± 100 · · · · · ·
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Figure 3.6: Dependence of free-electron lifetimes on growth temperature in LT GaAs.
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where σ is the capture cross section of the defect, the factor s describes how
σ differs from the geometrical area of the defect, R is the average radius
of the defect and vth is the electron velocity which is in our case given by
its thermal velocity. Within the unified cluster model [101] the amount of
the arsenic remains preserved during annealing, i.e. the density of defects in
as-grown (Ng) and annealed sample (NA) are related by

NgR
3
g = NAR

3
A, (3.24)

where Rg and RA are the mean radii of defects in as-grown and annealed
samples respectively. In [101] it was shown, that the defect density satisfies
relations

Ng = Ng,0 exp(−Tg/Tg,0) and NA = NA,0 exp(−TA/TA,0). (3.25)

Substitution of Eq. (3.24) and (3.25) to Eq. (3.23) yields

τc =
exp

(
TA

3TA,0

)

πR2
gvths 3

√
NA,0N2

g,0
︸ ︷︷ ︸

τ0

· exp
(

2Tg

3Tg,0

)
, (3.26)

i.e. the trapping time should grow exponentially with increasing growth
temperature. Fit of our data together with those taken from [53] leads to
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τ0 ∼ 25 fs and Tg,0 = 44C◦. The value of τ0 is very close to that reported
in [101] (τ0 ∼ 20 fs). However, the reported coefficient Tg,0 = 30◦C obtained
for the as-grown samples is lower than yields our fit. That’s why we conclude,
that the annealing slows down the dynamics of LT GaAs grown at higher
growth temperatures. This suggests, in turn, that the ability of electron
capture is reduced for As clusters comparing to the point defects.

Our results complete the data measured at similar free-carrier densities
grown at 300◦C and 350◦C by means of optical pump – THz probe exper-
iment [53]: out samples were grown at lower temperatures and show faster
dynamics.

In conclusion, we have demonstrated the application of THz emission
spectroscopy. We have built an experimental setup, in which it is possible to
perform a simple and sufficiently precise comparison of the modelled current
and measured waveform. Annealed LT GaAs samples grown at different tem-
peratures were investigated by THz this technique, yielding electron lifetimes
and mobilities. A simple geometrical model was used to relate these results
to the previously published ones.
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Figure 3.7: Emitter grown at 175◦C.
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Figure 3.8: Emitter grown at 200◦C.
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Figure 3.9: Emitter grown at 225◦C.
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Figure 3.10: Emitter grown at 250◦C.
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Part 4

Optical pump – THz probe:
Perspective method for
studying the ultrafast dynamics

Optical pump – THz probe experiments offer a new possibility for investi-
gation of non-stationary processes in condensed matter on the picosecond or
subpicosecond time scale. The scheme of the experiment is the following.
First, the sample is excited at the time te by an ultrashort optical pulse.
The induced changes of the properties of the sample are then probed by a
pulse of THz radiation, with duration of several picoseconds. Up to now,
this kind of experiment was applied to investigations of carrier dynamics in
semiconductors [54, 78] and superconductors [71]. The principal interaction
here is the absorption of the THz pulse by free carriers. There are also two
publications, where the presented technique was applied to the solvation dy-
namics [72,85]. The THz pulse then probes polar motions due to the optically
induced change of the dipole moment of a chromophore.

In order to obtain a complete information about the dynamics, two-
dimensional time-scans are required: it is necessary to measure the shape
of the THz waveform for different delays between the pump and probe pulse
arrival. Up to now, the full two-dimensional scans were performed only in
semiconductors [54, 78]. Concerning the solvation dynamics, only particular
projection was scanned [72,85].

These studies provide an access to the dielectric response of the processes
initiated by an ultrashort excitation (pump) pulse. It is very convenient to
describe their linear THz dielectric response in terms of susceptibility, as
it can be quite simply related to the change of the THz pulse transmitted
through the sample.

The process under the investigation originates from a coupling between
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the THz and optical electric field ETHz and Eopt respectively, i.e. it is a
nonlinear process. The corresponding contribution ∆P to the polarization
can be described using the third order nonlinear susceptibility χ(3):

∆P (t) = ε0

∫∫∫
χ(3)(t′, t′′, t′′′)Eopt(t− t′′′)Eopt(t− t′′)ETHz(t− t′) dt′ dt′′ dt′′′.

(4.1)
Here and later, the integration is always performed only over the region,
where the causality is not violated. We assume that the optical pulse is
much shorter than characteristic times of interactions that can be studied
using available THz pulses. In this situation, Eq. (4.1) becomes

∆P (t, te) = ε0

∫
E(t′)∆χ(t− t′, t− te) dt′, (4.2)

where te is the time of the pump pulse arrival and ∆χ is a generalized sus-
ceptibility defined as

∆χ(t′, t− te) = Iopt

∫∫
χ(3)(t′, t′′, t′′′)δ(t− t′′′ − te)δ(t− t′′ − te) dt′′dt′′′ =

= Ioptχ
(3)(t′, t− te, t− te). (4.3)

The generalized susceptibility depends on two time variables: the first
one is related to the response to the δ-probe-pulse, and the second to the
evolution initiated by the pump pulse. If the response of the sample were
dominated only by slow processes comparing to the frequency of the probing
radiation, a delay-dependent susceptibility could be extracted from the ex-
periment. For example, in usual optical pump – optical probe experiments
(time resolved optical transmissivity of reflectivity measurements) a delay-
dependent refractive index N(ω, τ) — where τ is the pump-probe delay —
can be directly measured. In our case, when the rate of the involved processes
(picoseconds) becomes comparable with or even faster than the mean prob-
ing frequency or the duration of the THz pulse, the time variables related to
the THz waveform and to the pump-probe delay mix together in experimen-
tally accessible quantities. A direct application of the Fourier transformation
formalism developed for the transmission measurements (section 2.3.1) then
often leads to artifacts [71].

For samples in equilibrium, there are two major phenomena affecting
the transmitted waveform: refraction on the surfaces of the sample, and
dispersive propagation in the sample (bulk effects). Both phenomena also
act in samples out of equilibrium. In addition, there are two new important
parameters: the extinction length of the pump pulse, and deviation from the
velocity-matching between the pump and probe pulse.
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Up to now, an attempt of analytical description of the influence of the
sample was concentrated only on the generation in the bulk. However, the
results deal only with a very idealized situation (nondispersive, lossless sam-
ple with perfect velocity matching) [72, 73]. The refraction on the surfaces
of the sample is completely neglected. This can be justified only for thick
samples, which are sufficiently transparent in both THz and optical region.
Nevertheless, the assumptions of this theory are often far from reality.

Recently, an approach based on finite-difference time-domain method has
been reported [54, 128]. This method allows to take into account all the
mechanisms of how the sample affects the probe-pulse, and can be applied
for any strength of the nonequilibrium polarization. On the other hand, it
is a numerical method, which was designed to simulate the propagation of
the THz probe-pulse in a sample with known susceptibility. This makes the
solution of the inverse problem, i.e. the extraction of the nonequilibrium
susceptibility extremely complicated. In both cited works, the susceptibility
is approximated by a function with a few free parameters, which are to be
fitted to the experimental data, i.e. a model of the susceptibility behaviour
should be developed prior to the data treatment.

Anyway, in both proposed methods, it is necessary to describe precisely
the shape of the waveform irradiating the sample, and its reshaping due to
the further propagation and the detector response. There are three domi-
nant effects, which cause a substantial reshaping of the THz waveform: (1)
propagation through dispersive media (e.g. water vapour present in the atmo-
sphere [124] or the sample [55, 62]), (2) free-space propagation of a spatially
limited broadband beam [9], and consequently propagation through any fo-
cusing optics [121,129], and (3) the detection process itself [45,125]. In order
to obtain valid results, it is necessary to describe all these effects very care-
fully. This is generally a very peculiar task. The only way to simplify it
consists in a design of a suitable experimental setup.

In transmission experiments, all the mentioned effects are cancelled out
simply by transformation to the frequency domain (see Eq. (2.15) and the
discussion whilch follows). That’s why we focused on the possibilities of
application of the Fourier transformation in the optical pump – THz probe
experiments, too. We show, that when the contribution of nonequilibrium ef-
fects is small comparing to the strength of the THz probe field, it is possible to
develop an analogous formalism based on a two-dimensional Fourier trans-
formation, applied to both time delays involved in two-dimensional scans.
This approach takes into account all the mechanisms changing the shape of
the waveform during propagation in the sample, and allows to construct an
analytical formula for a direct calculation of nonequilibrium susceptibility
from the measured two-dimensional temporal scans. Within this approach,
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the instrumental functions (like the shape of the emitted waveform or the
detector response) are partially eliminated.

This part is structured as follows. In section 4.1, we define the times in-
volved in the experiment. We also discuss several possibilities, how to define
the relation between the generalized nonequilibrium susceptibility and the
nonequilibrium polarization. We transform this relation to the frequency do-
main in section 4.2. Next, section 4.3 describes the changes of the transmitted
THz-probe waveform when the sample is excited by the optical pulse. Then,
in section 4.4 we describe the whole propagation of the THz-probe waveform
from the emitter to the sensor with an inserted photoexcited sample. Finally
we discuss the results and propose the best experimental protocol in section
4.5.

4.1 Definitions of times and nonequilibrium

susceptibility

Up to now, we have introduced only two times: the time te of the excitation
pulse arrival and the time of the measurement (i.e. the time of the sampling
pulse arrival) t. However, in the experiment (Fig. 4.1), it is also possible to
control the arrival of the THz probe pulse. Till now, it is implicitly taken
into account in the form of the probe field E. For clarity, it is convenient
to introduce explicitly the probe-pulse arrival tp, and thus look upon the
electric field E as to be function of (t − tp). Here and later, the function E
thus describes only the shape of the THz pulse, not its delay with respect to
either pump or sampling pulse. As the probe-pulse profile is not a δ-function,

Figure 4.1: Relation of the time delays to the experiment. For example, in order to scan
the delays (t − tp) and (t − te) involved in Eq. (4.4) it is necessary to fix the time of the
measurement t and scan the times of probe and excitation pulse arrival tp and te.

Delay of the
sampling pulse

Delay of the
excitation pulse

Delay of the THz
probe pulse

Sample Sensor

THz pulse
tp

te

t
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its time of arrival to the sample can be defined more or less arbitrarily.
However, if the same position of the related delay line is held for a reference
measurement, the arbitrary phases in the Fourier space are cancelled out.

Using this notation, it is simple to demonstrate, that the problem is in-
dependent of the choice of the time origin, i.e. that the results are not
affected when the pump, probe and sampling pulses are simultaneously de-
layed. Within the introduced notation, Eq. (4.2) yields

ε0

∫
E(t′ − tp)∆χ1(t− t′, t− te) dt′ =

= ε0

∫
E(t′)∆χ1(t− tp − t′, t− te) dt′ = ∆P1(t− tp, t− te). (4.4)

The subscript 1 indicates that the related function is defined in variables
(t− tp) and (t− te). The explicit introduction of the time tp allows us to use
the time delays (relative times) rather then absolute times. Such approach
automatically reflects the symmetry of the susceptibility with respect to the
choice of the time origin. In addition, it has very straightforward relation to
the experiment (see Fig. 4.1). Notice, that the time delay (t− tp) is involved
in the equilibrium transmission spectroscopy. We might also choose the time
origin for example as the time of the pump pulse arrival (i.e. let te equal
0) and thus deal only with the times t and tp, which correspond to delays
(t − te) and (tp − te). This situation can be achieved in the experiment by
removing the delay line marked as te. However, in order to change the time
te, one has to move synchronously two delay lines controlling the times t and
tp.

Nevertheless, only two delays are independent:

tp − te = (t− te)− (t− tp). (4.5)

In Eq. (4.4) the pair of proper variables (t − tp) and (t − te) was chosen.
However, another pair, e.g. (t− tp) and (tp− te) can be used as well. Writing
the polarization in these variables (we mark it by the index 2) yields

∆P2(t− tp, tp− te) = ε0

∫
E(t′)∆χ1(t− tp− t′, (tp− te+ t′)+(t− tp− t′)) dt′.

(4.6)
For completeness we write also the third possibility where the pair (tp − te)
and (t− te) is involved:

∆P3(tp− te, t− te) = ε0

∫
E(t′)∆χ1((t− te)− (tp− te + t′), t− te) dt′. (4.7)
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The polarizations ∆P1, ∆P2 and ∆P3 have different pairs of delays as proper
variables, thus their mathematical form is different. However, they describe
the same physical process. Consequently, their values are identical for a given
set of times t, tp and te:

∆P1(t− tp, t− te) = ∆P2(t− tp, tp − te) = ∆P3(tp − te, t− te). (4.8)

Similarly, it is possible to introduce three representations of the susceptibility
according to the proper pair of delays using Eq. (4.5):

∆χ2(t− tp, tp − te) = ∆χ1(t− tp, (t− tp) + (tp − te)) (4.9)

∆χ3(tp − te, t− te) = ∆χ1((t− te)− (tp − te), t− te). (4.10)

The proper variables of each representation are summarized in Tab. 4.1.

Table 4.1: The proper variables of representations 1, 2 and 3.

First Second First Second
Representation delay delay frequency frequency

1 (t− tp) (t− te) ω ωe

2 (t− tp) (tp − te) ω ωp

3 (tp − te) (t− te) ωp ωe

4.2 Fourier transformation

In the preceding section we showed, that there are three possible represen-
tations of the susceptibility and polarization. The relation between the rep-
resentations is very simple in the time domain. However, we will need this
relation in the Fourier space.

Let us denote the frequencies conjugated to delays (t − tp), (t − te) and
(tp − te) as ω, ωe and ωp respectively (Tab. 4.1). We define the Fourier
transform G1 of an arbitrary function g1 in the delays (t− tp) and (t− te) as

G1(ω, ωe) =

∫∫
e−iω(t−tp)−iωe(t−te)g1(t− tp, t− te) d(t− tp) d(t− te). (4.11)

The definition for the remaining two pairs of delays is similar. Note, that
within this definition, the imaginary part of the permittivity and of the
refractive index is negative for media with losses. This convention thus differs
from that used in parts 2 and 3 of this work.

55



We have selected the proper variables of the function g1 as (t − tp) and
(t− te) and applied the Fourier transformation to these variables. However,
we can keep the representation 1 of the function g, and apply the Fourier
transformation also in a different pair of delays: using the identity (4.5) we
find

G1(ω, ωe) =
∫
g1(t− tp, t− te)e−iω(t−tp)−iωe(t−te)d(t− tp)d(t− te) =

=
∫
g1(t−tp, (t−tp)+(tp−te))e−iω(t−tp)−iωe((t−tp)+(tp−te))d(t−tp)d(tp−te) =

= G2(ω + ωe, ωe),
(4.12)

which is the desired relation between the representation 1 and 2 in the Fourier
space. Similarly, the relation between G1 and G3 can be derived. According
to the choice of the proper variables in the Fourier space, the results can be
summarized as follows:

G1(ω, ωe) = G2(ω + ωe, ωe) = G3(−ω, ω + ωe)
G1(ω − ωp, ωp) = G2(ω, ωp) = G3(ωp − ω, ω)

G1(−ωp, ωe + ωp) = G2(ωe, ωp + ωe) = G3(ωp, ωe).
(4.13)

This allows us to work in a single representation, and then to transform
important results into any representation using the relations above.

4.3 Influence of the sample

As it was pointed out in the introduction to this part, there is a number of
effects affecting the shape of the waveform which passes through the sample.
In order to describe them all, we start directly from Maxwell’s equations

rotE = −∂B

∂t
divD = 0

rotH =
∂D

∂t
(4.14)

divB = 0, (4.15)

where E and H is the electric and magnetic intensity and D and B is
the electric and magnetic induction, respectively. We assume the sample to
be homogenous, with an equilibrium relative permittivity ε(t) (in the time
domain) or the related complex refractive index N . The permeability is
assumed to be the vacuum one µ0, thus B = µ0H . In order to satisfy
the Maxwell’s div equations (Eq. (4.15)), we suppose the electromagnetic
transients to be plane waves, which propagate in the z-direction and which
are linearly polarized along the x-direction (see Fig. 4.2). Now, we add a
small nonequilibrium polarization ∆P parallel to the x-axis caused by the
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Figure 4.2: Orientation of the axes, electric and magnetic field.
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optical excitation pulse. We assume, that this polarization varies only along
the coordinate z. In this situation, the Maxwell’s rot equations (4.14) put
together yield an equation for the total electric field E:

∂2E

∂z2
=

1

c2
∂2(ε(t) ∗ E)

∂t2
+

1

ε0c2
∂2∆P

∂t2
. (4.16)

The asterisk denotes a convolution acting to the time variable t. We decom-
pose the electric field E to the value E0 present in the equilibrium and a
nonequilibrium (secondary) contribution ∆E:

E = E0 +∆E. (4.17)

At this point, we use the most important assumption of our theory: ∆E ¿
E0, i.e. the additional field due to the nonequilibrium susceptibility should be
very small comparing to the field present when the sample is in equilibrium.
This allows us to write a similar wave equation for ∆E

∂2∆E

∂z2
=

1

c2
∂2(ε ∗∆E)

∂t2
+

1

ε0c2
∂2∆P

∂t2
. (4.18)

Unlike Eq. (4.16), this equation is already linear, because the nonequilib-
rium polarization ∆P can be written within this approximation using the
equilibrium field E0 instead of the total electric intensity E = E0 +∆E:

∆P = ε0

∫
∆χ(t− t′, t− (te + z/vg)) exp(−αz)E0(t

′, z) dt′. (4.19)

Here, α is the extinction coefficient of the excitation pulse and vg is its (group)
velocity of propagation.

It is clear, that both the electric and magnetic field is additionally param-
eterized by the time of the excitation pulse arrival te. By selecting tp = 0,
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we can treat the times t and te as delays (t − tp) and −(tp − te) instead.
Eq. (4.18) is usually solved by Fourier transformation applied to the time
variable t. However, such attempt fails, as there remains an integral rela-
tion in Eq. (4.19). Instead, an application of the two-dimensional Fourier
transformation in the two delays (t − tp) and (tp − te) solves the problem
(see section 4.2 for the definition). Eq. (4.18) is transformed to an ordinary
linear differential equation of the second order with constant coefficients and
a nonvanishing right-hand side:

d2∆E

dz2
+
ω2

c2
N2(ω)∆E = −ω

2

c2
E0(ω−ωp, z)e

−αz+iωp/vg∆χ1(ω−ωp, ωp). (4.20)

Exactly, one should take into account all the internal reflections in the sam-
ple (section 4.3.3). However, it is often possible to proceed the temporal
windowing. We thus deal only with the direct pass beam, i.e. we cut the
pulses coming from internal reflections in the sample. This allows to treat
each face of the sample as an interface between two half-spaces (sections 4.3.1
and 4.3.2). This approximation can be well justified for thick samples, where
the temporal windowing is possible. Application of the temporal windowing
to the primary beam E0 allows to write its evolution as

E0(ω − ωp, z) = e0e
−i(ω−ωp)N(ω−ωp)z/c, (4.21)

where e0 = E0(ω − ωp, z = 0+) is the THz wave which has just been trans-
mitted trough the input interface (surrounding environment/sample) using
equilibrium Fresnel equations. Due to the exponential form of this expres-
sion, we can write the general solution of Eq. (4.20) as

∆E = γeikz + δe−ikz − Ae−iKz

N2 −K2/k2
0

, (4.22)

where γ and δ are constants which will be determined from the boundary
conditions,

k0 =
ω

c
, (4.23)

k =
ωN(ω)

c
= k0N, (4.24)

K =
(ω − ωp)N(ω − ωp)

c
+
ωp

vg

− iα, (4.25)

and A = e0∆χ1(ω − ωp, ωp). (4.26)

The nonequilibrium contribution ∆H to the magnetic intensity can be found
by Fourier transformation of the second equation in (4.14) and substitution
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for ∆E:

µ0ω∆H = i · d∆E
dz

= −kγeikz + kδe−ikz − AKe−iKz

N2 −K2/k2
0

. (4.27)

4.3.1 Input face of the sample

The first boundary condition is related to the coupling of the fields at the
interface. The tangential components of both the electric and magnetic in-
tensity should be continuous, thus

Ein + ER = ET and Hin +HR = HT. (4.28)

Indices in, R and T refer to the pulses incident, reflected and transmitted
through the interface (see Fig. 4.3). For clarity, we treat the condition for

Figure 4.3: Description of the sample out of equilibrium.
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the electric intensity in more detail. We decompose it to the equilibrium and
nonequilibrium contribution, i.e.

Ein,0 + ER,0 +∆ER = ET,0 +∆ET. (4.29)

In equilibrium, the continuity condition is satisfied, thus this relation is re-
duced to ∆ER = ∆ET. Similarly, the condition for continuity of the mag-
netic intensity yields ∆HR = ∆HT. As the surrounding environment is in
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equilibrium, the magnetic and electric components of the reflected field are
connected via expression

∆HR = −N1

µ0c
∆ER, (4.30)

thus the first boundary condition is simplified to

N1

µ0c
∆ET +∆HT = 0, (4.31)

where ∆ET = ∆E(z = 0) and ∆HT = ∆H(z = 0). As ∆ET is related to
the wave propagating in the forward direction only, ∆E(z) should vanish
as z → ∞ — this is the second boundary condition. It immediately yields
γ = 0, as the imaginary part of the refractive index N is negative. The
condition (4.31) then gives δ — its substitution back to Eq. (4.22) yields

∆E = −Ae−ikz

[
e−i(K−k)z − 1

N2 −K2/k2
0

+
1

(N +N1)(N +K/k0)

]
(4.32)

µ0ω∆H = −Ae−ikz

[
K

e−i(K−k)z − 1

N2 −K2/k2
0

+
k0N1

(N +N1)(N +K/k0)

]
(4.33)

It is interesting to study the electric field in the phase-matched case for
nondispersive lossless samples. The phase-matching condition can be defined
as K → k (i.e. the pump pulse propagates with the same velocity as does
the probe pulse, see Eq. (4.25)). Thus

∆E(z)

E0(ω − ωp, 0+)
= e−ikz

[
− 1

2N(N +N1)
− iω · z

2Nc

]
·∆χ(ω − ωp, ωp). (4.34)

We can identify the first term with the nonequilibrium contribution to the
Fresnel transmission coefficient. The second term describes the secondary
radiation generated during the propagation in the medium. This term was
calculated recently [72] within the phase-matching limit — in the time do-
main, the electric field of the secondary radiation is proportional to the time
derivative of the nonequilibrium polarization ∆P .

In sufficiently thick and optically transparent samples, the second term
is clearly the leading one. However, the importance of the first term grows
in the opposite case, or when the deviation from the phase-matching condi-
tion becomes significant. This term thus dominates e.g. for semiconductors
excited above the band gap.
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4.3.2 Output face of the sample

The second interface can be treated similarly as the first one. The continuity
of tangential components of both the electric and magnetic intensity leads
to a similar condition for nonequilibrium contributions, i.e.

∆E1 +∆Er = ∆Et and ∆H1 +∆Hr = ∆Ht. (4.35)

Indices 1, r and t denote the pulses incident, reflected and transmitted
through the interface (see Fig. 4.3). We neglect the reflection of the op-
tical pump beam, as for the majority of cases of interest its intensity is very
small. We also neglect the secondary radiation generated by the reflected
probe pulse. This last approximation is expected to work well, as (1) the
phase-matching condition can never be achieved as the optical pulse and the
reflected THz wave are counter-propagating, and (2) the backward propagat-
ing THz pulse comes to the detector delayed by an additional time 2NL/c.
In this situation, the incident fields are given by Eq. (4.32) and (4.33) with
z = L and the reflected field corresponds to the term γe+ikz in Eq. (4.22),
which does not vanish now. The transmitted pulse propagates in an equilib-
rium environment, thus its electric and magnetic intensity are related by

∆Ht = +
N2

µ0c
∆Et. (4.36)

Elimination of γ yields the formula for the nonequilibrium contribution to
the electric intensity transmitted through the sample and both its surfaces:

∆Et =
Ae−ikL

N +N2

[
1− e−i(K−k)L

N −K/k0

− 2N

(N+N1)(N+K/k0)
+

1

N +K/k0

]
(4.37)

The first term is the bulk contribution which strongly depends on the phase-
matching condition. The second term corresponds to the first term in the
expression Eq. (4.32) having passed through the output interface without
photo-exciting perturbation, it is thus clearly generated at the first interface.
Finally, the third term has no equivalent in Eq. (4.32) and it can be identified
with a contribution coming from the second interface.

It is convenient to summarize Eq. (4.37) using the product

∆Et(ω, ωp) = E0(ω) ·Q(ω, ωp) ·∆χ1(ω − ωp, ωp), (4.38)

where the filter function Q is defined as

Q(ω, ωp)=
e−ikL

N +N2

[
1−e−i(K−k)L

N−K/k0

− 2N

(N+N1)(N+K/k0)
+

1

N+K/k0

]
. (4.39)
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Obviously, it depends only on equilibrium properties of the sample and sur-
rounding environments.

In Fig. 4.4 we plot the generated amplitude of the wave ∆Et as a function
of the length of the sample for different absorption coefficients α and pulse
walk-off

∆w =
N

c
− 1

vg

(4.40)

which describes how closely the phase-matching condition is satisfied. As the
magnitude of the nonlinear susceptibility can be expected to be proportional
to the absorbed power, Fig. 4.4 in fact shows the product α|Q|.

These figures correspond to experimental situations that can be encoun-
tered in the study of solvation dynamics: for a given solvent (characterized
by ∆w) one looks for a suitable length of the cuvette and concentration of
the chromophore, which linearly scales α. In this case, typically N1 ≈ N ,
thus the second and third term in Eq. (4.37) practically compensate each
other and the bulk (phase-matched) contribution becomes the leading one
— the amplitude practically vanishes for L = 0 (see Fig. 4.4).

On the contrary, in semiconductors only the first term of Eq. (4.37) con-
tributes to the signal, as the pump beam is usually absorbed within few
microns near the input face. This is illustrated in Fig. 4.5, where the signal
amplitude α|Q| is plotted versus the absorption coefficient. The situation
encountered in solutions corresponds to the initial increase of the signal am-
plitude where the bulk term is dominant and the surface term compensate
each other. The semiconductors or other highly absorbing materials are rep-
resented by the second increase of the signal amplitude which is independent
of the sample thickness and where the terms coming from the first surface
becomes dominant while the sum of the remaining terms vanish.

4.3.3 Thin sample

Up to now, we have taken into account only the direct primary pulse, and
the forward propagating secondary radiation. However, both can reflect on
each interface. Thus also the backward propagating wave irradiating the first
interface (dashed arrow in Fig. 4.3) is taken into consideration. This situ-
ation is important for thin samples, where the pulses coming from different
reflections cannot be resolved in time.

We start the description using Eq. (4.20). In this expression, we only
need to modify the expression for the primary field E0, in order to account
for multiple internal reflections:

E0(ω − ωp, z) = e0

(
F e−ik̃z +Be+ik̃z

)
, (4.41)
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Figure 4.4: Amplitude of the secondary wave ∆Et represented by the quantity α|Q| (see
text) as a function of the sample length L for different optical absorption coefficients α
and different walk-offs ∆w. Parameters: ω/ωp = 2, N = 1.5 and N1 = N2 = 2. The
curves which are shown were calculated at 1 THz, but as Q scales practically linearly with
frequency under these conditions, the same curves are obtained for other frequencies.
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Figure 4.5: (a) Amplitude of the secondary wave ∆Et at 1 THz (represented by the
quantity α|Q|) versus optical absorption coefficient α. (b) Decomposition into contribu-
tions given by the 3 terms of Eq. (4.37) and discussed in the text. Parameters: ω/ωp = 2,
N = 3.5, N1 = N2 = 1 and ∆w = 0.2 ps/mm.
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where k̃ = (ω − ωp)N(ω − ωp)/c (4.42)

F =
∞∑

j=0

(r1r2)
je−2ijk̃L, (4.43)

B = r2e
−2ik̃L

∞∑

j=0

(r1r2)
je−2ijk̃L (4.44)

and rm =
N(ω − ωp)−Nm(ω − ωp)

N(ω − ωp) +Nm(ω − ωp)
, m = 1, 2. (4.45)
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Consequently, the general solution of Eq. (4.20) can be written as

∆E = γeikz + δe−ikz − k2
0AF e−iKz

k2 −K2
− k2

0ABe−iKBz

k2 −K2
B

, (4.46)

where parameters γ and δ are determined by boundary conditions, K is given
by Eq. (4.25) and

KB = −(ω − ωp)N(ω − ωp)

c
+
ωp

vg

− iα. (4.47)

Both the forward and backward propagating waves are incorporated in
Eq. (4.46) — their separation is not necessary. This allows to write the
conditions for the continuity of the electric and magnetic field simply as

∆E(z = 0) = ∆ER (4.48)

µ0ω∆H(z = 0) = µ0ω∆HR = −k0N1∆ER (4.49)

∆E(z = L) = ∆Et (4.50)

µ0ω∆H(z = L) = µ0ω∆Ht = +k0N2∆Et. (4.51)

Elimination of γ and δ yields the desired expression for the filter function
Q∞:

Q∞(ω, ωp) =

=
F e−ikL

(N2 +N)
[
1− r̃1r̃2e−2ikL

]
[(

1− 2N

N1+N

)
1− e−i(K+k)L

N +K/k0

+
1− e−i(K−k)L

N −K/k0

]
+

+
Be−ikL

(N2+N)
[
1− r̃1r̃2e−2ikL

]
[(

1− 2N

N1+N

)
1− e−i(KB+k)L

N +KB/k0

+
1− e−i(KB−k)L

N −KB/k0

]

(4.52)

The reflection coefficients r̃1 and r̃2 are defined by Eq. (4.45) with the fre-
quency ω instead of ω − ωp. The internal reflections of the primary waves
are encoded into the coefficients F and B. The internal reflections of the
generated secondary pulses are expressed by the term in the square bracket
via the identity

1

1− r̃1r̃2e−2ikL
=

∞∑

m=0

(r̃1r̃2)
me−2imkL. (4.53)

The exponential term containing the sum K + k or Kr + k can never
become phase-matched for the forward or backward wave respectively: this
exponential describes thus only a higher order term from the point of view
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of the temporal windowing. One can simply check, that the first order terms
lead to Eq. (4.39). The lowest-order terms coming from the backward prop-
agation read

r2e
−ikL−2i(ω−ωp)N(ω−ωp)L/c

N2 +N

[(
1− 2N

N1+N

)
1

N+KB/k0

+
1−e−i(KB−k)L

N−KB/k0

]
(4.54)

In principle, these terms are delayed in time with respect to those of Eq. (4.39)
as the propagator is roughly equal to −3ikL. This justifies for the majority
of cases the omission of the reflected primary wave. The second term in the
square bracket in Eq. (4.54) can become resonant only in the hypothetical
case when the phase-matching condition (∆w = 0) is satisfied, and the pri-
mary field has a static component (ω = ωp). On the other hand, if we are far
from the phase-matching condition, the generated signal owing to this term
will be small. At the same time the non-vanishing positive argument of the
exponential term exp(−i(KB − k)L) will decrease the effective time delay of
this contribution. The interpretation of this contribution is the following:
out of the phase matching the back-propagating primary wave generates in
the bulk a small part of the secondary wave with an opposite propagation
direction (i.e. this secondary wave propagates directly forward after the gen-
eration). This secondary wave then comes into the detector at intermediate
times (with delay between NL/c and 3NL/c), thus the temporal window-
ing procedure cannot be strictly defined. Consequently, a small systematic
error is introduced into the treated data if the expression (4.39) and the
time-windowing are applied in this case.

4.4 Propagation of the terahertz beam

In the preceding section, we derived the relation between the incoming pulse
E0 and the waveform ∆Et transmitted through the sample. However, the
emitted pulse EE undergoes a substantial reshaping before it reaches the
sample, and also the detected pulse differs from the shape of the transmitted
pulse ∆Et at least due to the detector response (follow Fig. 4.6). Both these
effects are taken into account in this section.

First, the generated field EE reshapes to the field E0 just after the input
face of the sample. The effects of the free space propagation of spatially
limited beams, focusing optics, propagation through dispersive media and
other can be accounted for by a response function P1. The field E0 can be
thus described by

E0(t− tp) = EE(t− tp) ∗
t
P1(t), (4.55)
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Figure 4.6: Block scheme of the optical pump – THz probe experiment: notation of THz
waveforms, times and instrumental functions.
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where the asterisk (∗) denotes the convolution operation which acts on the
variable written beyond this symbol. Second, we have shown in section 4.3,
that the influence of the sample is given by Eq. (4.37), i.e.

∆Et(ω, ωp) = Q(ω, ωp)∆χ1(ω − ωp, ωp)E0(ω). (4.56)

During the propagation between the sample and the sensor, the waveform
∆Et exhibits also a reshaping. The effects are analogous to those before
the sample, and we describe them by a response function P2. Finally, the
response of the sensor D is at the origin of the difference between the wave-
form incident on the sensor and the measured one. The measured waveform
can be thus described as

∆ED(t− tp, tp − te) = ∆Et(t− tp, tp − te) ∗
t
P2(t) ∗

t
D(t). (4.57)

Substitution of Eq. (4.55) and (4.56) into Eq. (4.57) and application of the
two-dimensional Fourier transformation leads to the desired result in vari-
ables ω and ωp. With the aid of Eq. (4.13), it is straightforward to write the
results for any representation:

∆E1
D(ω, ωe) = E0(ω)Q(ω + ωe, ωe)∆χ1(ω, ωe)P2(ω + ωe)D(ω + ωe) (4.58)

∆E2
D(ω, ωp) = E0(ω − ωp)Q(ω, ωp)∆χ1(ω − ωp, ωp)P2(ω)D(ω) (4.59)

∆E3
D(ωp, ωe) = E0(−ωp)Q(ωe, ωp + ωe)∆χ1(−ωp, ωe + ωp)D(ωe) (4.60)

where E0(Ω) = EE(Ω)P1(Ω). In order to follow the idea of the transmission
spectroscopy (see Eq. (2.15) and the related discussion), we should define
the reference waveform. In most situations, the equilibrium properties of the
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sample are well known to serve as a reference. Assuming the equilibrium
transmission of the sample to be T (ω) and denoting the detected reference
waveform as Eref

D (ω), we may write

∆E1
D(ω, ωe)

Eref
D (ω)

=
E0(ω)Q(ω + ωe, ωe)∆χ1(ω, ωe)P2(ω + ωe)D(ω + ωe)

E0(ω)T (ω)P2(ω)D(ω)
=

= ∆χ1(ω, ωe) ·
Q(ω + ωe, ωe)

T (ω)
· D(ω + ωe)

D(ω) · P2(ω + ωe)

P2(ω)
(4.61)

and

∆E2
D(ω, ωp)

Eref
D (ω)

=
E0(ω − ωp)Q(ω, ωp)∆χ1(ω − ωp, ωp)P2(ω)D(ω)

E0(ω)T (ω)P2(ω)D(ω)
=

=
E0(ω − ωp)

E0(ω)
· Q(ω, ωp)

T (ω)
·∆χ1(ω − ωp, ωp). (4.62)

From both expressions, it is possible to calculate directly the nonequilibrium
contribution ∆χ to the susceptibility.

Now, the importance of the representation, in which we perform the two-
dimensional scan of ∆ED, becomes clear. In the first case, it is not necessary
to know the field E0 which is at the input face of the sample; on the other
hand, in the second case, the propagation behind the sample and the detec-
tor response cancels out while the field E0 is required for calculations. The
proposed reference becomes meaningless for the ∆ED(ωp, ωe), as the trans-
mission of the reference sample cannot be defined using either the frequency
ωp or ωe.

4.5 Discussion

The choice of the time delays involved in the experiment is not principally
restricted. However, as we wish to perform a two-dimensional Fourier trans-
formation, it is very convenient to scan directly the desired pair of delays,
in order to prepare a good situation for the application of the fast Fourier
transform algorithm (it is applied to rectangular areas marked in Fig. 4.7a
and b). Thus two different suitable experimental protocol are related to the
expressions (4.61) and (4.62). We discuss each protocol separately, and we
omit the last representation (ωp, ωe) owing to the missing reference.

4.5.1 Representation 1 (frequencies ω and ωe)

In this experiment, the delay line scanning the sampling pulse arrival (t) is
kept fixed and the two remaining delay lines (te, tp) scan the useful part
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of the waveforms (see Fig. 4.7a). The nonequilibrium susceptibility can be
directly calculated from Eq. (4.61):

∆χ(ω, ωe) =
T (ω)

Q(ω + ωe, ωe)
· ∆E

1
D(ω, ωe)

Eref
D

· P2(ω)D(ω)
P2(ω + ωe)D(ωe + ω)

. (4.63)

The spectrum of the incident pulse E0 is cancelled out, however it still limits
the frequency range where the susceptibility can be extracted (Fig. 4.7c). The
reference transmission function T can be experimentally determined. The

Figure 4.7: Upper part: Two-dimensional time-domain scans to be performed. The
scan in the delay (t − tp) is limited due to the time windowing procedure, but the scan
in the second delay is practically unlimited. (a) Representation 1, (b) representation 2.
Lower part: Accessible ranges in the corresponding two-dimensional Fourier spaces. Gray
shadowing represents areas where ∆χ can be obtained. Delimiting lines are related to
the temporal windowing (1), spectrum of the incident pulse (2), sensor (3), sample in
equilibrium state (4), sampling rates in (t− tp), (t− te) and (tp− te) (5), (6) and (7), scan
lengths in (t − te) and (tp − te) (8) and (9), filter function Q (10), diffraction (11) and
pump pulse length (12).
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theory of the response of electrooptic detectors is well known (section 3.5.2
and [45,125]); the response function D can be also determined. However, the
spatiotemporal transformations included in P2 are generally very difficult
to describe. It is thus necessary to follow the protocol for the emission
experiment (part 3) and exclude any focusing optics. We are left only with
the near-field far-field transformation, which can be described as

P2(ω)

P2(ω + ωe)
∝ iω

i(ω + ωe)
e−iωe(N2d−D)/c, (4.64)

where d is the length of the environment surrounding the sample (e.g. cu-
vette) and D is the distance between the cuvette and sensor. The large
phase factor corresponds to the the time shift of the resulting susceptibility
by (N2d+D)/c in the second variable (t− te). This follows from the defini-
tion of the times: t is the time of the measurement and te denotes the time
when the pump pulse arrives into the sample. It is thus possible to omit this
factor provided that the time origin of (t − te) is defined in the experiment
as the delay when the first signal related to the optical excitation has been
detected.

The main advantages of this protocol are the complete elimination of the
shape of the incident pulse E0 and the fact, that the sensor needs to be prop-
erly characterized only once. The major disadvantage is the measurement in
the far field — as the THz beam is not focused to the sensor, the signal to
noise ratio is significantly lower. In order to improve the signal, one needs
to use focusing optics. However, it would be necessary to calculate appro-
priate response function P2: this is a complicated problem even in simple
cases [121].

4.5.2 Representation 2 (frequencies ω and ωp)

The scheme described by Eq. (4.62) requires the delay line controlling the
probe-pulse arrival (tp) to be held fixed, and the other two lines (t, te) to
scan the waveforms (Fig. 4.7b). Unlike in the preceding case, it is necessary
to determine the waveform E0 incident on the sample, On the other hand,
the propagation function P2 and the response of the detector are eliminated
(again, the detector response reduces the useful part of spectra, see Fig. 4.7d).
In order to determine E0, it is necessary to replace the sample by an auxiliary
detector, and to measure the field EM in the place of the sample. These fields
are related by

EM(ω) = D̃(ω)E0(ω), (4.65)
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where D̃ is the response of the auxiliary detector. Eq. (4.62) thus yields

∆χ(ω, ωp) =
T (ω)

Q(ω, ωp)
· ED(ω, ωp)

Eref
D (ω)

· EM(ω)D̃(ω − ωp)

EM(ω − ωp)D̃(ω)
. (4.66)

Similarly as in Eq. (4.63), there should appear a phase factor

exp (−iωp(N1d+∆D)/c) (4.67)

due to the finite thickness d of the input window of the cuvette and due to the
possible distance ∆D between the input face of the auxiliary detector and the
input face of the sample. If the experimental setup provides a possibility to
minimize the uncertainty in ∆D, it is possible to calculate this phase factor.

If the experimental setup is sufficiently stable in time, it is possible to
determine the complex spectrum of the incident waveform E0 only once for
a whole set of nonequilibrium measurements. However, for this purpose, it
is still necessary to evaluate the response of the detector D̃ too.

4.5.3 Comparative measurements at different condi-
tions

There is another special possibility of the choice of the reference. It can be
sometimes interesting to prepare the sample to be studied at different condi-
tions, e.g. at different temperatures or to use different excitation wavelengths
or excitation intensities. Concerning the solvation dynamics, it may be in-
teresting to excite the chromophore to different states. In semiconductors,
excitation to different levels above the band gap may be interesting. Varia-
tions of the intensity may be used to quantify higher order nonlinearities.

In this case, it is possible to extract the ratios of susceptibilities without

the knowledge of any of the instrumental function (P1, P2 and D), therefore
it can be determined more precisely. This scheme allows to use any of the
representations, resulting in

∆αE1
D(ω, ωe)

∆βE1
D(ω, ωe)

=
∆χα

1 (ω, ωe)

∆χβ
1 (ω, ωe)

, (4.68)

∆αE2
D(ω, ωp)

∆βE2
D(ω, ωp)

=
∆χα

1 (ω − ωp, ωp)

∆χβ
1 (ω − ωp, ωp)

, (4.69)

∆αE3
D(ωp, ωe)

∆βE3
D(ωp, ωe)

=
∆χα

1 (−ωp, ωe + ωp)

∆χβ
1 (−ωp, ωe + ωp)

, (4.70)

where indices α and β denote the particular conditions (e.g. temperature, ex-
citation wavelength or intensity). However, if the external parameter changes
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also the equilibrium properties of the sample (this is for example the case of
the temperature), it is necessary to include the corresponding filter functions
Qα and Qβ to these formulae.

Notice, that this approach is also limited only to the areas, where the
sample is sufficiently transparent for the THz radiation. It also becomes
clear, why the two-dimensional Fourier transform of the waveform measured
with the sample in equilibrium cannot be used as a reference for the measure-
ments given by (4.58–4.60). The two-dimensional Fourier transformation of
the equilibrium susceptibility χ(t) leads to χ(ω)δ(ωe) or χ(ω)δ(ωp), i.e. the
sample formally appears to be ”opaque”, when the second variable (i.e. ωe

or ωp) is nonzero.

4.5.4 Conclusion

We have analytically solved the problem of the propagation of THz elec-
tromagnetic transients in photoexcited media up to the first order. We have
shown, that the application of two-dimensional Fourier transformation yields
an explicit formula for the spectrum of generalized susceptibility describing
the response of the medium after the optical excitation. In our model, all
the important effects including refraction on the surfaces of the sample, sec-
ondary radiation generated in the bulk, dispersion, absorption of both the
THz and optical beam and deviation from the phase-matching condition have
been taken into account.

We have proposed two experimental schemes and discussed their advan-
tages and drawbacks. One of the instrumental functions P1 or P2 correspond-
ing to the propagation before or after the sample is cancelled out from the
expression for calculation of the susceptibility. The equilibrium properties
of the sample, its surrounding environment and the response of the detec-
tor need to be preliminarily determined. The model allows to examine the
spectral range, where the nonequilibrium susceptibility can be determined
from the THz experiment. In addition, the relative variation of the non-
equilibrium susceptibility as a function of another external parameter can
be determined without knowledge of any instrumental function. In this re-
spect, our approach appears to be more convenient for weak response than
recent time-domain treatments, where all the instrumental functions P1, P2,
D and the emitted waveform E0 have to be determined. Moreover, the only
reported method — finite difference time-domain method — does not allow
a direct evaluation of ∆χ.
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Part 5

Summary

In this part, we summarize the contribution of this work. Following original
results were achieved:

• We pointed out and discussed the limitations of the reflection spec-
troscopy. These are due to an extreme sensitivity to any displacement
of the sample and to any instability of the whole apparatus. Even sub-
micron displacements may prohibit correct interpretation of the mea-
sured data.

• We successfully built a setup for the THz emission spectroscopy. In
this setup, we established the relation of the transient current in the
sample and the measured THz waveform. This enabled us to study
ultrafast carrier dynamics in low-temperature grown GaAs. Four sam-
ples grown at different temperatures were investigated: their carrier
trapping times and mobilities were determined from the shape of the
emitted waveform. These results were interpreted within a simple ge-
ometrical model. We also gave a brief overview of other methods used
for investigation of ultrafast dynamics in semiconductors.

• We performed a thorough theoretical study of the relation between
a generalized susceptibility involved in fast nonequilibrium dynamics
of photoexcited systems (e.g. solvation dynamics photoexcited carrier
dynamics) and between the quantities accessible via optical pump –
THz probe spectroscopy. For weak nonequilibrium response we derived
a method which allows to extract directly the generalized susceptibility
from two-dimensional scans in optical pump – THz probe experiments.
This is the first complete analytical study of the methodology of optical
pump – THz probe experiment.
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K. Köhler. Coherent submillimetre-wave emission from Bloch oscilla-
tions in a semiconductor superlattice. Phys. Rev. Lett. 70 (21), 3319–
3322 (1993).

[6] C. Fattinger and D. Grischkowsky. Point source terahertz optics. Appl.

Phys. Lett. 53 (16), 1480–1482 (1988).

[7] P. U. Jepsen and S. R. Keiding. Radiation patterns from lens-coupled
terahertz antennas. Opt. Lett. 20 (8), 807–809 (1995).

[8] P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding. Generation and
detection of terahertz pulses from biased semiconductor antennas. J.

Opt. Soc. Am. B 13 (11), 2424–2436 (1996).

[9] R. W. Ziolkowski and J. B. Judkins. Propagation characteristics of
ultrawide-bandwidth pulsed Gaussian beams. J. Opt. Soc. Am. A

9 (11), 2021–2030 (1992).

74



[10] J. T. Darrow, X.-C. Zhang, and D. H. Auston. Power scaling of large-
aperture photoconducting antennas. Appl. Phys. Lett. 58 (1), 25–27
(1991).

[11] J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse. Saturation
properties of large-aperture photoconducting antennas. IEEE J. of

Quantum Electron. 28 (6), 1607–1616 (1992).

[12] P. K. Benicewicz and A. J. Taylor. Scaling of terahertz radiation from
large-aperture biased InP photoconductors. Opt. Lett. 18 (16), 1332–
1334 (1993).
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troscopy of proton-bombarded InP. J. Opt. Soc. Am. B 18 (9), 1369–
1371 (2001).

[80] A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox.
Femtosecond charge transport in polar semiconductors. Phys. Rev.

Lett. 82 (25), 5140–5143 (1999).

[81] J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and
K. Unterrainer. Terahertz emission from GaAs and InAs in a magnetic
field. Phys. Rev. B 64 (8), 5202–5208 (2001).
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