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Quantum theory of terahertz conductivity of semiconductor nanostructures
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Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the
research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity
spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The
broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the
analysis based on Kubo formula and relaxation time approximation. We show that this current is required to
ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping
of the conductivity spectra up to terahertz or multiterahertz spectral ranges, where the electron scattering rate is
typically comparable to or larger than the probing frequency.

DOI: 10.1103/PhysRevB.97.085426

I. INTRODUCTION

Understanding the ultrafast transport of charge carriers in a
nanoelement is crucial for the conception and development
of nanoelectronic devices [1–4] with target applications in
solar cells, photodetector arrays, light-emitting devices like
nanoscale lasers, nanotransistors, etc. Currently, several mod-
ern instruments can provide various kinds of useful information
on the nanoscale conductivity. For example, a dc current
flowing through a nanocontact into a sample can be measured
using conductive AFM [5]; this experiment provides a map
of the conductivity variation (in relative units) over an area
on the sample surface. A relative conductivity map in the
terahertz or multiterahertz range with subpicosecond time
resolution can be obtained using scattering-type near-field
scanning optical microscopy [6]. Finally, time and frequency
resolved conductivity in large ensembles of nanoobjects can
be measured without electrical contacts using the far-field
terahertz spectroscopy; such spectra, due to the high probing
frequency, carry information on charge transport on nanometer
distances [7–9]. Since various transport mechanisms have
different spectral fingerprints [10], a broadband spectroscopy
has the potential to fundamentally refine the view on charge
transport processes.

Quite surprisingly, in many cases the challenge is not the
measurement itself, but the lack of theoretical insight, which
would allow quantitative microscopic interpretation of the
measured spectra. The difficulty is caused by the complexity
of an interacting many-particle system which requires fun-
damental simplifications. On the one hand, calculations of
the optical response of solids including nanocrystals typically
assume weak scattering (i.e., small scattering rate with respect
to the frequency of the probing radiation) [7,11,12]; the results
are thus valid only in the optical range. On the other hand, in
Ref. [13] the response to a THz probe is calculated using vertex
corrections where multiple subsequent scattering processes
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are taken into account. This method is inherently limited
to translationally invariant (bulk) systems due to the factor-
ization of the configuration average of two-particle Green’s
functions. The quantum theory for the crossover region (THz
response of nanocrystals) has not been established yet, since
the assumptions used in the above limits are not generally
fulfilled. In principle, the full set of many-particle microscopic
equations can be solved numerically, but such time-demanding
simulations have not been reported, yet. In this situation,
semiclassical Monte Carlo calculations [14] constitute the state
of the art in the interpretation of experiments on a microscopic
level. Analysis of many experimental results is carried out on a
purely phenomenological level, e.g., by using the Drude-Smith
model [15] based on three heuristic parameters, disregarding
even the characteristic size of the nanostructure.

We develop a linear theory of the conductive response of
charges in nanostructures based on quantum Kubo formula and
relaxation time approximation. The general quantum Kubo
formula for the equilibrium conductivity tensor within the
linear response theory reads [11,13]

σαβ(ω) = iNe2

mω
δα,β

+ 1

h̄ωV

∫ ∞

0
eiωt Tr(ρ0[Jα(t),Jβ(0)])dt. (1)

It involves the time autocorrelation function of the components
Jα , Jβ of the current operator and the equilibrium density
matrix ρ0 (e is the elementary charge, N is the carrier density,
and V is the nanocrystal volume). Assuming a single-particle
approximation, where electrons with an effective mass m

occupy energy levels h̄ωk with the probabilities fk , and a
Lorentzian spectral line of a finite width γ due to the electron
interaction with impurities, phonons, etc., it can be shown that
[7,16]

Re σαβ = γ e2

h̄ωmV
∑
k,l

fk − fl

m

〈l|pα|k〉〈k|pβ |l〉
(ω + ωk − ωl)2 + γ 2

. (2)
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The imaginary part is then obtained using the Kramers-Kronig
relations. This approach features a phenomenologically intro-
duced charge scattering rate γ and allows one to perform the
analysis without exact knowledge of all relevant scattering
processes in the system; indeed, their individual rates are
usually hardly experimentally accessible. The approximation
(2) is pertinent in the optical range for investigations of real
nanomaterials, which frequently contain defects and exhibit
a distribution of properties, such as size, shape, etc. These
conditions fundamentally complicate first principle calcu-
lations by adding large uncertainties into their inputs and
practically disable evaluation of dephasing processes and direct
comparison with the experimental results.

However, the shortcoming of the Kubo formula in the
relaxation time approximation (2) is that it always yields
nonzero conductivity in the dc limit (at ω = 0). Such a result
is unphysical in mutually isolated nanocrystals (no permanent
current can flow in a dc field) and it follows that the entire low-
frequency region is not appropriately described. This cutting-
edge situation is encountered particularly with noncontact
probing and it urges for a search of effects, which have been
neglected.

In this paper we adapt the Kubo formula to account correctly
for the relaxation processes in a space with broken translational
symmetry. Namely, a broadband drift-diffusion current due to
the motion of scattered carriers is identified and included in the
model. This approach is of high importance for interpretation
of the behavior of localized charge carriers in nanoelectronic
circuits for the GHz range and for contactless terahertz
and multiterahertz spectroscopies namely in the challenging
regimes, in which the mechanisms of spectral broadening are
suppressed (i.e., long scattering time, low temperature, narrow
size, and shape distribution of nanoparticles). The theory
provides the charge response to the local probing electric field;
for ensembles of nanocrystals, one must also take into account
the effective medium aspects, which have been discussed
extensively in the past [17–20].

II. MODEL

In this section, we develop a single-electron model of linear
ac conductivity, including a contribution of the nonequlibrium
electron diffusive motion. We intentionally simplify the model
in order to emphasize the role of the diffusion of confined
electrons, thus omitting phenomena related to many-body
quantum correlations like excitons. As it will be discussed in
Sec. III E, these effects can be, indeed, added as an extension
to the general concept presented here.

We consider a conduction band electron responding to a
probe (terahertz) electric field within the first-order perturba-
tion theory where the electric field intensity is the perturbation
parameter. In our model the single-electron state is described
by the density matrix, which can be decomposed as follows:

ρ(t) = ρ0 + ρC(t) + ρth(t), (3)

where the first term on the right-hand side is the stationary
density matrix related to the initial equilibrium thermal state
and the other terms describe the electron response to the
perturbation, i.e., they are both of the first order in the electric
field intensity.

The second term ρC defines a coherent regime, in which
spatial correlations of the phase of the electron wave function
play the major role in the dynamics. In bulk systems such a
term would describe a momentum-conserving electron prop-
agation with the momentum determined by the spatial phase
correlations.

The third term ρth describes a diffusively moving electron
which has lost the spatial phase coherence due to the scattering.
This introduces the thermalization regime, to which the probed
electron enters by the first inelastic scattering event. At this
moment the electron spatial distribution in the nanocrystal
can be significantly shifted with respect to the equilibrium
distribution; therefore, all the subsequent inelastic scattering
events must result in a thermalization current bringing the
system asymptotically back to the equilibrium thermal state.

However, this thermalization current is not included in the
Kubo formula within the relaxation time approximation (2).
In a spatially homogeneous system the term ρth does not
produce any current since the system is translationally invariant
and, consequently, the loss of coherence due to the scattering
automatically brings the system back to its equilibrium. The
Kubo formula (2) thus describes well the bulk systems, whereas
the contribution of ρth must be taken into account when the
spatial confinement takes place.

The above described introduction of the three distinct
regimes of the electron motion allows us to simplify greatly the
complete set of kinetic equations. This enables mathematically
and physically correct solution of the problem and the level of
the description of each regime can be chosen with a desired
depth of details. Our basic description is as follows:

(i) The thermal state (stationary) is described by a density
matrix ρ0 = ∑

k |k〉fk〈k|, diagonal in the basis of the unper-
turbed Hamiltonian:

H0 = (p2/2m) + V (r). (4)

Here V is the confining potential and the occupation of
eigenstates fk is given by the Fermi-Dirac distribution. The
thermal stationary state obeys the equation of motion:

d

dt
ρ0 = 0. (5)

(ii) The coherent regime is described by a perturbed
Hamiltonian H = H0 + H ′, where the electron interaction
with an external terahertz electric field E(t) in the dipole
approximation reads

H ′ = −er · E(t). (6)

The perturbation ρC of the equilibrium density matrix follows
the Liouville equation

d

dt
ρC = − i

h̄
[H ′,ρ0] − i

h̄
[H0,ρC] − γρC, (7)

which can be easily solved in a stationary regime [21]. Unlike
in common approaches, the effective scattering rate γ is
connected here to a transfer of the electron to the thermalization
regime instead of its relaxation back to equilibrium. Indeed,
the scattering event itself does not instantaneously redistribute
the (inhomogeneous) spatial electron density. The last term in
(7) thus acquires the meaning of the rate of losing the spatial
phase correlation of the electron wave function and, as shown
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in Appendix C, the rate coincides with the Drude scattering
rate.

(iii) The thermalization regime involves a coupling be-
tween the density matrix elements up to the infinite order
due to the electron scattering with impurities, phonons, etc.
The scattering process thus cannot be considered as a weak
perturbation. The electron dynamics is system specific and can
be hardly solved analytically even if the driving Hamiltonian
were exactly known. To simplify the description, we reduce
the perturbation in the corresponding density matrix ρth to a
spatially inhomogeneous density of electrons nth; its dynamics
then yields the thermalization current. We choose the diffusion
equation as an appropriate transport equation describing the
relaxation to the thermal state:

d

dt
nth=γ

∑
k,l

〈r|k〉〈k|ρC|l〉〈l|r〉+ D∇2nth+∇ · nth∇V

mγ︸ ︷︷ ︸
−∇· j th

, (8)

where D is the diffusion constant rigorously related to
the material parameters through the Einstein’s relation D =
kBT/(mγ ) in nondegenerated systems; in a degenerated elec-
tron gas the term kBT should be replaced by N (∂EF/∂N ),
where N is the electron concentration in the conduction band
[22]. Equation (8) has the form of an equation of continuity.
The first (source) term at the right-hand side describes the local
density of electrons entering the thermalization regime upon
a scattering event and the other terms then represent the local
source of a thermalization (drift-diffusion) current density j th.
This current consists of two components: the diffusion current
and the drift current of incoherent carriers submitted to the
internal potential V . Although the diffusion equation cannot
bring a closer picture of underlying microscopic scattering pro-
cesses, it can still faithfully represent the thermalization current
carrying the charges back to the equilibrium distribution.

The above equations (7) and (8) fully determine the dy-
namics of the system and can be solved analytically. The mean
electric current density is calculated as a sum of the current due
to electrons in the coherent regime and of the thermalization
current:

j = e

V

[
〈 p〉/m +

∫
j thd

3r
]
. (9)

Here, the integration is performed over the nanocrystal volume
V . The conductivity tensor then reads

σαβ = σC + σth = e

VEβ(ω)
F

[
Tr pαρC(t)

m

−
∫
V

(
D

∂nth(r,t)
∂xα

+ nth

mγ

∂V

∂xα

)
d3r

]
, (10)

where Eβ is a component of the probing field, xα is a
component of the position vector r , and F denotes the Fourier
transformation (t → ω). Equation (10) is a general result valid
for nanocrystals of an arbitrary geometry and for electrons
moving in an arbitrary potential landscape. Note that the single
carrier response function (mobility μ) can be calculated using
μ = σ/(eN ).

If the internal potential V is flat in the volume of the
nanocrystal, the last term in the integral vanishes and the
return of the carriers into the equilibrium is only controlled

by the diffusion. By setting formally D = 0 (inconsistently
with the Einstein’s relation and finite relaxation rate γ ), the
thermalization current is suppressed and the result reduces to
the simplified Kubo formula (2), which merely accounts for the
currents due to the coherent electrons. The thermalization term
thus constitutes a correction for the multiple electron scattering
up to the infinite order but still being of the first order in the
electric field intensity.

III. RESULTS AND DISCUSSION

A. Cube-shaped nanocrystals

As an example, we examine the conductivity of isolated
semiconductor nanocubes. The system is modeled by an
infinitely deep rectangular potential well with V (r) = 0 for
x,y,z ∈ (0,a) and V (r) = ∞ otherwise. In addition, we as-
sume the conduction band minimum in the 
 point of the
Brillouin zone and an isotropic effective mass. This is the case
of GaAs, InP, and related semiconductors. We argue in the
Supplemental Material [23] that an analogous expression is
found also for silicon where contributions from six equivalent
conduction band valleys close to the X point with anisotropic
electron effective mass should be taken into account. Numer-
ical examples are provided for GaAs: at room temperature
the electron effective mass is 0.067me, the scattering rate is
γ = (1/270) fs−1, and the corresponding bulk dc mobility is
μ = 7200 cm2/(V s) [24,25].

Due to the symmetry the conductivity tensor reduces to a
scalar number. For simplicity we consider a probing electric
field parallel to the x axis. Stationary solutions of (7) and (8)
and their substitution into (10) give the resulting conductivity
(see Supplemental Material [23] for the derivation):

σxx ≡ σ = e2

h̄a3

∑
k,l

fk − fl

ω − ωkl + iγ

×
[ ∑

n odd

2DγaSklnxkl

Dπ2n2 − iωa2
− iωkl|xkl|2

]
,

Skln = δky,ly δkz,lz (δn,kx−lx +δn,lx−kx
−δn,kx+lx ), (11)

where k,l are multi-indices denoting eigenstates: k =
(kx,ky,kz), all positive integers, the same for l. Energies of
the states are known to be

E(kxkykz) = π2h̄2
(
k2
x + k2

y + k2
z

)
2ma2

, (12)

and the dipole selection rules [see Eq. (A2) in Appendix A]
lead to the following transition energies:

h̄ωkl = π2h̄2
(
k2
x − l2

x

)
2ma2

. (13)

We stress that the formula (11) provides the correct zero
conductivity in the dc limit for isolated nanocrystals; this
statement is explicitly demonstrated in Appendix A.

The general behavior of the model is illustrated in Fig. 1
where we plot the microscopic conductivity of a GaAs cube
with size a = 1 μm in the limit of a low electron concentration
(N = 1016 cm−3) such that the Fermi energy lies below the
system’s ground state by more than kBT . To understand the
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FIG. 1. Calculated (a) real and (b) imaginary conductivity spectra
of a GaAs crystal (cubic shape, a = 1 μm) for various diffusion
coefficients according to (11) at T = 300 K and N = 1016 cm−3.
(c) Real part of the contribution of the thermalization current.

role of the diffusion, we examine two hypothetical limiting
cases:

(1) For D = 0 the first term in the square brackets in Eq. (11)
vanishes and, in this case, we retrieve the response of electrons
with the unphysical nonzero dc conductivity:

σC = − ie2

h̄a3

∑
k,l

(fk − fl)ωkl|xkl|2
ω − ωkl + iγ

, (14)

equivalent to Eq. (2). The charge confinement only leads to a
renormalization of the Drude-like conductivity amplitude due
to a lower density of states accessible by optical transitions
than in the bulk (Fig. 1).

(2) In the opposite limit (D → ∞) the electrons return to
the thermal state immediately after the first scattering event.
This overestimates the thermalization current; therefore, the
conductivity peak appears at a finite frequency (ω � γ ) even
in infinite crystals (i.e., for a → ∞) and the peak amplitude
is underestimated. It can be shown (see Appendix B) that this
behavior is exactly obtained when the mean electric current
density is defined as j = (e/V) (∂〈r〉/∂t), as it has been
done in Ref. [21] [cf. Eqs. (3) and (5) therein]. Although the
approximation D → ∞ may greatly simplify the calculations,
it is suitable only for small nanocrystals.

As seen in Fig. 1(c), the thermalization current possesses
the largest amplitude in the dc regime where it must fully com-
pensate the coherent contribution. Its strength then decreases
above the THz spectral range, since the thermalization is a slow
process, inefficient at high frequencies.

B. Comparison with the classical Monte Carlo simulations

Any viable quantum model must show a smooth transition
to the classical description in the crossover from nano- to

FIG. 2. Comparison of the real parts of conductivities calculated
using the quantum model (11) (solid lines) and the semiclassical
Monte Carlo method (dotted lines) for selected sizes of large (top
panel) and small (bottom panel) nanocubes. T = 300 K and N =
1016 cm−3.

micro- or even larger crystals. This is observed in Fig. 2. For
the classical calculations we used the Monte Carlo model de-
scribed in Ref. [14], in which we considered elastic collisions
of charges with the boundaries of cube-shaped nanoparticles;
this is in analogy with the coherent motion of charges in our
quantum calculations. The conductivity spectra of micrometer-
sized particles calculated using Eq. (11) and the Monte Carlo
calculations are practically identical (the classical and quantum
curve cannot be distinguished for a = 1024 nm in Fig. 2). In
Appendix C we show explicitly that Eq. (11) converges to
the classical Drude model for an infinitely large crystal; as
expected, the thermalization current vanishes for a → ∞.

The top and bottom panels in Fig. 2 represent large and small
nanocrystals, respectively. The apparent difference between
the two panels is the similarity (top) and difference (bottom)
between the overall envelopes of the classical and quantum
spectra and, more strikingly, an appearance of the multiple-
peak structure in the bottom panel. The crossover between
the classical and quantum behavior appears between the sizes
64 nm and 32 nm in the plots. The classical model is expected
to fail when the crystal size approaches the electron mean free
path lfree = (1/n)

∑
E g(E)f (E)

√
2E/mγ 2, where we sum

over all discrete electron states with energies E; g(E) is the
degeneracy factor, n is the electron number per nanocrystal,
and the square root expresses the electron mean free path for
the state with the (kinetic) energy E. Considering, for example,
a = 40 nm, the mean free path of nondegenerate electrons
in GaAs at 300 K is lfree ≈ 62 nm. Indeed, for a � lfree, the
quantization effects become important as observed in Fig. 2.

Classical calculations predict a monotonous blueshift of the
resonance frequency together with a decrease of its ampli-
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FIG. 3. Frequency (upper panel) and peak value (lower panel)
of the main maximum of the real part of the mobility versus the
nanocrystal size for GaAs with N = 1016 cm−3 and γ = (270 fs)−1

at all temperatures. Lines: quantum calculations using model (11) at
several temperatures for D = kBT/(mγ ) or for D → ∞; symbols:
classical Monte Carlo calculations [14].

tude when the crystal size is reduced (Fig. 3). In quantum
calculations the peak frequency shifts with 1/a2 for small
nanocrystal sizes [this reflects the variation of the energy
splitting of quantized levels; see Eq. (13)], while the shift slows
down for higher nanocrystal sizes. The agreement between the
quantum and classical model is excellent for large nanocrystals
at room temperature. The peak conductivity amplitude from
the quantum model remains almost constant for very small
nanocrystals [26] reflecting invariance of the oscillator strength
upon the size scaling as expected from the Thomas-Reiche-
Kuhn (TRK) sum rule. In the case of large nanocrystals, where
the classical conductivity regime is approached, the effective
width of the conductivity peak decreases upon an increase of
the nanocrystals size; therefore, following the TRK sum rule,
the peak conductivity must increase, too, and it tends to the
dc limit of the Drude behavior for any finite D (Fig. 3). The
crossover region is connected with the crystal sizes comparable
to the electron mean free path.

In small nanocrystals, energy levels are well separated (by
more than kBT ); therefore, the conductivity spectra contain
a series of peaks due to quantum transitions allowed by the
dipole coupling (Fig. 2).

Strictly speaking, approximating the thermalization regime
by the diffusion equation is valid only for nanocrystal sizes ex-
ceeding the electron mean free path. For smaller nanocrystals
the ballistic motion takes over: the dynamics of the spatial
charge redistribution thus becomes faster and this can be
roughly viewed as an enhanced diffusion. However, an increase
of the value of D has only little impact for small nanocrystals
(a < lfree), as illustrated in Fig. 3. This justifies the use of the
presented results for any nanocrystal size.

C. Temperature dependences

The temperature dependence of the conductivity spectra
predicted by our quantum model is determined by an interplay

FIG. 4. Comparison of the mobility spectra (real part) of GaAs
nanocrystals calculated using the quantum model developed in the
manuscript (solid curves) and semiclassical Monte Carlo approach
[14] (dotted curves) for (a),(d) small, (b),(e) medium, and (c),(f) large
nanocrystals. The conductivity can be calculated using σ [S/cm] ≈
μ [cm2/(Vs)]/625. We assume a temperature independent scattering
rate γ = (270 fs)−1 in (a)–(c). In (d)–(f), the scattering rate is
temperature dependent: γ −1 = 0.27, 5.7, 11, and 6.9 ps at 300, 100,
30, and 10 K, respectively (as determined from the mobility measured
in Ref. [24]).

of several factors: energy levels spacing, spectral broadening
due to the dephasing, and appearance of higher-order transi-
tions due to the population of higher levels (with increasing
temperature and nanocrystal size). The discrete energy levels
due to the quantum interference in an infinite potential well
are expressed by Eq. (12), i.e., the spacing between them is
inversely proportional to the square of the nanocrystal size.

We discuss the behavior of the mobility (conductivity)
spectra side by side for a temperature independent and tem-
perature dependent scattering rate γ . By assuming the temper-
ature independent γ one can easily discriminate the principal
regimes, while γ (T ) corresponds to physical situations in real
materials. We take the case of GaAs with a single type of
carrier (electron). The scattering rate in GaAs decreases with
decreasing temperature in the range 50–300 K due to a reduced
electron-phonon scattering. The ionized impurity scattering
takes over at lower temperatures, which means that γ starts to
increase with the decreasing temperature below ∼50 K [24].
Depending on the size of nanocrystals (and taking into account
also the temperature of the system), we can identify three cases.

(1) Small nanocrystals; Figs. 4(a) and 4(d).
Temperature independent γ . The separation of energy levels

is large; we can then analyze this case in the regime when only
the lowest energy level, E(111), is populated in the ground state,
i.e., for temperatures kBT � (E(211) − E(111)). The selection
rules (A2) predict that the system can undergo optical tran-
sitions only to levels E(n11), where n � 2 is an even number.
The conductivity spectrum consists of a series of temperature
independent peaks corresponding to individual transitions with

085426-5



T. OSTATNICKÝ et al. PHYSICAL REVIEW B 97, 085426 (2018)

a peak amplitude decreasing roughly with 1/n4 as it can
be deduced from Eqs. (13), (14), and (A2). The peaks are
sharp when the scattering is sufficiently slow, h̄γ � E(111), as
illustrated in Fig. 4(a). In contrast, semiclassical Monte Carlo
calculations predict a false strong temperature dependence of
the conductivity: in this case, the frequency of the maximum of
the broad conductivity peak is proportional to the mean carrier
velocity (which is temperature dependent: vmean = √

kBT/m);
see Fig. 4(a).

Temperature dependent γ . The linewidths of the conductiv-
ity peaks scale with the scattering rate, while their amplitudes
are inversely proportional to the scattering rate Fig. 4(d).
The positions of spectral lines are temperature independent
similar to the case of temperature independent γ . Striking
discrepancies between the quantum and classical calculations
are observed again.

(2) Medium nanocrystals; Figs. 4(b) and 4(e).
Temperature independent γ . At low temperatures only the

level (111) is populated and the behavior is identical to that
of small nanocrystals. With increasing temperature, higher
energy levels (211, 311, ...) become populated in the ground
state, which opens up new possible optical transitions, e.g.,
(211) → (311), etc. For small or moderate scattering rates
these transitions can be resolved in the spectra as individual
peaks emerging with increasing temperature; see Fig. 4(b) for
illustration. The peak frequencies are defined by the energy
difference E(kx+2n+1,ky ,kz) − E(kx ,ky ,kz). Note that this value is
independent of the quantum numbers ky and kz, i.e., several
transitions may contribute to each observed peak. For large
scattering rate these peaks cannot be spectrally resolved and
will merge into a broad conductivity peak.

Temperature dependent γ . The low-temperature behavior
is very similar to that of small nanocrystals: the condition
kBT � E(211) − E(111) is still valid. For T � 100 K higher
order transitions appear in the spectra; the spectral lines partly
merge at 300 K owing to the increased scattering. Note that at
this temperature the position, amplitude, and overall linewidth
of the broad spectral feature calculated using the quantum
model is comparable to the one obtained by semiclassical
Monte Carlo calculations; see Fig. 4(e).

(3) Large nanocrystals; Figs. 4(c) and 4(f).
Temperature independent γ . The lowest transition energy

E(211) − E(111) is small compared to kBT . In this situation,
a large number of the lowest lying energy levels E(kxkykz) is
populated, giving rise to a huge number (quasicontinuum) of
allowed transitions. A line broadening caused by the scattering
then ensures that all these lines merge into a single broad band.
In this limit, the quantum and classical Monte Carlo calcula-
tions provide very similar results. Then it is not surprising that a
temperature dependence emerges also in the spectra obtained
by the quantum calculations: this dependence stems from a
variation of the population of individual energy levels as a
function of temperature; see Fig. 4(c).

Temperature dependent γ . At room temperature a broad-
band spectrum is observed and it shows a good agreement
with the one calculated by the semiclassical model. At lower
temperatures, individual transitions are observed instead of
broad bands: this is due to the decrease of the scattering rate
leading to very narrow linewidths of individual transitions; see
Fig. 4(f).

FIG. 5. Relative weight of the thermalization current at 300 K
represented by |σincoh/σcoh| in nanocubes made of GaAs (N =
1016 cm−3), Au, and Al calculated for various nanocrystal sizes. The
parameters of the metals (plasma frequency, free carrier concentra-
tion, and scattering rate) are from Refs. [22,28].

From the above discussion we can draw a general con-
clusion that the quantum spectra are practically temperature
independent as long as the thermal energy is low compared to
energy level spacing. Such a behavior is in a sharp contrast with
semiclassical calculations, which predict a strong temperature
dependence. Since no strong temperature dependence of the
conductivity spectra has been observed in real systems com-
posed of small nanocrystals [21,27], the developed quantum
calculations are thus indirectly supported.

D. Short note on degenerate systems

Let us compare here the thermalization current in semi-
conductors with that in degenerate systems such as metallic
nanoparticles; see Fig. 5. In weakly or moderately doped GaAs
and similar semiconductors the thermalization corrections are
significant only up to a few THz at low temperatures or up to
the multi-THz spectral range at room temperature. In metals
such as Au or Ag with a single valence electron per atom
contributing to the metallic conductivity, the thermalization
current is significant up to optical frequencies where the motion
of incoherent electrons may require a correction as large as
several percent (Fig. 5; the response of Ag is very similar to
Au). In aluminum with three valence electrons contributing to
the conductivity, the diffusion is significantly faster and the
thermalization correction is even larger.

E. Applicability and limitations of the model

The conducting carriers in semiconductors may have several
origins: doping, thermal excitation, or photoexcitation. In
time-resolved photoconductivity experiments the finite carrier
lifetime T1 (i.e., the carrier interband relaxation time) must
be also considered and in this case our model requires the
condition 1/T1 � γ which is most frequently valid. Despite
several approximations, namely the omission of electron-hole
correlations, the model developed in Sec. II may be directly
applied in the following cases:

(1) In doped (nonphotoexcited) nanocrystals a single type
of carrier (electrons or holes) exists and the electron-hole
interaction is of no importance.

(2) In small nanocrystals with the size smaller than the
exciton Bohr radius, the electron-hole correlations are in-
herently induced by the presence of the confining potential.
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The Coulomb correlations therefore renormalize the optical
spectra but they are not responsible for any new features.
These renormalizations can be estimated within the mean field
approximation.

(3) At high temperatures, such that kBT is larger than
the exciton ionization energy, no exciton bound states exist
in the system and the conductivity can be determined as a sum
of the separate electron and hole conductivities.

For nanocrystals with the size exceeding the exciton Bohr
radius the applicability of the single-particle electron or hole
states is limited: bound electron-hole states do exist. In this
case the more appropriate electron-hole quasiparticle wave
functions must be used as the basis set of the system. With
these precautions our model remains fully applicable.

IV. CONCLUSIONS

In summary, we derived a general analytical formula (10)
for microscopic ac electric conductivity of semiconductor (or
metallic) nanocrystals, which was analyzed in particular for
nanocubes, resulting in the analytical formula for nanocube
conductivity (11). Our result consists of the usual Kubo
formula corrected by a thermalization current, which accounts
for the motion of incoherently scattered charges in systems
with broken translational symmetry. We verified that our result
correctly reproduces important limits (zero dc conductivity in
finite isolated nanocrystals, classical limit, and Drude conduc-
tivity in large crystals). The thermalization current is inherent
to all confined systems: in nondegenerate electron gases, its
influence is significant up to multiterahertz frequencies, while,
in metallic nanoparticles, its contribution may persist up to
the optical range. The thermalization current also appears
in electrical circuits containing nanodevices, which exhibit
localized electron states due to tunneling barriers between the
nanodevice and the electrical contacts.
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APPENDIX A: DC CONDUCTIVITY

Here we evaluate the sum over n in Eq. (11) for ω = 0. For
any combination of the indices k and l one can find two terms in
the sum which contribute: n = kx + lx and either n = kx − lx
or n = lx − kx , both of them satisfying n2 = (kx − lx)2. We
may therefore write the sum in the dc limit as follows:

∑
n odd

2DγaSklnxkl

Dπ2n2 − iωa2

=
∑
n odd

2γ aSklnxkl

π2n2
= δky,ly δkz,lz

×γ xkl

a

π2

[
1

(kx−lx)2
− 1

(kx+lx)2

]
[1 − (−1)kx+lx ]. (A1)

Using the standard set of real wave functions (see Eq. (S20)
in the Supplemental Material [23]) for the eigenstates of

unperturbed Hamiltonian (4), the dipole matrix element xkl

is given by the formula

xkl = xlk = − a

π2

[
1

(kx − lx)2
− 1

(kx + lx)2

]

× [1 − (−1)kx+lx ]δky,ly δkz,lz . (A2)

It follows that xkl ∈ R and thus xkl = xlk and x2
kl = |xkl|2. After

the substitution, we easily find

σdc = ie2

h̄a3

∑
k,l

fkl(iγ − ωkl)|xkl|2
iγ − ωkl

= ie2

h̄a3

∑
k,l

fkl|xkl|2 = 0. (A3)

The term fkl is odd with respect to the permutation of indices
k and l, while the term |xkl|2 is even and therefore the double
sum vanishes.

APPENDIX B: INSTANTANEOUS THERMALIZATION

We set D → ∞ in a crystal with finite dimensions; since
Dπ2n2 � ωa2 for n > 0, the latter term may be neglected in
Eq. (11). We may then rewrite (11) with the help of (A1) and
(A2):

σD→∞ = e2

h̄a3

∑
k,l

fkl|xkl|2
ω − ωkl + iγ

[−γ − iωkl]

= ie2

h̄a3

∑
k,l

fkl|xkl|2
ω − ωkl + iγ

(ω − ωkl + iγ )

− ie2ω

h̄a3

∑
k,l

fkl|xkl|2
ω − ωkl + iγ

. (B1)

The first sum on the right hand side vanishes due to the
odd parity of the summand (see the previous section). The
second sum is equivalent to the expression which we used
previously [21] for calculations of the electron mobility in
small nanocrystals. The previously derived formula in Ref. [21]
was based on the definition of the mean electric current density
j = (e/V) (∂〈r〉/∂t). This definition takes into account the
particle thermalization (the dc current is zero) but apparently
the thermalization process is instantaneous after the first
scattering event since here we obtain the same expression when
setting D → ∞.

APPENDIX C: INFINITE CRYSTAL

We denote

�kl =
∑
n odd

2DγaSkln

Dπ2n2 − iωa2
. (C1)

We sum separately the pairs of terms with exchanged k, l in
Eq. (11) and we consider that xkk = 0. We obtain

σ = 2e2

h̄a3

∑
kx>lx

fklωklxkl

(ω + iγ )2 − ω2
kl

[�kl − i(ω + iγ )xlk]. (C2)

Here the label of the sum kx > lx means sum over all three
indices k,l such that kx > lx . The largest contribution to the
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sum comes from the terms k ≈ l as it can be inferred from
the explicit form of the dipole matrix element (A2); therefore,
n ≈ 1 in �kl . For a fixed value of ω we may therefore choose
a sufficiently large value of the crystal size such that ωa2 �
Dπ2n2 and therefore �kl ∝ a−1; the second term in the square
brackets in (C2) is directly proportional to a. An increase of the
crystal size a leads to an increase of the density of states; as a
consequence, the frequency separation ωkl of the states coupled
by the dipole transition becomes smaller. To summarize, for a
sufficiently large value of a, the term �kl may be neglected in
the numerator and ωkl may be neglected in the denominator of
(C2). Then we get

σa→∞ = −2ie2

h̄a3

∑
kx>lx

fklωkl|xkl|2
ω + iγ

. (C3)

Finally, the terms fklωkl|xkl|2 are symmetric with respect to the
permutation of indices k and l; moreover, the diagonal terms

do not contribute, since fkk = 0 and xkk = 0. Taking these
symmetries into account we finally obtain

σa→∞ = − ie2

h̄a3

∑
k,l

fklωkl|xkl|2
ω + iγ

. (C4)

It can be shown analytically for an arbitrary temperature that
this expression tends to the Drude formula for the bulk crystals:

σDrude = ie2N

m

1

ω + iγ
, (C5)

where N is the electron density. We may conclude that the
effective scattering rate γ coincides with the Drude scattering
term which is the inverse of the scattering time [13].
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