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Brillouin and ultrasonic studies of phase transitions in Cs,CdBr,.
I1. Phenomenological interpretation
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The Brillouin and ultrasonic results are interpreted using a phenomenological free-energy develop-
ment. The ferroelastic phase transition at 156 K is of a displacive type and is well described by a static
model: the variation of the elastic constants bilinearly coupled to the order parameter is in quantitative
agreement with recent Raman data. It is shown that the order parameter Q; of the sequence

ana(I)”i»K z‘ncommen_suratey(IC) 23+5->KP21/n 11 (C) is a relaxator which significantly contributes to the
scattering in the Brillouin frequency range. The differences between the ultrasonic and the Brillouin re-
sults are well understood. (i) A qualitative interpretation of the behavior of C,, is given: it is strongly
influenced by the fluctuations of the order parameter and, concerning the Brillouin scattering, by a
significant Landau-Khalatnikov contribution below T;. (ii) In the vicinity of the Prma<> IC transition,
the ultrasonic data concerning C,, are well interpreted in terms of a static model with a bilinear Q;¢,
coupling, while the Brillouin scattering, in the geometry which usually gives access to Cy4 through the
dynamics of the strain &, is interpreted as resulting from the cumulative contribution of three terms in-
volving three pair correlation functions of the order parameter Q, and the strain €, which allow to fit the
characteristic strongly asymmetric shape of the spectra and which explain the considerable shift of the
Brillouin maxima below the “static” ultrasonic curve. Finally, we show that an improved interpretation
of the Brillouin and ultrasonic data is found assuming that the virtual Pnma«>P2,/n11 transition is of
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the first order.

1. INTRODUCTION

In the preceding paper! (hereafter referred to as Paper
I) we have performed a comparative experimental study
of the features of the Brillouin and ultrasonic data of
Cs,CdBr, related to the phase transitions of this com-
pound. A brief qualitative analysis was performed: it
was based on an evaluation of the anomalies of the static
elastic constants derived from a Landau development of
the free energy, taking into account the appropriate cou-
pling of the order parameter to the strains. Such a model
revealed itself to be reasonably successful in interpreting
the low-temperature behaviors related to the III [com-
mensurate (C)]«<>IV phase transition (at T¢) and, to a
lesser extent, to the II [incommensurate (IC)]<III (C)
phase transition (at Tp): this calculation will be de-
scribed with more details in the present paper. However,
in the vicinity of the I«II (IC) phase transition (at T}),
we found severe discrepancies between our experimental
data and the predictions of the above-mentioned static
treatment; they mainly, but not only, concern the results
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connected with the C,, shear elastic constant: the shape
of the corresponding Brillouin spectra varies with tem-
perature in a very unexpected way, while the ultrasonic
measurements allow for a conventional interpretation of
the Cy anomaly around T;. It is clear that proper ac-
count of the dynamic effects has to be taken, in order to
explain the observed differences. We show in this paper
that the order parameter Q; (see Paper I) has to be as-
signed to a Debye relaxator bilinearly coupled with the
strain g,; in addition, besides the autocorrelation function
of g4, there are significant contributions of the autocorre-
lation function of @, and of the cross-correlation func-
tion between Q; and g, in the measured Brillouin-
scattering intensity. Further, some peculiarities related
to the variations of the longitudinal constants will be dis-

"cussed and tentatively attributed to the influence of fluc-

tuations.

In Sec. II, after recalling the form of the free-energy
density assumed in Paper I we introduce an equivalent
presentation in reciprocal space; then we briefly deduce
the conditions for the occurrence of the IC phase. Sec-
tion III is devoted to the derivation of the static elastic
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II. CONDITIONS FOR THE EXISTENCE
OF THE INCOMMENSURATE PHASE

constants deduced from this free-energy density and to
the discussion of their adequacy to give account of the ex-
perimental results. Section IV deals with the coupled dy-
namics of €, and @, and with its observed effects upon
the Brillouin spectra. Finally, in Sec. V, we comment on
the remaining discrepancies and their plausible causes.

Our description of the phase sequence (see Paper I) and
of the elastic properties of Cs,CdBr, will be based on the
following form of the free-energy density F(x):

d*Q,
dy?

a9,
Tdx
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where @, and Q, are soft modes of B3, (yz) and Blg (xy) symmetry, respectively, and where g; denotes a strain com-
ponent. This form of F(x) is essentially the same as in Ref. 2 except that our Q, mode is rather of B, than of B,, (xz)
symmetry. We have omitted gradient terms of Q| in the z direction which will not be needed for our discussion. Some-
times it is more convenient to express the part of the free energy &= f F(x)dx corresponding to the order parameter
Q, in terms of the Fourier transforms of the variables Q,, ¢;
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where o}(k)=a (T —T})+C,k2+C,k}+D k}+D,k}
and with Q7§ (k)=Q,(—k), E*(k) € (— ). For 51mp11-
city we have omitted the term gQ1Q2£5. Its contribution
will be studied when discussing the behavior of Css in
Sec. IIT A,

Since the wave vector kg of the incommensurate (IC)
modulation is not too far from the I' point we need not
consider the umklapp terms in Eq. (2). The temperature

T; of the III (IC) phase transition and k, are deter-
mined by the conditions dw?/dk, =0,
ﬂ)l(kx =k0,ky =O; Tl )=0 as
2
k===~ T, =T +—= 3
0 2D’ 7' "' 4a,D, (_ )

It should be pointed out that the soft modes Q,(k, ) are
not coupled to the strain e, because the structure is
modulated along the x direction: the nonlinear-
displacement field components u; are functions of x only
and hence g,(k,50) is identically equal to zero. Conse-
quently the IC wave does not produce any local spon-
taneous strain g4(x); actually it is easy to show from Eq.
(1) (after introducing u; instead of g; and solving the
Lagrange-Euler equations) that €,(x) is the only nonzero

x-dependent spontaneous strain and that it is proportion-
al to the spontaneous value of Q,(x) squared (note that &
and g4 are not coupled to Q,). Therefore the IC phase
cannot be looked upon as a precursor of the monoclinic
lock-in phase with the homogeneous strain g,; conse-
quently, the lock-in transition is necessarily discontinu-
ous. In this sense, Cs,CdBr, is qualitatively different
from other modulated ferroelastics, such as
[N(CH,),],CuCl,,? for example, in which the IC phase
near the lock-in transition consists of a periodic sequence
of ferroelastic domains, which in the commensurate (C)
phase continuously transforms into a real domain struc-
ture.

On the other hand, the modes Ql(ky) are bilinearly
coupled to &4(k,)=ik,u,(+ik,u,) which represents a
transverse acoustic wave. Obviously, we should consider
the stability of the parent phase with respect not only to
the Q,(k,) modes but also the Q,(k,) modes. An analo-
gous situation is found in the piezoelectric KH,PO,, for
example; there is a bilinear coupling proportional to k,
between a soft optic mode and a transverse acoustic
mode. It is well known that in such a case the optic-
mode instability always drives the mixed acousticlike
mode unstable first.* The instability may occur at k,#0,
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or the slope of the acousticlike branch at k, =0 may fall
to zero, making the system mechanically unstable. It is

easy to show that, if C, in (2) is negative, the acousticlike

mode with ki =— C, /2D, reaches zero frequency at the
temperature
2 2 2 ’
T/=T;+ +—L—=7i+—2—. ()
PO e, 4aD, ' 4a,D,

If, however, C, is positive, the stability of the crystal is
violated @ when  the  static elastic  constant
Cy=C% —f2/a,(T —T,) goes to zero at the tempera-
ture T1.2 As a matter of fact, the phase modulated in the
k. direction sets in; therefore for C, positive we should
have

2
T,>T;=T,+

b
a1C24

while for C, negative a stronger inequality, i.e.,

C?.
T,>T)+——,
! 1 4a,D,
should be satisfied. (Obviously, the same arguments ap-
ply to the transverse acoustic modes propagating in the z
direction, too.)

1. DISCUSSION OF THE STATIC
ELASTIC CONSTANTS

In this section we derive and discuss the expressions
for the elastic constants in the static approximation. Our
theoretical results are qualitatively different in the IC
phase from those reported previously.? Therefore we
show the calculations concerning this phase in more de-
tail. The general expression which gives the variation of
the elastic constants in the IC phase using the free-energy
expansion in real space is derived in the Appendix. The
elastic constants calculated with the aid of this expression
have to be, of course, the same as those derived in re-
ciprocal space by the standard method (see below).

The difference with Ref. 2 concerns the variation of the
three “longitudinal” constants C; (i =1,2,3) which are
given in the Appendix. It is clear from these expressions
that all the C; (i =1,2,3) have to undergo three down-
ward jumps not only at Ty and T butalsoat 7;.

A. Transition at T¢

We start with a quantitative discussion concerning the
transition at T. The frequency of the soft mode which
governs this transition (denoted as ,) is about 4 cm ™! at
Tc.2 This is between 9 and 40 times greater than the fre-
quency of the acoustic phonons measured by Brillouin
scattering.! Moreover, no significant broadening was
measured either in Brillouin or in Raman scattering.
This means that the measured elastic constants .are not
influenced by the dynamics of the order parameter. The
temperature dependence of @3 above and below T (in
Ref. 2) can be approximated by two straight lines from
which the following quantities are obtained: T,~110 K;
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a,~1.2X102s72K"!; and

dw?

9= ——2

dT

2
dws

dT

T<T, T>Tq
6 differs from 2 (the usual Curie-Weiss behavior) because
of the renormalization of the slope of w? in phase IV due
to the terms 3B,(03)’Q3 and 3 H,eiQ3 (the exponent s
stands for the “static” value throughout the paper).
More precisely, to be consistent with a development of
the free energy up to the fourth order with respect to @,
and @,, one would have to add several terms to Eq. (1)
which also renormalize 3, namely, (Q3e; and
Q%(¢1Q% +<P2Q194+<P353,)-

Coming back to the elastic constants: using the
coefficient 8, the expressions for C¢4 are found as usual:

h2

=0 - __ %
C66 C66 az(T_TZ)

for T>T¢, (5a)
h 2

= 0——
Cos=Cos ay(Te—T,)+6a,(Tc—T)

for T<T¢,

(5b)

where the renormalization of the coupling constant 2 due
to the term 3£(Q%5)°Q,€¢ has been neglected. In the ab-
sence of the coupling term gQ,@,¢s, Cg¢s would vanish at
T,=T,+h?/a,C%. In reality, when this coupling is
present, the system becomes mechanically unstable at T
with respect to a combination of Css, Cg, and Csg which
vanish at T¢. The coupling between Q, and &5 can be
considered as bilinear in phases III and IV for a nonzero
value of Q]. To obtain the variation of Css due to this
coupling, one has to replace the coupling constant 4 in
Eqgs. (5a) and (5b) by gQ7:

(803
az(T_ T2)

(gQ%)?
4 Te~Ty)+0a ) To—T)

CSS =C(5)5 - for TC < T < TL > (63.)

Css= C(s)s -

for T<T, .

(6b)

The difference between the two types of coupling act-
ing on C¢q and Css can be observed in phases I and II.
Cge softens already in the high-temperature phases [Fig.
12(c) in Paper I] and is not influenced by the transitions
at T; and T (the very small jump observed at T can be
explained by a weak coupling between Q; and Q, which
was neglected in the above calculations). On the other
hand, Css [Fig. 12(b) in Paper I] slightly hardens in phase
I: this regular variation is due to the contraction of the
unit cell and is not related to the PT sequence. In the IC
phase the coupling term related to Css takes the form
801(ko)Q,(—ky)es(k =0) (where k, is the frozen-in
wave vector): its contribution to the elastic constant is
always negative and can explain the very small softening
of Css in the IC phase near T;. The effect is, however,
much smaller than in the C phase because the frequency
(k) should be higher than @,(0).
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The fit of C55 and Cgq is very satisfactory (see Fig. 1)
with the following values of the parameters:

h%/ay=~125 GPaK (|h|~1.2X10"? GPa'/2s™1);
T,~111 K (Tj}=~142K); 6=~3.0;

[gQ3(Tc)*/a,~45GPaK

{with [Q$(T)]? linear versus temperature}, which agree
very well with the fit of the soft-mode temperature depen-
dence. However, it is difficult to interpret quantitatively
the origins of the increase of the slope of the soft-mode
frequency below T.. The constants H; (i =1,2,3) are
limited by the magnitudes of the jumps of C,;, and C;,
(see Figs. 5 and 8 in Paper I); a large value of £ would re-
normalize the coupling constant 4 and would slow down
the increase of Cgs below T when going away from the
transition. Therefore these two terms are probably not
the leading ones, but they cannot be completely neglect-
ed. Unfortunately there is no other reliable information
about the strength of the coupling between Q, and Q,.
Moreover, one generally observes a nonlinear variation of
(Q3$)? versus temperature; this, indeed, can deeply modify
the behavior of the elastic constants. Consequently we
did not attempt to improve the quantitative fit with our
experimental results using such additional unknown pa-
rameters. ‘

Coming back to the longitudinal constants derived
from Brillouin spectra, C,, and C,;; show downward
jumps around 7. as expected. This allows a rough evalu-
ation of H%/B, and H3/B, (both values equal approxi-
mately 0.15 GPa). The value of H?/B, has to be
significantly smaller. The C,, and C;; jumps are rather
smooth, due to the renormalizing terms arising from the
bilinear coupling of the order parameter with the shear
strains (see the Appendix); however, a complete quantita-

1 i ! t TR |
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FIG. 1. Fits of the elastic constants Cgs and Css based on
formulas (5a), (5b) and (6a), (6b). (@) and (O) are the Brillouin
data corresponding to y4(b) and ys(c), respectively (the nota-
tion is defined in Paper I). We have taken y4(b)=C¢ and
ys{c)=Css even in the triclinic phase when adjusting the fits.
The intersection of the dashed line with the temperature axis
gives the temperature T').

g =04 (ko )+ Q1 (—ko )] =a*
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tive interpretation of the behavior of C,, and C;; below
T cannot be performed since, in the discussed model,
fluctuations have been neglected. Notice that C,, was
also measured by ultrasonic propagation: at T, it suffers
an abrupt downstep, significantly larger than the one ob-
served through Brillouin measurements. It is well known
that the contribution of the fluctuations increases when
the frequency decreases. However, we cannot provide a
full interpretation of the measured differences, since,
below T, the ultrasonic data show a strong attenuation
of the propagating longitudinal waves, probably related
to the domain walls appearing in phase IV. This prevent-
ed us from finding a satisfactory fit to the experimentally
observed behavior.

B. Transitions at T; and T,

1. Longitudinal elastic constants

It is illustrative to calculate the elastic constants in the
IC phase using expression (2) for the free energy in the re-
ciprocal space. The frozen IC wave Qi(k,)=Q;c (the
higher harmonics are neglected in this paper; note that
Oic can be always chosen real’) produces new bilinear
coupling terms between homogeneous strains
g;{k =0)=g; and the soft-branch modes. Replacing in
each F; term one of the Q,(k) by its spontaneous value
Q3 we get the coupling term

2FI[Q31'( _ko )Ql(ko)si-l-c.c]
=2F;Q1c[Q(kg)e; +c.c.], (D

where c.c. means the complex-conjugate expression. It is
well known (see Ref. S5, for example) that the Q,(k)
modes are no longer normal modes of the IC phase since
they become coupled to Q,(k+2k,) modes. The true
normal modes (near tk,) are the amplitudon

—g

RV

.and the Vprhason_
1
P =75 Q1o+ )= Qi(—kotq)]=—¢2, .

Expressing Q,(k) in terms of a,, ¢y the coupling term
(7) is written as

' 2\7_52E;Q1Caosi . ' (8)

In general (Worlock’s theorem®) the diagonal strains &,
(i =1,2,3) are coupled to amplitudons only.

At this point the question of which strains are coupled
to phasons arises. Since the phason is directly related to
the Lifshitz invariant, which, however, does not exist at
k=0, we have to look for a coupling between Lifshitz
terms at k70 and strains.” From symmetry arguments
the following invariants can be derived:
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[ 4, (k)

—iy, lex Q,(—k)—c.c. [g,
[do, (k)

—iy, ley 0,(—k)—c.c. e,
dQ,(k)

—iy, aiz 0,(—k)—c.c. |&5 .

From these terms we finally get
‘/i?’xglcqx[¢qx51(_qx)+c-c-] ’
V2y,01c4, (94 8 —4,) +e.c.]
V2y,01c4:[p, e5(—g; ) Fe.c.].

Since no important anomalies of C;;, Cs5, Cgs have been
observed in the IC phase (see Paper I), we shall not con-
sider these terms any more.

Using the coupling term (7) we can calculate C;; in the
IC phase and we get the usual formula by linearizing the
equation of equilibrium in the presence of a stress o;:

(2V2F;Q1c )

Cii=Ci?— 2
w5 (g =0)

(i=1,2,3), 9)

where the amplitudon frequency at ¢ =0 is given by

w2 =6B,0% (10)

and the static value of the Fourier component of the or-
der parameter in the IC phase is found as

2 Ui C
Oic 3B, —4K (1)

[see (A8) for the definition of K]. Clearly, expression (9)
is the same as the one obtained using the continuous
model in real space [see (A7b)].

For the transition at T, the elastic constant C,, (Fig.
2), as measured by ultrasonic propagation, satisfactorily
fits the model: one observes a jump which provides a
rough evaluation of F3/B; (=~0.8-1.0 GPa). Concern-
ing €,, it is very weakly coupled to the order parameter.
The behavior of Cj3, as discussed in Paper I, is less clear-
ly understood. The linear quadratic coupling term is
negligible; there is a change of slope below T but, due to
morphic monoclinic effects, its value cannot be precisely
derived from the experimental data; anyway, we think
that there is a significant contribution of an additional bi-
quadratic term (GQ?%¢2) which was not considered in ex-
pression (1). In spite of the low frequency involved in ul-
trasonic experiments, the static treatment does not hold
around T}, mainly due to the fluctuations which will be
discussed in Sec. IV. Concerning the Brillouin spectra,
which are related to significantly higher frequencies, they
have to be described, around T; as well as around Tj,
within the frame of a dynamic model, as presented in Sec.
Iv.
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FIG. 2. y, (=C,, above T}) versus temperature after remov-
ing its regular variation. We suppose that this variation can be
obtained by a linear extrapolation of C, (T'>350 K) to the
whole temperature interval studied. (@) Ultrasonic data. (0)
Brillouin data.

2. Cy

In order to calculate C,, the bilinear coupling terms
are found from (2) in a similar way as for C,,. Above T;
they reduce to fQ,(k =0)e,, which provides for Cyy in
phase I,

Co=Cl——L (12)
44 4“4 al(Tl_T) )

In the IC phase the bilinear coupling is written as
(f +6A,07c)Q; (k =0)es+30Qc[01(2ko)es+c.c. ] .
(13)

It should be pointed out that the modes Q,(k =0) and
Q,(2k,) are coupled in the IC phase. However, we shall
neglect this coupling, assuming that these modes are well
frequency separated (see Fig. 3). In other words we do
not introduce phasons and amplitudons for such large ¢
as 1=ky. Using (13) we get for Cy, the formula

+61,0%:)*  _(BM Q%)
C§=C&_<f2 QP ¢ ZlQIa o
O)Ic(k =0) CDIC( 2k0)

where the oy are renormalized Q;-mode frequencies in
the IC phase. They are equal to

ol k)=0}k)+ (6B, —4K)Q% . S (15)

Let us note that this expression is derived from a devel-
opment of (k) around k =0 and consequently its valid-
ity for w}(2k,) is questionable. Nevertheless, it is reason-
able to suppose [as Eq. (15) suggests] that the second
term in (14) is more important than the third one. Just
below T; this term decreases since |f] is significantly
larger than 6|A,|Q%. and since w?(k =0) increases; it
reaches a minimum in the temperature range when
61;Q% becomes comparable with f and then it may
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T<T

N T |
K k2K 2k 3

FIG. 3. Schematic illustration of amplitudon and phason
dispersion curves (solid lines) at two different temperatures T
and T" (T, <T'<T <T;). The dotted lines represent the soft
branch Q,(k) without coupling between modes due to the
frozen IC wave. Note that the frequency of the Q,(2k,) mode
decreases with decreasing temperature.

cause a decrease of Cy. Note that a term of this type
persists in the monoclinic phase below T .

The third term in (14) represents the “amplitudon”
contribution and could contribute to the decrease of Cy,
since w}c(2k,) may decrease:® one observes® experimen-
tally that the incommensurate wave vector k, decreases
when the temperature decreases; the result is that ¢ de-
creases due to the decrease of k, when approaching T
(see Fig. 3). The temperature dependence does not follow
from our model and we take it as an experimental fact.

There is no such third term below T;. In fact C,, in
the C phase is given by the formula

_ (f+31,0%)?

CC=C0
“oOTH L WAk =0)

s - e e (16)

where the renormalized frequency w and the spontane-
ous value of @] =Q¢ in the C phase are equal to

a (T} —T)
B, —2K —4A ’
17

where A=A,f/CY,. The second- and higher-order terms
in A; were neglected. Like the second term in (14), ex-
pression (16) explains the decrease of Cy, in the mono-
clinic phase.

Since the Brillouin data deeply differ from the ultrason-
ic results, we assume that a comparison of the experimen-
tal measurements with the above model has to be restrict-
ed to the ultrasonic properties which are expected to cor-
respond to the static approximation; the Brillouin spectra
will be interpreted in Sec. IV within the framework of a
dynamic treatment. Qualitatively the ultrasonic data fol-
low the predictions of the static model: in the IC phase
one has to take into account the A, contribution in (14)
which can explain the observed maximum of C,4 between
T; and T;. The vanishing of the third term in (14) in the

wt=0}+(3B, —2K —6A)Q%; Qi=
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C phase is presumably responsible for the upward jump

- atTy.

Quantitatively, if one assumes that the static behavior
of Cy4 can be deduced from the ultrasonic data, it is pos-
sible to fit its temperature variation with a value of T ly-
ing between T, and T, [as expected in the absence of ad-
ditional terms in (1) which will be discussed in Sec. IV].
Namely, satisfactory agreement [see Fig. 4(a)] is obtained
for T} $236 K and consequently (K +2A)/B,; 20.495, a
value_very near the upper limit (0.5) above which the
‘monoclinic phase is unstable [in the absence of additional
terms in (1)]; on the other hand, assuming that K is the
leading term, a strong linear-quadratic coupling between
g, and Q, would result and, consequently, this would in-
duce at T, a jump in C,, slightly larger than the one ob-
served through ultrasonic measurements. However, one
cannot expect a quantitative agreement for the value of
this jump since the influence of fiuctuations has been
neglected.

3.0 - S

(®)

Elastic constant (GPa)
I
(<]
T

20 N ! . 1 : ! L ]
220 240 260 280 300 320

340

)

25 - D

Elastic constant (GPa)

220 240 260 280 300 320
Temperature (K)

FIG. 4. Fits of the ultrasonic and Brillouin data related to
74(b). (@) ultrasonic data; (O ) Fit derived from the static mod-
el; (O) Brillouin data; the dashed line corresponds to the maxi-
ma ‘of the Brillouin lines derived from the dynamic model. The
list of the “static” (T}, f*/a,) and the “dynamic” (a,r,) param-
eters corresponding to (a) and (b) is given in Fig. 5.
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In Fig. 4 the simulation of the variation of Cy, versus
temperature in the IC phase is given only as an example
to illustrate the above qualitative interpretation. The fit
is based on expression (14) without the last term and is
then poorer than in phase I, especially near T;. In fact,
the contribution of this term is not known because we
have no experimental information about wy(2k,). In ad-
dition, in order to be able to make quantitative con-
clusions concerning the IC phase, a more complicated
treatment taking into account the experimentally ob-
served hysteresis® should be employed.

Before discussing an alternative interpretation con-
cerning the behavior of Cy (see at the end of Sec. IV), let
us notice that in K,SeO, ultrasonic data concerning the
appropriate elastic constant also show less pronounced
softenings than the corresponding Brillouin spectra.'*
The authors of Ref. 14 suggest that this is due to
misorientations of microdomains, which would lead to a
modified effective ultrasonic velocity (averaged over the
whole sample studied) while the local Brillouin spectra
are less sensitive to these misorientations. In our case
such an explanation cannot be retained: the local
disorientations do not exceed 1° and, then, it can be easily
shown that the velocities do not suffer significant varia-
tions due to misorientations. However, the ultrasonic re-
sults can be affected by various defects, including domain
walls between domains showing slightly different orienta-
tions.

IV. FREQUENCY DEPENDENCE
OF THE ELASTIC CONSTANTS

In order to explain the large differences of the elastic
constants C,,, C4 deduced from ultrasonic and Brillouin
measurements in the incommensurate sequence, the dy-
namics of the order parameter Q; should be taken into
account. We start with C,, in the parent phase above T;.
The form of the Brillouin line (see Fig. 9 in Paper I) sug-
gests that the soft mode @, is of the relaxation type, ow-
ing to a dynamic orientational disorder of CdBr, tetrahe-
dra.? Using (2) we can write down two coupled equations
of motion [Landau-Khalatnikov theory (LK), As an
example, for a propagation along y in phase I one writes:

Lo (k) + Chegle, )+ O (k) )=0(k,,t)

(18a)
ky

IO, (k,)+—=—0,(k, )+ Feqlk,)=0 , (18b)
7i(k,)

where p is the mass density, o(k,) is the Fourier com-
ponent of the stress conjugate to g4, I is a damping con-
stant, and the relaxation time 7(k,) is equal to
F/m%(ky ). The damping constant of the acoustic wave
has been neglected. The effective “ultrasonic” elastic
constant Cy(k,,0)=Cjy—iC}, is given by the well-
known!! Debye-type relaxation formulas:

AC(ky) AC
C' =CO - 4 gco - s
“OTH 1Ak Y 1rde?
o = ACUky (k) ACT, {19)
= = @,
“ ket T 14T

where m(k,)=1,=T/w}(0), and AC(k,)
=(f2/T)r(k,)=AC=(f*/T)r. Below T; obviously
the same dynamic factor (1-+irw)”! appears in the
second and in the third term of (14) with a corresponding
renormalized relaxation time mic=T/w}. We do not
present these formulas explicitly since the ultrasonic data
can be understood qualitatively within the static approxi-
mation. As for the interpretation of the light scattering
by the shear wave g4, a more careful analysis will be
presented below.

Coming back to C,,, the LK theory leads to the usual
result for the incommensurate sequence:

Cp=CY%, T>T;, (20a)
(2F,Q1c )

Cp=C}——————, T <T<T; (20b)

272 p(1tier,) L P '
(2F,Qc )

C22=C32__‘i;Q.C—_,' T<TL Py (200)
o&1t+ioTe)

where 7,=T"/w?, 7c=T /w% [see formulas (10) and (17)
for w? and w2, respectively]. Focusing at the transition
into the IC phase, the absence of any pronounced anoma-
ly in the Brillouin-scattering data (see Fig. 2) can be ex-
plained if one assumes that at Brillouin frequencies
T, >>1 over a wide temperature interval below T; (10 K
or more). However, the shape of the anomaly observed
using ultrasonic measurements does not show the steplike
jump expected in the static limit. On the other hand, the
Brillouin spectra as well as the ultrasonic results show a
pretransitional softening of C,, above T;. As usual, a sa-
tisfactory interpretation has to include fluctuations. Re-
cently, a consistent perturbation theory of elastic
anomalies due to the order-parameter fluctuations has
been worked out.!? Using the results of this theory, we
find for C,,(w,k =0) above T (in the low-frequency lim-
it):

FlkpT,

C,,(0)=C% — -
z 2 16w|C,132[a,(T —T;)]'/?

2.2 -
w =L Te”
32 [a(T—T))7P

1 Tw

S e (T—T))

+oeet @21

According to this formula C3, should decrease when ap-
proaching T, as observed. The decrease has to be more
pronounced for ultrasonic data (which essentially corre-
spond to w=0) than for Brillouin results, as experimen-
tally verified.

Below T;, for an order-disorder system, the fluctua-
tions can be accounted for simply by taking in the LK
formula (20b) a non-mean-field temperature dependence
of the order parameter, i.e.,
~ a (T, -T) o
Ofc—0'=—5 gtV T~ T,



6570

where the renormalized (experimental) phase-transition
temperature is 7; =T, —A (A and x are some positive con-
stants).'? This does not disagree with the smearing of the
jump observed by Brillouin scattering, which only results
from the large value of w7, (where 7, is the appropriately
renormalized relaxation time). However, the Cj
behavior derived from ultrasonic propagation is not com-
pletely understood: on the one hand, the remaining
discrepancies can be due to the fact that the above model
does not take into account the critical fluctuations and,
consequently, cannot hold very near T;; these critical
fluctuations could be responsible for the absence of a
jump of C,, at T; in ultrasonic studies. On the other
hand, below 7; the “ultrasonic” C,, slightly increases
(see Fig. 11 in Paper I). It is well known! that such an
increase might be due to the sixth-order term %DQ?
which should be added to (1).

The absence of any pronounced anomaly of C,, in the
Brillouin scattering (see Fig. 6 in Paper I) throughout the
IC phase suggests that the dynamics of the order parame-
ter is very slow, i.e., o7, =wI'/w2(g =0)>>1 [see (20b)].
On the other hand, concerning the behavior of C,; near
T;, the Brillouin results markedly differ from the ul-
trasonic data (see Figs. 6 and 11 in Paper I): (i) the down-
ward jump of the static C3, is significantly smaller when
measured by Brillouin scattering than by ultrasonic prop-
agation; (ii) in a large temperature interval below T, an
increase of the Brillouin linewidth is observed, while
there is no enhancement of the damping for the ultrason-
ic propagation. A natural explanation of these observa-
tions would be that below T, the relaxation frequency
Tc ! of the order parameter Q,(k =0) is already much
greater than the ultrasonic frequency but still comparable
with the Brillouin frequency (we recall that the C phase
would set in at T| > T if there were no IC phase). The
full width at half maximum (FWHM) of the Brillouin
lines related to C,, is significantly larger just below T
than just above: in the LK approximation this suggests
that, at T, 7o <<7,. To allow this conclusion it can be
shown that the value of (K +2A)/B, has to be very close
to 0.5, in agreement with the evaluation derived from the
C 44 behavior in the preceding section.

An alternative hypothesis allowing 7o<<7, assumes
that the virtual ferroelastic phase transition is of the first
order and takes place at a temperature T, > T]. Obvi-
ously, in such a case, the spontaneous value Q. at T, will
be larger, leading thus to a further decrease of 7(7 ). In
addition such a hypothesis would provide a very good fit
for the static variation of C,4 versus temperature mea-
sured by ultrasonic propagation (see Sec. III) allowing T’}
to be smaller than T;. Moreover, a first-order transition
at T, induced by the above-mentioned %DQ? (D >0)
term, is expected to give rise at T; to an upward jump for
any diagonal elastic constant related to a strain bilinearly
coupled to the order parameter, which is the case for Cyy:
such a jump is indeed observed experimentally.

There is indirect experimental evidence that the ferroe-
lastic phase transition is of first order. If the temperature
dependence of Css in the monoclinic phase is extrapolat-
ed into the region of the IC phase [see Fig. 12(b) of I], Cs;
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is found to reach its value Cs above T;. This disagrees
with the fact that the temperature anomaly of Css is
governed by the morphic coupling constant gQ., which
is zero above T; (otherwise the ferroelastic phase would
set in at higher temperature than the IC phase, which is
not the case). Clearly, this discrepancy would be re-
moved if the hypothetical ferroelastic phase transition
were of first order.

In order to get a first-order phase transition in our
model we need B, in (1) to be negative. More precisely,
various coupling terms renormalize B, into B¢ and B¢
in the incommensurate and commensurate phase, respec-
tively. To ensure a first-order (virtual) phase transition at
T,. and a second-order phase transition at T}, B¢ has to
be negative and B ;¢ has to be positive. B, and B¢ re-
spectively are expressed as: - ' ‘

BIC=B1 _2K _4A >

Byc=B;—3K .

There are still two fourth-order terms (A,Q%¢, A;Q,3)
which have not been written in expression (1) and which,
in the same way as A,Q3¢,, can contribute in the C phase
but do not contribute in the IC phase because g4(k, )=0.
These terms and the difference between the contributions
of K in the IC and the C phases may allow the conditions
B,c <0 and B ;¢ >0 to be realized.

Shape of the C, Brillouin line

We shall now investigate the spectral density of the
scattered light S(k,o) due to the strain wave g, propa-
gating in the k direction (for example along the b axis as
discussed in Sec. III, but in order to simplify the expres-
sions we omit the index y of the wave vector). It is well
known (see Ref. 15, for example) that

Sk,0) < (|Ae;(k,wlepes517)

where e;,eg are the unit polarization vectors of incident
and scattered light, respectively, k=k,—kg, {(-:-)
denotes a thermal average, and Ae;; is the change of the
high-frequency permittivity induced by 6Q,(k,») and
Seylk,0), i.e.,

A€y, (k,0)=n18Q(k,0)+E8e4(k,0) . 22)
Hence
(lAe,, (k,0)[2) =n*([8Q, (k,)[?)
+E%(|8e,(k,w)|?)
+9E(8Q,(—k,w)de4k,w)+c.c.) .

The spectral densities of the fluctuations can be found in
a usual vvay,15 i.e., by solving (18a) and (18b) with a ran-
dom force acting on 8Q; (k) added to (18b) and using the
fluctuation-dissipation theorem:
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(|Ae, (k)= lgz(

49 BRILLOUIN AND ULTRASONIC STUDIES ... . IL ... 6571
Cho o 2(k)/T -
V |° (pa/k+CuP+C | 1+ 2ry(k) /T pa? /P — Co )~ P2 k)’
(f(k)/T)
+2nE A . (23)

(pa? K — CON L1+ f k) /DN pa /2= OO ) TPt K)ot

In (23), 7(k)=T/w% k) can be replaced by 7;=T"/0?(0). The spectral density can be now rewritten into a compact

form which is more convenient for further calculations:

P

7o

[1—a(1—0%)7?

T.__
S @) < ke T

Cl

Here, Q*=w?/0} (where w%=k?CY,/p is the squared
frequency of the acoustic phonon far above the transition
temperature), 75 '=a,AT, /T, AT,=T{—T,
=f2/(a,C%), and a=nCY, /Ef. BExpression (24) holds
for phases I and III but, indeed, some parameters have to
be renormalized in the monoclinic phase:
(T 7 T)=T/w2, f—f+30Q% It can also be
used in the IC phase with I /7ic=w?, if one neglects the
A Q3%, coupling term. A more complicated expression
would be obtained when taking into account A;; however,
the main effect of A, is supposed to renormalize f in (24)
(f—"f+6)"1Q%C)'

Usually, only the first term in (23) is taken into ac-
count; '€ it corresponds to the a—0 limit in (24). Howev-
er, the case @70 which describes two interfering contri-
butions has been previously considered in analogous situ-
ations of coupled variables: this is the case for instance
for the analysis of the Brillouin scattering in KH,PO,
near its ferroelectric-paraelectric transition.!” 18

Thus, the predicted variation of the shape of the Bril-
louin spectrum in phase I is completely defined by five in-
dependent parameters which, for instance, may be chosen
as Ty, T}, wg, Tp, and a. As discussed in Sec. III, the ul-
trasonic data give access to wg, Ty, and T'i.

Coming back to our Brillouin results in phase I, the ob-
served spectra satisfactorily agree with the above model
(see Fig. 5), if one excludes from their analysis the very
low frequency range where the experimental conditions
do not allow us to subtract precisely the contribution of
the elastically scattered light. Using 7,=234 K,
T7=236 K, and C},=3.0 GPa, which give a good ac-
count of ultrasonic results, the best fit for Brillouin
scattering is obtained for 7,=2.4X1071% 5, which pro-
vides a value of w7, equal to 0.66 at T; [Fig. 5(a)]. With
these conditions and taking 1/a=~ —0.01, the spectra are
reasonably reproduced by expression (24) convoluted
with the instrumental function. An attempt to fit the
spectra with a=0 would provide a significantly poorer
fit, as illustrated in Fig. 6: taking into account only the
strain autocorrelation function always gives rise to a
broadening of the high-frequency wing of the Brillouin
line, which is not observed in our experiments; the Q-Q
and the Q-¢ correlation functions can delete this broaden-
ing and even give rise to a minimum of S (k,w), at a fre-
quency above the maximum of the line, as experimentally
observed below about 265 K in our spectra (see Fig. 5).

[ro/m(TH1— Q3 —1P+0i 2QA1— Q27

N ¢ 7))

—

@

T=253K

T =2635K

1.5

‘Scattered intensity (counts s mwT)

1 1

05 T=253K 05

+ [}
0 0.1 0.2 o} 0.1 0.2
Brillouin shift (cm™)

()

Scattered intensity (counts s mw)

A - L 0 P 0
[ 0.1 0.2 0 0.1 0.2
Brillouin shift cm™)

FIG. 5. Thin lines: Brillouin spectra corresponding to 74(b)
in the Pnma phase; bold lines: fits obtained using formula (24)
convoluted with the instrumental function (Gaussian function,
FWHM=0.018 cm™!). The “static” parameters (T},f2/a;) of
(a) and (b) correspond to the parameters of Figs. 4(a) and 4(b),
respectively. Parameters of fits: (a) T'7=236 K, f%/a;=6.0
GPaK, 1/a=—0.01, 7,=2.4X1071 5 (b) T1=230 K,
f*/a;=13.5 GPaK, 1/a~ —0.01, p=1.8 X 10~ s,
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FIG. 6. Comparison of the fits of the asymmetric Brillouin
spectrum near the Pnma<«>IC phase transition (T'==253 K). (1)
experimental; (2) curve obtained when taking into account the
€4-84 autocorrelation function only (@=0); (3) fit involving the
contribution of the order parameter to the light scattering
(1/a==0.01, 7,=1.8X 1071 5), Both fits are based on the
static parameters which are obtained from the ultrasonic data
(T7=230K, T, =225.5K).

Moreover, the hypothesis of a non-negligible contribution
of the relaxator is enforced by an independent experi-
ment: this relaxator is observed in the geometry x (yz)x
(see Fig. 4 in I), a configuration where the propagating
phonons are not related to €,, and where, consequently,
only an 7)-like term can contribute to the light scattering.
There is a large uncertainty in determining 7} from ul-
trasonic data, and equivalently good fits may be obtained
for any value of T'| lying in the (230, 236) K interval. We
have shown that a virtual first-order ferroelastic phase
transition can exist at T, between T, and T, and conse-
quentily 7'} can be smaller than T;. This last hypothesis
was supported in the preceding subsection by various
features of the behavior of C,, and Css. Using T7=230
and T;=226 K, the best fit for the Brillouin spectra is
obtained for 7,=1.8X107° s (and consequently
wp7T;=0.73 at T;) and 1/a=~—0.01. Figure 5(b) shows
that the agreement is about the same as in the case where
T exceeds T;. In conclusion, it is not possible to decide
whether the virtual I<III transition is of first or of
second order in view of the C,, Brillouin-line behavior,
but, in both cases, the orders of magnitude of 7 are the
same and the contributions of the relaxator to the scatter-
ing do not differ much.

Below T, in the C phase, 1/7¢ is large enough to give
rise to a symmetric sharp Brillouin line, the frequency of
which is simply given by the static model used for the
analysis of the ultrasonic data. In the IC phase wzTic
remains in the vicinity of 1: between T, and T;, the
shape of the Brillouin spectra does not qualitatively vary;
the.spectra extend over a broad frequency range and their
intensity is rather low; this prevented us from precise
determination of the parameters involved in (24) and
from a quantitative interpretation of the small tempera-
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“ture variation of w7 in this temperature range.

Finally, the high scattered intensity in the very low fre-
quency range near 7T; still needs to be interpreted but, in
our opinion, owing to the experimental difficulties, quan-
titative data cannot be easily obtained.

V. CONCLUSION

Through a detailed comparative discussion of the Bril-
louin and of the ultrasonic data concerning Cs,CdBr, in
the vicinity of its phase transitions, we have shown that
most of the results can be interpreted with the aid of the
previously proposed free-energy density after some minor
modifications. One has to take carefully into account the
two following points. (i) The coupled dynamics of the or-
der parameter and of the strain can deeply modify the
predictions of the static model, which often becomes
inappropriate when analyzing the Brillouin scattering.
This is the case for the incommensurate sequence in
Cs,CdBr, monitored by an order parameter Q,, which
appears to be a relaxator with a characteristic
temperature-dependent relaxation time lying around the
inverse of the Brillouin frequency in the vicinity of the
Io1I transition: it strongly affects the Brillouin spectra
related to the strain g4, which is bilinearly coupled to Q,.
(ii) The modulation of the high-frequency permittivity
does not only result from the variations of the strains but
can also derive from the motion of the order parameter,
which gives rise to an additional contribution to the light
scattering in the studied frequency range. We have
shown that this happens in Cs,CdBr,, where the high-
frequency permittivity linearly depends upon Q;. As a
result, the above-mentioned spectra (Fig. 5) depend upon
three correlation functions (shortly labeled Q-Q,, £4-€4,
and Q;-¢,;) and we have found expressions which reason-
ably fit our experimental data.

Throughout this paper, we have been able to derive the
order of magnitude of a number of parameters which ap-
pear in the free-energy density. However, it is clear that
only semiquantitative evaluations can be made, since the
expression for the free energy is necessarily truncated.
We have shown that the influence of terms neglected in a
first approach can be significant but also that nearly
equivalent fits can be obtained with slightly different
manifolds of parameters when many terms are retained in
the free energy. As an example, we demonstrated that
one cannot unambiguously decide if the virtual
Pnma<—P2,/n1l phase transition is a first-order one or a
second-order one, but that in any case the pertinent terms
have values near the limits separating these two situa-
tions. To improve the overall understanding of the phase
transitions in Cs,CdBr, ultrasonic and Brillouin studies
under hydrostatic pressure or uniaxial stress would
indeed be helpful.

Another limitation for a complete quantitative inter-
pretation is related to the fluctuations. On one hand, it
has been shown in this paper that they deeply influence
the experimental results but, on the other hand, their pre-
dicted effects can be treated only by using very simplify-
ing approximations.

Finally, some parts remain to be elucidated, for which,
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up to now, we have only qualitative proposals. They con-
cern the hysteresis effects, which are mainly observed
through ultrasonic measurements, and the low-frequency
quasielastic scattering in the temperature range extending
over the IC phase and just above. These are probably
due to defects, which were not considered in our theoreti-
cal approach, since we have only rather indirect experi-
mental evidence of their presence in the crystals studied.
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APPENDIX

We denote by Qf and € the static equilibrium values of
the order parameter and of the strains (Q3 =0 in the IC
phase). Applying a homogeneous constraint ¢; (or, more
precisely, when dealing with the elastic waves: o; is con-
stant in a volume  much greater than the primitive cell
volume but the characteristic dimensions of { are much
smaller than the wavelength of the elastic wave), the stat-
ic values of Q;, O,, and g; change:

€; =¢i+08¢;

0,=0i+80,
=qo,1 +41,; coskx +g, jcos2kx +§; ; cos3kx + - - -
=38qy,1 +(q} +8q; )coskx+ - - -

0,=80,=7,+q,coskx+ -+

(A1)

=8¢, +8q;,coskx+ -+ .

g are x independent. The values 8¢; and 8¢; are chosen
to minimize the free energy of the crystal. C;; is defined
as

_do;
U d(8e;)

where the derivatives are calculated for vanishing values
of the strains 8¢, (1=<a=6). Using the relation between
o; and the strains,

2F? (T,—T)

1 OF(%,,95,,)

9g;
1 dF (g, +8¢e,4qp5, t84gg,)
T aYa a(8¢g;) v, (A2)
C;; is written as
C =1 azF(Ea’qﬁ,n)
b0 0 9(8¢;)3(8¢;)
3(8qy ) *F(%0dp,)
2 9k,n _l_f ds, (A3)
© 0(8g;) Q Yo d(8e;)3(dqy,)
At equilibrium, where [3/8(8q;,,)]{ F(€,,d5,)) =0,
< *F(E,d5,) )
d(8q; , 13(5¢;)
*F(2,,q a(d
< ( aqﬁ,n) ) ( qk’")z(). (A4)
o \0(8q;,)3(8q; ,) /1 9(8¢;)

Putting (A4) into (A3) one can obtain the general expres-

sion
F ’F 3*F
(g | )~ 2 | Yo (oo |)
Y a'Eia'gj s k1 aqk,n&i s mn qumagj s
m,n=1,2
(AS5)
2

vi'=(0— ). (46
mn L OTm Oy |,

where (X ) denotes the mean value of X in volume Q.
The index s indicates that the second derivative is calcu-
lated in the equilibrium values of Q;, Q,, and ;.

As an example, we give here the variations of the C;
(i =1,2,3) calculated using the above formulas (we have

neglected the second and higher harmonics).
For phase I (T'>T;):

cg, (A7a)
phase II (IC) (T, < T < T}): ‘

4F?

c,.{.C=c,.‘,?—F;I , - (A7b)

phase ITI (C) (T <T < Ty ):
(A7c)

CC= 0

i g (T —T)1—A/By)+[1/2—(K +2A) /B, (T, —T,) ’

phase IV (T < T¢):
v o 2 (Tc—T)
T By (Te—T)+(1/2—L/BXT—T,)’

(A7d)

3
k=3 F}{C,-(}}_IFJ-, L= 3 Hi{ci(}}—lHj

hj=1 =1

({Cj} ™" are the elements of the inverted matrix of the
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elastic constants); and

2 (gQ35)»?
Te=T,+——+ gQ‘o
a;Ce  a,C5s

is the renormalized temperature of the transition.
It is clear that all the C; (i =1,2,3) have to undergo
two downward jumps at 7;, T;, and a more or less
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abrupt softening at T [it can be regarded as a jump for
small (T—T,)]. The coupling constants F,, F,, and H,
can be neglected because all the observed jumps of Cy,
and C,; are very small (see Figs. 3 and 8 in I). In this
way the expressions for K and L can be simplified. This
means, for example,

K=F3{C%}!. (A8)
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