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Terahertz conductivity and coupling between geometrical and plasmonic
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Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, Czech Republic

Tomáš Ostatnický
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic

(Received 12 July 2017; revised manuscript received 12 December 2018; published 3 January 2019)

Terahertz conductivity spectra of charges moving ballistically in one-, two-, and three-dimensional infinitely
deep rectangular potential wells were investigated theoretically using semiclassical and quantum Kubo formulas.
The conductivity spectrum of a degenerate electron gas in these nanostructures exhibits a series of geometrical
resonances. These further couple with plasmon resonances occurring in isolated structures: qualitatively different
interaction regimes are found in one-, two-, and three-dimensional nanostructures. In contrast, the response of a
nondegenerate electron gas smears into a single broad band due to the excessive spectral broadening caused by
the wide distribution of charge velocities.
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I. INTRODUCTION

For decades, semiconductor and metallic nanostructures
have constituted an important field for understanding elec-
tronic properties of materials under well-defined conditions.
Most works concentrate on the investigation of complex
quantum phenomena which are inherently linked with intense
magnetic fields; dc conduction is then usually measured to
assess the role of these effects [1,2]. The high-frequency con-
ductivity has been intensively investigated, namely, in metallic
nanoparticles, where a strong broad plasma resonance typi-
cally dominates over the influence of the electron confinement
[3,4]. However, less attention has been devoted to the response
of semiconductor nanostructures where confinement effects
and plasma oscillations may be equally important [5]. On
the one hand, there are a number of experimental works
reporting that the conductivity spectra of a large variety of
semiconductor nanostructures universally contain just a single
very broad resonance, which can be—at least qualitatively—
reproduced using the phenomenological Drude-Smith model
[6–11]. The underlying charge transport is essentially ballis-
tic, because the mean free path between bulk scattering events
is typically longer than the size of these nanostructures. On
the other hand, theoretical investigations of ballistic motion in
a variety of systems including nanodiscs [12,13] and chaotic
billiards [14] demonstrate conductivity spectra with distinct
spectral features. Sharp spectral features were experimentally
observed, for example, in patterned two-dimensional elec-
tron gases (2DEGs) [15,16]. In order to synthesize these
strikingly different results, a general overview of involved
processes and properties is required. The ability to interpret
the high-frequency response is even more important since
the conductivity spectra contain information on charge trans-
port mechanisms and related parameters in nanomaterials.

*Corresponding author: nemec@fzu.cz

A thorough understanding of charge motion and response
in nanostructures may stimulate a development of ultrafast
nanocomponents with new functionalities. The resonant be-
havior described in this paper may inspire, e.g., a design of
narrow-band antennae.

While theoretical approaches for determining the optical
response of semiconductor nanostructures are well established
at various levels of accuracy and complexity, calculations
of the response in the terahertz (THz) range still remain
challenging. The existing semiclassical approach requires the
use of time-consuming Monte Carlo calculations [17], and it
was only recently that a simple analytical formula capturing
the main aspects of the response of a confined nondegenerate
electron gas was reported [18]. Quantum-mechanical calcula-
tions using directly the Kubo-Greenwood formula within the
common relaxation-time approximation (e.g., Ref. [19]) are
conceptually straightforward. However, this simple approach
fails since it incorrectly yields a nonzero dc conductivity in
isolated nanostructures (while it is obvious that no steady cur-
rent can flow across a finite isolated object), which inevitably
infracts also the rest of the THz conductivity spectrum [20].
The main reason for this behavior is broken translational
symmetry: in the common relaxation-time approximation, the
charge density displaced by the probing electric field is in-
stantaneously returned back to the equilibrium (homogeneous
distribution) upon scattering, while the corresponding current
is completely omitted (this is not an issue in translationally
invariant systems where charge neutrality is preserved at
any time). Evaluation of this restoring thermalization current
(which is of a diffusion nature in reality) is then required to
obtain physically correct results [20]. The influence of this
restoring current is particularly important for lower frequen-
cies and larger nanostructures considered here.

In this paper, we focus on the simplest possible scenario—
ballistic (or close to ballistic) motion of noninteracting
charges in a multidimensional infinite rectangular potential
well. The simplicity of the mathematical solution allows
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FIG. 1. (a) Schematics of the charge motion in the studied rectan-
gular potential wells for Fermi-Dirac (F-D) and Maxwell-Boltzmann
(M-B) statistics. Note that the presence/absence of the enclosement
in the y direction of the 2D structure does not affect its response
in the x direction since the x-velocity component is preserved upon
elastic specular reflections at these boundaries. (b), (c) Geometries
used for the derivation of mobility of charges bouncing between two
straight parallel planes in two and three dimensions.

examination of the conditions under which distinct spectral
features may be observed. Although sharp spectral lines are
usually associated with well-defined quantum transitions in
small nanoparticles, we show theoretically that pronounced
spectral features can emerge in THz conductivity spectra
even for larger particles for which the semiclassical limit
applies (Sec. II). In order to assess the limits of validity of
the semiclassical approach, we also investigate the response
using quantum mechanics (Sec. III). The principal result of
this paper is then the demonstration of uncommon interac-
tion between geometrical resonances in degenerate electron
gas with plasma oscillations (Sec. IV). We conclude that in
one- and two-dimensional structures this coupling is qual-
itatively different from that encountered for nondegenerate
plasmas.

II. SEMICLASSICAL CALCULATIONS

Our theoretical analysis is based on the semiclassical Kubo
formula [21] for the mobility tensor:

μjk (f ) = e0N
∫ ∞

0
〈vj (0)vk (t )〉e2πif tdt, (1)

where e0 is the elementary charge, vk (t ) are the components
of charge thermal velocity evolving according to Newton’s
equations of motion, and f is the frequency conjugate to
the time t . The averaging 〈. . .〉 takes place over trajectories
with initial states weighted by −∂F (E)/∂E, where F(E)
is the distribution function. The normalization factor N =
1/ ∫ G(E)F (E)dE [g(E) is the density of states] simpli-
fies to 1/(kBT ) for Maxwell-Boltzmann distribution, and to
D/(2EF) for Fermi-Dirac distribution with Fermi energy EF

in a D-dimensional space when kBT � EF. We consider

FIG. 2. Illustration of the derivation of the autocorrelation func-
tion for 1D bouncing between straight parallel planes. (a) For a
single charge, the product vx (0)vx (t ) takes the form of a square wave
with phase shift determined by the initial charge position. (b) The
averaging in the autocorrelation function takes place over all possible
initial positions, which are represented by different phase shifts
(a few of them are illustrated in the graph). (c) After integration over
all possible initial phases of motion, we obtain the tringle wave shape
of the autocorrelation function.

long bulk scattering times (e.g., electron mobility of 2.4 ×
105 cm2 V−1 s−1 corresponding to bulk scattering time of
10 ps was reported in high-quality GaAs in Ref. [22]), as
they favor the role of interaction of carriers with nanos-
tructure boundaries over bulk scattering. We assume that
the reflection of carriers upon reaching the nanostructure
boundary is elastic and specular, thus neglecting the possible
influence of surface roughness [12]. In all illustrations, we
assume that the carriers have an effective mass m = 0.07me as
in GaAs.

We start with the simplest one-dimensional (1D) model in
which carriers bounce between two straight parallel planes at
normal incidence [Fig. 1(a)]. This prototype enables under-
standing of the response of more complex systems; further-
more, it directly describes the longitudinal response of charges
in quantum wires. In the limit T → 0 K, −∂f/∂E reduces to
the Dirac delta function, therefore only charges initially mov-
ing with Fermi velocity vF contribute to the statistical average
〈. . .〉 in Eq. (1). This means that the carrier velocity vx peri-
odically switches between +vF and −vF as the carrier reflects
from the planes; the period of this motion is the round-trip
time tr = 2l/vF, where l is the distance between the planes.
The product vx (0)vx (t ) which appears in the autocorrelation
function is thus a square wave oscillating between ±v2

F with
period tr [Fig. 2(a)]. Depending on the initial positions in the
phase space, the phase shift of this square wave may take any
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FIG. 3. (a) Velocity autocorrelation functions in the time do-
main of charges bouncing in a multidimensional infinite rectangular
well (l = 300 nm). The carriers were described either with Fermi-
Dirac statistics (F-D) (vF = 1000 nm/ps, EF = 0.20 eV, T = 0 K)
or Maxwell-Boltzmann statistics (M-B) (to permit the comparison
at the same frequency scale, the mean square velocity is set to be
equal to v2

F, i.e., formally T = 4620 K; to transfer the results towards
realistic temperatures, the frequency would need to be scaled with√

T ). (b) Corresponding mobility spectra calculated using the Kubo
formula. For the purpose of plotting, we phenomenologically intro-
duced a bulk scattering time τs = 1 ns [the velocity autocorrelation
function is multiplied by exp(−t/τs )]: this replaces the δ functions
by narrow Lorentzians in the case of 1D Fermi-Dirac statistics and
prevents divergences in its 2D variant. This unrealistically long
scattering time permits a clear distinction of the intrinsic damping
in the 2D and 3D system (picosecond time scale) from the artificial
extrinsic losses (1-ns decay time).

value just from the interval 〈0, π ), since the value at zero
time v2

x (0) is always positive [Fig. 2(b)]. Averaging over all
possible initial positions then directly yields a triangle wave
�(t/tr ) [Figs. 2(c) and 3(a)], where the symbol �(x) denotes
a triangle function oscillating between +1 and −1 with period
1. Substitution of this result into Kubo formula (1) then yields
(without bulk scattering)

Reμxx (f ) = e0

m
× 2

π2

∞∑
k=−∞

δ[f − (2k + 1)fr]

(2k + 1)2 , (2)

Imμxx (f ) = −e0

m
× 2

π3

∞∑
k=−∞

1

f − (2k + 1)fr
× 1

(2k + 1)2 .

(3)

The real part of mobility consists of a sum of Dirac delta
functions which are located at the fundamental frequency
corresponding to the round-trip movement with frequency
fr = 1/tr and at its odd harmonics [Fig. 3(b)]. It should
be stressed that the resonant frequencies for a given nanowire
length l depend only on the Fermi velocity, i.e., they can be
tuned by controlling the Fermi level (or equivalently, charge
density) of the electron gas. The presence of the harmonic
frequencies stems from the anharmonic shape of the confining
potential, which leads to an anharmonic character of charge
trajectories. In the quantum-mechanical picture, we will later
show that these harmonics have an origin in dipolar transitions
to higher unoccupied levels.

In the two-dimensional (2D) case, charges can move at
an oblique angle θ , therefore the round-trip time is longer
compared with the 1D case and it reads tr/cos θ . The initial
velocity component parallel with the probing electric field is
then a projection to the x axis (perpendicular to the confining
planes): vx (0) = vFcos θ [Fig. 1(b)]. Averaging over all initial
positions can be done analogically as in the 1D case, resulting
in the triangular evolution of the velocity with time:

vF cos θ�

(
t

tr/ cos θ

)
. (4)

Averaging over all possible directions of movement
(θ in the interval from zero to 2π ) then yields the velocity
autocorrelation function in the time domain:

〈vx (0)vx (t )〉 =
∫ 2π

0 v2
Fcos2θ�

(
t
tr

cos θ
)
dθ∫ 2π

0 dθ
, (5)

Substitution of this result into Kubo formula (1) and
considering that EF = mν2

F/2 then yields

μxx (f ) = e0

m

1

π

∫ ∞

0
e2πif t

∫ 2π

0
�

(
t

tr
cos θ

)
cos2θ dθ dt.

(6)

Analogically as in the case of the 1D problem, the mo-
bility spectrum [Fig. 3(b)] contains a series of odd harmon-
ics with fundamental frequency fr. The oscillations of the
time-domain autocorrelation function (the inner integral) are
damped due to dephasing of the triangle functions correspond-
ing to carriers moving under different angles θ [Fig. 3(a)]; this
causes an intrinsic broadening of the peaks in the spectrum
[Fig. 3(b)], similarly as in the case of nanodiscs [12,13]. The
low-frequency tails are due to carriers with nonzero velocity
component along the planes: such carriers need a longer time
to travel between the planes, which implies a lower bouncing
frequency. Since no trajectory has a period shorter than tr,
there is no broadening towards higher frequencies and the
diverging conductivity at the frequency 1/tr is followed by a
sharp cutoff.

In the three-dimensional (3D) case, the charge velocity has
an additional component parallel to the confining surfaces.
After transformation to spherical coordinates [Fig. 1(c)], the
round-trip time as well as the x component of the velocity is
controlled solely by the polar angle θ , i.e., both quantities are
described by identical formulas as in the 2D case. Unlike in
the 2D case, the averaging in the time-domain autocorrelation
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function consists of the integration over azimuthal and polar
angles (ϕ and θ , respectively) and includes the Jacobian part
sin θ due to the transformation into spherical coordinates:

〈vx (0)vx (t )〉 =
∫ 2π

0 dϕ
∫ π

0 v2
Fcos2θ�

(
t
tr

cos θ
)

sin θdθ∫ 2π

0 dϕ
∫ π

0 sin θdθ
.

(7)

The trivial integrations along with the substitution of this
result into Kubo formula (1) lead to

μxx (f ) = 3e0

2m

∫ ∞

0
e2πif t

∫ π

0
�

(
t

tr
cos θ

)
cos2θ sin θ dθ dt.

(8)

The additional degree of freedom leads to a broader dis-
tribution of velocities in the x direction, causing a faster
damping of the oscillations of the time-domain autocorre-
lation function [Fig. 3(a)]. As a result, the cutoff at the
frequency fr is not preceded by a diverging conductivity; only
a discontinuity exists [Fig. 3(b)].

The striking influence of the distribution of velocities is
best illustrated in comparison with the motion controlled by
Maxwell-Boltzmann statistics (nondegenerate electron gas)
in a 1D space. Calculation of the mobility spectrum then
involves averaging over the velocity amplitudes:

μxx (f ) = e0

kBT

√
2m

πkBT

∫ ∞

0
e2πif t

×
∫ ∞

0
�

(
vt

2l

)
v2 exp

(
− mv2

2kBT

)
dvdt. (9)

The velocity autocorrelation in the time domain (the inner
integral) exhibits very rapidly damped oscillations [Fig. 3(a)].
After the Fourier transform, the resulting spectral shape thus
becomes very broad, resembling the Drude-Smith response
[Fig. 3(b)]. This behavior emphasizes the key role of the
broad velocity distribution: despite the absence of the bulk
scattering, the effective damping and the associated resonance
width induced by the carrier dephasing are large enough to
form a single broad absorption band.

Degeneracy of the electron gas (i.e., kBT � EF) is thus
a necessary (although not sufficient) condition for the clear
resolution of individual harmonics. In degenerate gases, the
response is dominated by charges moving perpendicularly to
the surface, whereas the influence of charges moving under
an oblique angle θ (and thus contributing to the low-frequency
tails) is suppressed by the weight factors cos2θ and cos2θ sin θ

in two and three dimensions, respectively [Eqs. (6) and (8),
respectively]. In the nondegenerate case, the entire distribu-
tion of velocities contributes already in one dimension: this
gives rise to the dominating single broad band. Upon a careful
examination it is possible to attribute the weak background
above this broad band [frequencies �6 THz in Fig. 3(b)] to
the onset of the high harmonics.

In real nanomaterials, the spectra are further smeared due
to the bulk scattering and due to the inhomogeneous broad-
ening. A bulk scattering time τs exceeding one half of the
round-trip time tr is thus another prerequisite for the obser-
vation of the high harmonics [Fig. 4]. This condition can be

FIG. 4. Calculated mobility spectra of confined degenerate elec-
tron gas in the presence of finite bulk scattering (l = 300 nm, vF =
1000 nm/ps, EF = 0.20 eV, and T = 0 K, i.e., tr = 600 fs). Spectral
resonances can be resolved for bulk scattering times as short as one
half of the round-trip time tr .

easily met in 2DEG-based nanostructures at low temperature
(long τs) or in nanometer-sized metallic particles (short tr
due to the high Fermi velocity). The large spectral separation
of the harmonic geometrical resonances also weakens the
demand on monodispersity (size distribution with full width
reaching 100% of the mean value is acceptable to distinguish
the fundamental and third harmonics). Lithography-based
methods now routinely provide substantially better structures
[16,23].

The calculated mobility spectra of degenerate electron
gases depend on the Fermi velocity and, in turn, also on the
carrier concentration. In the semiclassical limit (characterized
by a continuous density of states), vF is proportional to n1/D .
The frequencies of all resonances in these model systems are
thus also proportional to n1/D , as illustrated in Figs. 5(a)–
5(c). We will call these resonances “geometrical,” as the
proportionality constant is determined solely by the geometry
and scales with the reciprocal nanostructure size. The 1/D
power dependence on the carrier density is universal; the de-
veloped theory thus qualitatively applies for any nanostructure
shape.

III. QUANTUM-MECHANICAL APPROACH

The semiclassical calculations from the previous section
are important since they allow easy and transparent assess-
ment of the qualitative behavior. However, since we are
dealing with nanoscopic physics, we have to check the limits
of validity of such description. For this reason, we calcu-
late the conductivity spectra also using the formalism from
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FIG. 5. (a)–(c) Mobilities of D-dimensional degenerate electron gas confined in an infinite rectangular potential well (l = 300 nm). (d)–(f)
Effective conductivities of mutually isolated nanostructures forming the brick-wall structure shown in Fig. 7. Solid red lines serve as a guide for
the eye to indicate the behavior of a few lowest resonances: The parts of the curves following the N1/2 trend represent the plasmonic resonance
whereas those with the n1/D dependence represent the geometrical resonances. For the purpose of plotting, bulk scattering time τs = 10 ps
was considered. The density of nanowires in (d) is η1 = 1012 cm−2, and the density of nanosheets in (e) is η2 = 105 cm−1. The filling factor is
s = 0.5 in panels (d) and (e), and s = 0.944 in panel (f). All panels show the amplitudes of the complex spectra.

Ref. [20] which is based on the Kubo-Greenwood formula
within relaxation-time approximation, and which accounts for
the restoring thermalization current, thus ensuring a correct
and physical shape of the resulting spectra.

In general, there are two aspects which need to be ad-
dressed. First, the size of the nanostructure should signif-
icantly exceed the de Broglie wavelength of electrons at
Fermi level, which requires vF 	 h/(ml), i.e., the calcula-
tions are applicable only for sufficiently high carrier concen-
trations [n 	 8π/(3l3) = 3 × 1014 cm−3, n 	 2π/l2 = 7 ×
109 cm−2, and n 	 4/l = 1 × 105 cm−1 in 3D, 2D, and 1D
potential wells with size l = 300 nm]. Second, the quantum
transitions should be smeared enough so that the density of
states (DOS) could be regarded as a continuum (this can be
generally assured using a scattering h/τs stronger than the
energy-level spacing around EF).

In Fig. 6 it is illustrated that even close to these critical
concentrations the first geometrical resonance is clearly re-
solved in the quantum-mechanical results, and its frequency
coincides with that obtained using the semiclassical calcu-
lations (the match becomes almost perfect for higher carrier
densities). Higher-order geometrical resonances (which are
easily identified in the semiclassical approximation) become
resolvable at somewhat higher carrier densities. The discrete
nature of the DOS causes splitting of the corresponding
peaks—this effect is suppressed either upon increasing carrier
density or upon using a stronger damping which would smear
the individual transition lines. In this sense, the existence
of the higher-order geometrical resonances is confirmed also
in the quantum-mechanical view. Note that the differences be-
tween quantum and semiclassical approach are less important
for 3D systems, as their DOS is higher.

The origin of the peaks predicted by semiclassical calcula-
tions can be justified as follows. Quantum energy levels Ep in
an infinitely deep rectangular potential well read

Ep = π2h̄2p2

2ml2
, (10)

where p is a positive integer. Selection rules of a dipole
approximation allow transitions to levels q = p + 1 + 2k,
where k is a non-negative integer. The frequency fp→q of such
a transition is

fp→q = Eq − Ep

2πh̄
= πh̄

4ml2
(2p + 2k + 1)(2k + 1). (11)

At zero temperature, states are occupied up to the Fermi
energy, which determines the highest occupied energy level
p. A large structure size l means that the states are dense
and approach the continuum; degeneracy of electron gas then
implies that Fermi energy corresponds to a high value of p.
Dipole matrix elements rapidly decrease with increasing k,
therefore only transitions close to the Fermi level (both p and
q are close to the Fermi energy, and thus k � p, q) contribute
to the response. In Eq. (11) we can thus approximate 2p +
2k + 1 by 2p and obtain

fp→q ≈ vF

2l
(2k + 1), (12)

which is equivalent with the semiclassical result. The harmon-
ics accompanying the semiclassical motion thus have their
origin in quantum transitions to higher energy levels.

The main conclusion of this part is that the semiclassical
description of the THz response of larger nanostructures
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FIG. 6. (a)–(c) Comparison of real parts of mobility spectra calculated using the quantum-mechanical approach described in Sec. III (thin
solid lines) and using the semiclassical approximation introduced in Sec. II (thick dashed lines) for various carrier concentrations. (d)–(f)
Comparison of the frequency of the first peak from panels (a)–(c) (symbols) and position of the fundamental geometrical resonance calculated
semiclassically (lines). Parameters: l = 300 nm, vF = 1000 nm/ps (EF = 0.20 eV), T = 0 K, and τs = 10 ps.

captures the fundamental physical picture. In order to keep
our considerations as simple as possible, we will thus keep
using the semiclassical treatment in the next section.

IV. PLASMONIC RESONANCE

It should be stressed that the calculated conductivities so
far describe the response to the local probing electric field.
However, almost all nanostructures are embedded in a sur-
rounding environment, thus forming an inherently heteroge-
neous system where depolarization fields cause the local field
to be screened and thus to be different from the applied one:
the measured (effective) conductivity spectrum then generally
differs from the local one [5].

We consider a periodic structure consisting of alternating
conductive and nonconductive blocks [Fig. 7], which we treat
with effective medium theory based on a brick-wall model
[24]. In Ref. [5], it was demonstrated that the existence and be-
havior of a plasmonic resonance are essentially a consequence
of a nonexistent percolation pathway in the direction of the
polarization of the driving ac field. For this reason, we limit
ourselves to this simplest geometry as qualitatively identical
results would be obtained in any other geometry with non-
percolated conductive blocks. We thus consider the structures
sketched in Figs. 7(a)–7(c), which are composed of blocks
filled with the nanostructures (surrounded by infinitesimally
thin isolating barriers) separated by insulating layers with
finite thickness. Obviously, there is no percolation pathway
in the direction of the probing electric field (x direction). The
symmetry ensures that an x-polarized field does not induce

a net electric field in the y and z directions; this situation is
equivalent to the one described within the brick-wall effective
medium model [Fig. 7(d)]. The number of nanosheets per unit
length η2 and the number of nanowires per unit area η1 are
then additional parameters entering the calculations: these—
together with the carrier density in the nanostructures—
control at which (volume) density the crossover between the
plasmonic and geometrical resonance occurs.

We assume that the nonconductive parts have a purely
real permittivity ε1 while the permittivity ε2 of the con-
ductive parts includes the conduction response: ε2 = ε1 +
ieNμxx (f, n)/(2πf ε0). The symbol N stands for the average
number of charges per unit volume of the block, whereas the
symbol n expresses the number of charges per unit length,
surface, and volume for one, two, and three dimensions, re-
spectively. Obviously, N = n for 3D nanostructures, whereas
N = η2n for 2D nanostructures and N = η1n for 1D nanos-
tructures. Denoting s as the filling fraction of the conducting
parts, the effective permittivity εeff is determined from

1

εeff
= 1 − s

ε1
+ s

ε2
(13)

and the plasma frequency reads

fpl = 1

2π

√
e2

0N (1 − s)

mε0ε1
. (14)

The results will be represented in the form of effective con-
ductivity σeff = −iωε0(εeff − ε1) normalized by the charge
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FIG. 7. (a)–(c) Mutually isolated conducting 1D, 2D, or 3D
nanostructures (orange) are separated by thick nonconductive parts
(gray, permittivity ε1 = 12.6). In this geometry, the percolation along
the direction of the probing electric field is broken, which ensures
the buildup of the plasmonic resonance. The effective response of
all these geometries is equivalent to the structure shown in (d),
composed of alternating conducting and nonconductive (laterally
infinite) blocks (analogy with capacitors connected in series). To
assure the correct filling factor s, the thickness of the isolating block
has to be scaled by (1 − s )/s as indicated.

density e0N [Figs. 5(d)–5(f), 8(c), and 8(d)]. The purpose of
this construction is to compare the single-electron responses:
note that the ratio σeff/(e0N ) can be identified with the
electron mobility in the case of homogeneous systems.

We first recall the response of large nanostructures (size
l → ∞) for which the bare conductivity approaches the
Drude spectrum (characterized by a peak located at zero fre-
quency, independently of the charge density) [Fig. 8(a)]. The
effective conductivity then exhibits a plasmonic resonance
[Fig. 8(c)] which follows the N1/2 density dependence of the
plasmon frequency, as discussed, e.g., in Ref. [25].

Analogical behavior is observed for confined nonde-
generate electron gas. The geometrical resonance is then
carrier-density-independent [Fig. 8(b)]. This resonance dom-
inates in the effective conductivity at low carrier densities,
whereas the plasmonic resonance follows the square root
of carrier density (N1/2) and takes over at higher carrier
densities.

The effective conductivity of confined degenerate elec-
tron gas in Figs. 5(d)–5(f) exhibits clear signatures of a
coupling between the plasmonic resonance (with frequency
proportional to N1/2) and the geometrical resonances (with
frequencies proportional to n1/D). In the 3D case [Fig. 5(f)],
individual geometrical resonances exist for low carrier con-
centrations, and they are not influenced by the plasmonic
resonance. With increasing carrier concentration, mixing with
the plasmonic mode becomes important, and the plasmonic
resonance completely takes over at high concentrations. This
behavior resembles the coupling of Drude and plasmonic
resonance [25], where the Drude peak at zero frequency exists

FIG. 8. (a) Drude mobility spectrum (nanostructure size l → ∞):
The Drude peak is located at zero frequency. (b) Mobility spec-
trum μxx of nondegenerate electron gas in a 1D nanostructure (l =
300 nm) calculated using Eq. (5). (c), (d) Effective conductivities of
the structure from Fig. 7(d). Solid red lines serve as a guide for the
eye for the resonances: The parts of the curves following the N1/2

trend represent the plasmonic resonance. Further parameters: T =
4620 K, τs = 10 ps, and s = 0.5. The density of nanowires in (d)
is η1 = 1011 cm−2. All panels show the amplitudes of the complex
spectra.

only in the limit of N → 0 and the plasmonic resonance
emerges for a nonzero carrier concentration. In one and two
dimensions, however, the behavior is strikingly different.

In 1D systems, it is the plasmonic resonance which dom-
inates for low concentrations [Fig. 5(d)]. Mixed modes ap-
pear with increasing carrier concentration, and they suc-
cessively transform into the geometrical modes at high
concentrations.

The 2D systems are specific as both geometrical and plas-
monic resonances depend on the carrier concentration in the
same manner: the mixing between geometrical and plasmonic
resonances keeps the square-root dependence of the resonant
frequency, only the mixed resonance frequencies are system-
atically scaled [shifted in the log scale in Fig. 5(e)], and their
line shape is altered. The mixing can be better understood
when the density of nanosheets η2 is varied (Fig. 9): the
geometrical resonances exist at small density, and they are
progressively converted into a single plasmonic resonance at
higher densities η2.

The crossing of the first geometrical branch with the
plasmonic branch occurs for carrier density for which the
frequencies of the plasmonic and geometrical resonance are
equal; this density reads

ncross = η1ml2

ε1
(1 − s)

4e2
0

π4h̄2ε0
for 1D nanostructures,

(15)

ncross =
(

ε1

ml2

)3 1

(1 − s)3

9π10h̄6ε3
0

e6
0

for 3D nanostructures.

(16)

035407-7



KUCHAŘÍK, NĚMEC, AND OSTATNICKÝ PHYSICAL REVIEW B 99, 035407 (2019)

FIG. 9. Response of 2D electron gas as a function of the density
of nanosheets η2. (a) The mobility spectrum is independent of the
density of nanosheets η2. (it depends only on the sheet carrier den-
sity n). (b) Effective conductivity of mutually isolated nanostructures
forming the brick-wall structure shown in Fig. 7. Solid red lines serve
as a guide for the eye to indicate the behavior of three lowest reso-
nances: The parts of the curves following the N1/2 trend represent
the plasmonic resonance whereas the horizontal parts (independent
of η2) represent the geometrical resonances. Parameters: l = 300 nm,
n = 1012 cm−2, s = 0.5, EF = 0.2 eV, and τs = 10 ps.

These expressions show that there is a large parameter
space (altogether represented by the parameters m, s, l, ε1,
and η1) controlling the crossover. This permits finding a
suitable material and conditions to tune the crossover carrier
density and frequency as desired. In particular, it allows us to
experimentally reach the regimes below, close to, and above
the crossover carrier density while satisfying the assump-
tions used in the semiclassical description. Note also that for
proposing real experiments one has to carefully consider the
carrier-density and temperature dependence of the scattering
time. This time has to be sufficiently long to resolve the target
resonance(s), and at the same time short enough to avoid
dominance of quantum phenomena.

V. CONCLUSIONS

In summary, we have calculated the terahertz conductivity
spectra of charges moving classically in infinite rectangu-
lar potential wells. Structures containing degenerate elec-
tron gases exhibit specific spectral features—geometrical
resonances—associated with characteristic bouncing frequen-
cies and also with higher harmonics due to anharmonic nature
of charge thermal trajectories. Mutually isolated nanostruc-
tures support the formation of plasmonic resonance, which
couples with the geometrical resonances. Whereas the plas-
monic resonance in 3D nanostructures dominates only at high
carrier densities, in one dimension it dominates only at low
carrier concentrations. In 2D nanostructures, the plasmonic
and geometrical resonances remain coupled independently of
the carrier density. Observation of these resonances requires
structures with bulk scattering times exceeding one half of the
round-trip time. The response of confined nondegenerate elec-
tron gases is characterized by a single broad absorption band
even in the absence of bulk scattering and inhomogeneous
broadening. Quantum-mechanical calculations confirmed that
the semiclassical approach is well applicable for the qualita-
tive understanding of the underlying physical effects respon-
sible for the terahertz and multiterahertz response of larger
nanostructures.
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