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Anisotropic relaxation in liquid crystals
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We describe phenomenologically the sound propagation at ultrasonic and hypersonic frequencies in nematic
and smectic liquid crystals and corresponding isotropic liquid phases. To account for the experimentally
well-established effects the standard hydrodynamic equations should be completed by two nonhydrodynamic
relaxation mechanisms. More specifically, we prove that by a single nonhydrodynamic relaxation mechanism
it is impossible to explain simultaneously both the anisotropy of the sound propagation in the hypersonic
regime and the increase of the elastic constants compared to their values in the ultrasonic range. The possible
origins of these two nonhydrodynamic relaxation mechanisms are briefly discussed.@S1063-651X~98!14102-8#

PACS number~s!: 64.70.Md, 62.20.Dc
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I. INTRODUCTION

The dynamics of collective propagation modes at ult
sonic @1–6# and hypersonic@7–13# frequencies has bee
studied experimentally in a large number of compoun
Qualitatively, there are two important general features t
characterize the sound propagation in nematic and sme
liquid crystals: ~i! There is a significant increase of th
sound velocity in the hypersonic regime compared to
ultrasonic one both in isotropic liquids and in nematic a
smectic phases of liquid crystalline materials and~ii ! there is
a large anisotropy in the propagation of acoustic mode
mesophases at hypersonic frequencies. On the other han
ultrasonic frequencies, this anisotropy is usually significan
reduced in smectics and practically disappears in nema
Formally, the sound anisotropy can be well described b
stiffness tensor with effective values of elastic consta
@7,12,13#. Due to the uniaxial symmetry of both nemati
and smectic-A phases, and due to vanishing of the sh
components of the strain, only three constants are nee
namely,C11, C13, andC33.

It is well known @12,14# that the hydrodynamic procedur
alone cannot account quantitatively for the observed ani
ropy in liquid crystals and, in addition, the differences b
tween ultrasonic and hypersonic propagation clearly sug
the existence of relaxation mechanisms in between the u
sonic and hypersonic frequency ranges. A relaxation mec
nism of quite general nature has to play a significant role
particular, it should not be related to either any structu
relaxation process or molecular ordering in liquid crystals
pointed out in a number of papers@11,15,16#. Actually, such
a relaxation mechanism is well known@17# and consists in
the transfer of the kinetic energy of molecules due to co
sions into their vibrational degrees of freedom. This rela
ation mechanism was studied very thoroughly in liquids a
in isotropic phases of materials showing various mesoph
~see e.g., Refs.@11, 15, 16, 18#!. Liu @19# has generalized the
hydrodynamic theory by including slowly relaxing quantiti
when treating the nematic–smectic-A phase transition and
has remarked that a molecular relaxation would introd
anisotropic dispersion in liquid crystals but he has not inv
571063-651X/98/57~2!/1812~5!/$15.00
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tigated this problem in detail. Other relaxation proces
have been considered in order to account for or to pre
experimental behaviors of some mesophases. For exam
in the case of nematic side-chain polymers, Pleiner a
Brand @20# introduced the nematic order parameter itself
an efficient relaxator for providing sound anisotropy in su
compounds.

To our knowledge, a deeper discussion of a gene
scheme, which is supposed to explain the very similar ela
properties of low-molecular-weight nematics and smectics
still lacking. In this paper we intend to fill the gap betwee
previously considered mechanisms and actual properties
rather large class of materials. We do not restrict the solu
of the problem to two particular directions~propagation par-
allel or perpendicular to the director!, which is usually the
case, and we show that the behavior ofC13 ~which does not
contribute to the propagation velocity in these simple dir
tions! is crucial for understanding the whole process. In ord
to obtain satisfactory agreement with experimental results
show that it is necessary to introduce two nonhydrodyna
relaxation processes into the system of usual hydrodyna
equations describing the sound propagation; one of the re
ators will be identified with the kinetic-energy transfer,
usual, and the nature of the second one will be discussed
tentatively attributed to the above-mentioned relaxation
the nematic order parameter.

We devote the next section of this paper to clarifying t
process by which a relaxator provides anisotropy using
elementary model. In Sec. III, comparing with typical expe
mental data, we show that some important questions rem
unsolved using this model. Finally, in the last section
show that an appropriate description of the dynamics of
uid crystals has to involve the participation of a second
laxator closely related to the isotropic-mesophase transit

II. ANISOTROPY INDUCED BY A SINGLE RELAXATOR

A. Nematics

Let us first consider the nematic case. As is known@14#,
up to the first order in the wave-vector components, the
locity field vW is not coupled to the director orientation. The
1812 © 1998 The American Physical Society
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57 1813ANISOTROPIC RELAXATION IN LIQUID CRYSTALS
in the absence of any relaxation process, the equation
motion for vW and for the density fluctuationr can be ob-
tained from the mass and momentum conservation laws@21#.

We introduce a relaxatorR. Its physical meaning ha
been mentioned in the introduction, thusR describes the de
viation from the equilibrium value of the population of th
excited molecular vibrational state. Let us denoteQ the gen-
eralized force conjugate toR. The rate of change ofR con-
sists of the dissipative~irreversible! flux that is proportional
to Q and of the reactive~reversible! flux. The leading term in
the latter is proportional to the gradient of the velocity fie
sinceR is even in time and since a uniform translation do
not alter the nematic state@19#. Hence, the equation of mo
tion for R reads

Ṙ52aQ1bi j

]v i

]xj
. ~1!

Since the reactive flux should not contribute to the entro
production, it has to be compensated by an additional re
tive stress (2bi j Q) in the conservation equation of mome
tum. Finally, the equations of motion are

ṙ1r0

]v i

]xi
50,

r0v̇ i1
]P

]xi
2bi j

]Q

]xj
50, ~2!

Ṙ1aQ2bi j

]v i

]xj
50,

wherer0 is the equilibrium mass density and whereP stands
for the pressure fluctuation. We do not take into account
viscous properties of the fluid; in the first order they do n
contribute to the sound velocity anisotropy.

Due to the uniaxial symmetry,bi j has only two indepen-
dent components: b115b225b' and b335bi . The linear-
ized expressions ofP andQ are written in terms of the thre
independent derivatives:pr5]P/]r, qR5]Q/]R, andpR
5]P/]R ~notice that, due to thermodynamical identitie
]P/]R5r0]Q/]r!.

With the above assumptions, it can be easily shown
the frequencies of the eigenmodes are solutions of the
lowing equation:

v41
i

t
v32~v1`

2 sin2u1v3`
2 cos2u!k2v22

iv0
2

t
k2v

1v0
2~dv !2 sin2u cos2u k450, ~3!

with

t5
1

qRa
, v0

25pr2
pR

2

r0qR
, ~dv !25

~bi2b'!2qR

r0
,

v1`
2 5v0

21
qR

r0
S b'2

pR

qR
D 2

, v3`
2 5v0

21
qR

r0
S bi2

pR

qR
D 2

,

~4!
of

,
s

y
c-

e
t

,

at
l-

wherek cosu andk sinu are the parallel and perpendicula
components of the wave vector, respectively.

For vt!1, the solutions consist of a pair of propagatio
modes showing an isotropic velocityv0 (v56v0k) and of a
diffusive mode @v52 i t(dv)2 sin2u cos2u k2# which will
not be considered in the following.

For vt@1, the solutions consist of two pairs of propag
tion anisotropic modes, corresponding to the quasilongitu
nal ~1! and to the quasitransverse~2! waves, respectively. It
is convenient to introduce effective elastic constants such

C~u![r0v6
2 5 1

2 @C11 sin2 u1C33 cos2 u

6A~C11 sin2 u2C33 cos2 u!21C13
2 sin2 2u#,

~5!

where

C05r0v0
2,

C11[r0v1`
2 5C0~11x2!,

~6!

C33[r0v3`
2 5C0~11y2!,

C135C0~11xy!,

with x5AqR

C0
S b'2

pR

qR
D , y5AqR

C0
S bi2

pR

qR
D .

Notice that ifx andy have the same sign,C13 lies between
C11 andC33, but C13 is smaller than bothC11 andC33 when
x and y have opposite signs. In the first case the angu
variation of the velocity shows only two extrema, atu50
(v3`) and u5p/2 (v1`). In the second case,u50 and u
5p/2 correspond to velocity maxima and for some valueu0

in the @0,p/2# interval there is a minimum equal toC(u0); it
can be shown thatC(u0)5C0 .

Whenvt decreases it follows from Eq.~3! that the quasi-
longitudinal pair of modes always exists: the angular var
tion of the velocity keeps the same behavior but its am
tude is continuously reduced down to zero; in addition, th
is an imaginary damping term, which shows a similar ang
lar variation; its amplitude reaches a maximum aroundvt
51. Concerning the quasitransverse mode, it rapidly
comes overdamped whenvt decreases; its significant broad
ening whenvt is not very large may explain that it ofte
cannot be detected experimentally; thus, the frequent
sence of the quasitransverse line in the spectra, which
interpreted as a consequence of its dramatic angular inten
variation@13#, can also be partly related to the finite value
vt.

The contribution of viscosity can be added to Eqs.~2!; it
does not significantly modify the characteristics of propa
tion modes and provides an additional damping.

B. Smectics

Even in the absence of any relaxator contribution
smectic hydrodynamic variableu ~displacement of the smec
tic layers! induces an effective non-negligible stressszz

(s)
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@szz
(s)5srr1F3(]u/]z), wheresr and F3 have been de-

fined previously@13,22##. When the relaxator is introduce
and when the slow dissipative hydrodynamic contributio
are neglected, the equations of motion are written as

ṙ1r0

]v i

]xi
50,

r0v̇ i1
]P

]xi
2d iz

]szz
~s!

]z
2bi j

]Q

]xj
50,

~7!

u̇2vz50,

Ṙ1aQ2bi j

]v i

]xj
50.

The propagative solutions do not differ from those conce
ing the nematics given in the preceding subsection. But n
C13 andC33 show an additional frequency-independent ter
respectively equal to2sr andF322sr , which preserves a
nonzero anisotropy whenv→0. Namely,

v→0: C115C0, C135C02sr,

C335C022sr1F3,

v→`: C115C0~11x2!, C135C0~11xy!2sr ,

C335C0~11y2!22sr1F3 .

III. COMPARISON WITH EXPERIMENTAL DATA

As pointed out in the Introduction, most of the publish
hypersonic data are well fitted using a tensor of elastic c
stants with three independent components. In the cas
nematic liquid crystals, one easily calculatesuy2xu andC0
from the obtained values ofC11, C13, andC33 as

C05C112
~C112C13!

2

C111C3322C13
,

uy2xu5AqR

C0
ubi2b'u5AC111C3322C13

C0
, ~8!

when we assumed thatvt@1.
Generally, when a compound does exist in both nem

and smectic phases only very weak anomalies are obse
at the transition between these two phases, which indic
that the hydrodynamic contributions are not predomina
Thus, for the sake of simplicity, we shall neglect them in t
following discussion which will be based on Eqs.~6! and~8!.

When assuming that the general relaxation process
between ultrasonic and hypersonic frequency ranges~as
shown experimentally by Grammeset al. @11#! one under-
stands some differences between the propagation veloc
in these two regimes: at ultrasonic frequencies the velo
is isotropic and, as it clearly appears in Eq.~4!, the velocities
for u50 ~wave vector parallel to the director! and u5p/2
~wave vector perpendicular to the director! are obtained by
adding positive different terms to the low-frequency velo
s

-
w
,

-
of

ic
ed
es
t.

es

ies
ty

-

ity. This accounts for hardening and anisotropy. The diffic
ties arise when one tries to interpret this anisotropy in m
detail.

Two qualitatively different behaviors are predicted by t
model depending on the signs ofx andy. If x andy have the
same sign@Fig. 1~a!#, C0 is smaller thanC11, C13, andC33
in the mesophase~i.e., the Brillouin and ultrasonic data ca
differ significantly! but, on the other hand,C13 has to lie
betweenC11 andC33 @cf., Eq. ~6!#. The larger the difference
between ultrasonic and hypersonic data, the closer the v
of C13 to its upper limitAC11C33. If x andy have opposite
signs@Fig. 1~b!# C13 in the mesophase is smaller than bo
C11 and C33 but it is also inferior toC0 , which has to be
equal toC(u0) (>C13) as shown in the preceding section.
the splitting of the elastic constants is continuous at
isotropic-mesophase transition, then the difference betw
hypersonic and ultrasonic data should necessarily vanis
the isotropic phase. In the following, we will refer to th
relaxators leading to temperature dependencies show
Figs. 1~a! and 1~b! as the relaxators of first and second typ
respectively.

Experimentally, in every case where both ultrasonic a
hypersonic data exist for the same compound, the ultras
velocity is smaller than the hypersonic one in both isotro
and liquid crystalline phases, whatever the direction
propagation is. It means thatx andy do have the same sign
and, consequently, thatC13 should lie betweenC11 andC33,
in contradiction with most of the experimental results.

Concerning the value ofC13, two situations are found in
the experiments.~i! C13 is inferior both toC11 and toC33 as,

FIG. 1. Two possible types of behavior of the elastic consta
in a one-relaxator model, assuming that the splitting at
mesophase-isotropic phase transition is continuous~as always ob-
served!. ~a! First-type relaxator: x andy have the same signs;~b!
second-type relaxator:x andy have opposite signs.
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57 1815ANISOTROPIC RELAXATION IN LIQUID CRYSTALS
for example found in CBOOA@9#, in b-methyl butyl
p@~p-methyoxy benzylidine! amino# cinnamate@7#, in 8CB
@23#, and in OBAMBCPE@13#. Figure 2 illustrates an ex
ample of contradiction derived from our recently publish
Brillouin data concerning OBAMBCPE@13#; in this figure
we show the variation ofuy2xu versus temperature assumin
that vt is significantly larger than one. In this casex andy
should have opposite signs@see Eq.~6!# and tend to 0 at the
mesophase-isotropic phase transition. Such a conclusio
not correct, since it would mean that the difference betw
the ultrasonic and hypersonic propagation velocities sho
vary with temperature and progressively vanish when
phase transition is approached; this is in contradiction w
the admitted physical interpretation of the relaxator, nam
with the experimentally verified fact@11# that it is a nearly
temperature-independent process.~ii ! C13 is approximately
equal toC11 ~which in these cases is always smaller th
C33!, as found for example in 5CB and 6CB by Kru¨geret al.
@12#. These authors find a large and temperature-indepen
difference between the elastic constants measured in u
sonic and hypersonic frequency ranges. On the other h
C13 remains practically equal toC11 below the isotropic-
nematic transition, which means@cf., Eq. ~6!# that eitherx
50 or x5y. From C33ÞC11 we deduce thatxÞy and then
necessarilyC115C0 , in contradiction with the large differ-
ence between ultrasonic and hypersonic measurements.

FIG. 2. ~a! Experimental data taken in OBAMBCPE by Bri
louin scattering; C0 is the calculated value of the low-frequenc
elastic constant using Eq.~8! in the one-relaxator model.~b! Cal-
culated temperature dependencies of the parameterx and y ~both
tend to zero when the phase transition is approached from bel!.
is
n
ld
e
h
,

nt
a-
d,

In conclusion, the model developed above fails to sim
taneously account for the observed characteristics of the
isotropy in the hypersonic regime and the increase of
elastic constants compared to their values in the ultraso
range. Note that if one supposes thatvt is finite ~but large
enough to allow an anisotropy!, the results of the discussio
are not qualitatively modified and the above-mentioned d
ficulties remain.

IV. TWO-RELAXATOR MODEL

To overcome the preceding contradiction, we shall int
duce into the system another relaxator described by the v
ableR8 and the conjugate forceQ8. The physical origin of
this second relaxator will be discussed later. Obviously, i
not smart to introduce many unknown material constants
therefore, we shall simplify our model as much as possib
First, we neglect the dynamical coupling between two rel
ators, i.e., the dissipative flux is proportional to the gene
ized force of the corresponding relaxator only. Also, we w
neglect the cross derivatives in the expansions ofQ andQ8,
i.e., we put]Q/]R85]Q8/]R50.

Since the form of the equation of motion forQ8 is the
same as that forQ we immediately get the following high
frequency results@compare to Eqs.~6!#:

C115C0~11x21x82!,

C335C0~11y21y82!,

C135C0~11xy1x8y8!, ~9!

wherex8 andy8 are defined in the same way asx andy.
In these expressions there are enough independent pa

eters to fit the behavior of the elastic constants. However,
only possibility of describing experiments in a general wa
i.e., without any accidental mutual compensations
temperature-dependent parameters, is to admit that the
volved relaxators are of different types~discussed above!—
more specifically, a relaxator of the first type@cf., Fig. 1~a!#
characterized by the same signs ofx andy, which is mainly
responsible for the hardening of the elastic constants at
personic frequencies, and a relaxator of the second type@cf.,
Fig. 1~b!# characterized by the opposite signs ofx8 andy8,
which is responsible for a significant hypersound anisotro
in the mesophase. It should be emphasized that the relax
of the second type becomes ineffective in the isotro
phase: it follows immediately from Eq.~9!. The relaxatorR,
related to the dynamics of the population of excited vib
tional state, is a general only slightly temperature-depend
process that is clearly present in ordinary organic liquids.
drastic changes in its characteristics near mesoph
isotropic phase transition can be expected. Therefore,
identify it with the relaxator of the first type. In addition, it i
very likely that the anisotropy introduced by this kind
process is rather small (b''bi).

Now the relaxatorR8 has to be necessarily of the seco
type. Since it becomes effective just at the isotropic-nem
~or isotropic-smectic! transition, it can be connected with th
nematic order parameterSi j 5S(T)(ninj2

1
3 d i j ). We have

already mentioned that the hydrodynamic fluctuations of
director componentsni practically do not influence the
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propagation of sound in nematics. However, one should
consider the fluctuations of magnitudeS of the order param-
eter, which is not a hydrodynamic variable@24#, and in fact
we identify it with the second relaxatorR8. Although far
away from the isotropic-nematic transition the fluctuations
the nematic order parameter are usually discarded@20# be-
cause they relax on a microscopic time scale, we believe
near the phase transition they are slow enough to be effec
at the hypersonic frequency range. It should be pointed
that just above the isotropic-nematic transition there exis
semislow motion of nematic clusters that gives rise to sev
temperature-dependent effects such as pretransitional
nomena. Since even at ultrasonic frequencies no impor
temperature dependence of elastic constants has been
served, this type of motion is already clamped and does
need to be considered explicitly.

The nematic order-parameter modulus as an additio
nonhydrodynamic variable has already been introduced
plicitly into macroscopic dynamic equations for the nema
liquid-crystalline side-chain polymer@20#. In this system, far
away from any phase transition, the nematic order-param
fluctuations are slowed down by the hindrance due to
backbone. Our system of macroscopic equations as we
st

e

n,

r,

.
o

o

f

at
ve
ut
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he-
nt
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ot

al
x-

ter
e
as

the derived sound dispersion relations are essentially
same as in Ref.@20#, where only one nonhydrodynamic var
able has been introduced and the explicit angular depend
of anisotropic properties is not presented.

V. CONCLUSION

In order to describe qualitatively the anisotropic propag
tion of sound in liquid crystals as well as the increase
effective elastic constants at hypersonic frequencies,
nonhydrodynamic relaxation mechanisms should be con
ered in the conventional hydrodynamic treatment of sou
propagation. The first mechanism, which is effective also
the isotropic phase, is connected to the energy transfer f
kinetic to vibrational motion of molecules. The secon
mechanism, which is responsible mostly for the anisotro
sound propagation in the hypersonic frequency range, m
be related to the fluctuations of the nematic order-param
magnitude. Both of these mechanisms have been treate
dependently at different occasions by previous auth
@11,15,20#. Our analysis suggests that they should be con
ered simultaneously.
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