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Time-resolved terahertz spectroscopy and Monte Carlo simulations of charge-carrier motion are used to
investigate photoinduced transient conductivity in a blend of a low-band-gap polyphenylene copolymer and
fullerene derivative. The optical excitation pulse generates free holes delocalized on polymer chains. We show
that these holes exhibit a very high initial mobility as their initial excess energy facilitates their transport over
defects �potential barriers� on polymer chains. The conductivity then drops down rapidly within 1 ps, and we
demonstrate that this decrease occurs essentially by two mechanisms. First, the carriers loose their excess
energy and they thus become progressively localized between the on-chain potential barriers—this results in a
mobility decay with a rate of �180 fs�−1. Second, carriers are trapped at defects �potential wells� with a capture
rate of �860 fs�−1. At longer time scales, populations of mobile and trapped holes reach a quasiequilibrium
state and further conductivity decrease becomes very slow.
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I. INTRODUCTION

Materials based on conjugated organic semiconductors
are extensively explored in view of promising application,
for instance, in inexpensive solar cells.1 Development of ef-
ficient materials requires detailed understanding of the fun-
damental photoinitiated processes in these systems. The pri-
mary excitation in polymer/fullerene bulk heterojunctions is
an exciton on the polymer chain, which dissociates within
tens of fs: the electron is transferred to the fullerene ball
while the hole remains on the polymer chain.2,3 Initially, the
holes move along the chain on which they were generated.
The hole interchain transport is much slower, nevertheless, it
is a prerequisite for collection of charges on electrodes.

It has been speculated that photogenerated charges are
initially very mobile and that they quickly loose their mobil-
ity due to the potential-energy landscape of conjugated poly-
mers controlled by the disorder.4 However, the nature of the
early stages of the intrachain transport remains unclear,
namely, due to the lack of tools able to probe the local trans-
port properties with subpicosecond time resolution at low
probing fields. All-optical pump-probe methods offer an ex-
cellent time resolution, but they are insensitive to the
transport.3,5 The transport mechanisms can be studied using
time-of-flight or time-resolved microwave conductivity tech-
niques; however, the time resolution is usually not better
than nanoseconds.6–8 Subpicosecond time resolution and
sensitivity to the transport properties in transient Stark spec-
troscopy is paid by the necessity to apply very high electric
fields �MV/cm� which often fundamentally affect the
mobility.9 A technique of choice is then time-resolved tera-
hertz �THz� spectroscopy10,11 which offers subpicosecond
time resolution and uses low probing fields �kV/cm�. The
method is highly sensitive to the degree of localization of
charge carriers12 and it directly yields their far-infrared con-

ductivity which contains information about the carrier den-
sity and the carrier local mobility.

So far, mainly conventional polymers �such as
poly�2-methoxy-5-�2�-ethyl-hexyloxy�-p-phenylene-vinylene�
�MEH-PPV� or poly�3-hexylthiophene� �P3HT�� and their
blends with fullerene derivative ��6,6�-phenyl-C61-butyric
acid methyl ester �PCBM�� were studied by time-resolved
THz spectroscopy and the investigations focused on times
�1 ps. The interpretation of transient conductivity spectra in
these materials still remains a subject of discussion. A micro-
scopic picture proposed by Hendry et al.13–15 is based on
calculations of the mobility in a tight-binding approximation
which reflects the effects of torsional disorder on infinite
polymer chains.16 However, matching of the calculated and
measured THz conductivities required a nontrivial extrapola-
tion of microwave conductivity values15 in order to account
for the mobility reduction due to the chain termination, con-
jugation defects, and energetic disorder. Other groups17–19

describe the response of carriers using the purely phenom-
enological Drude-Smith model20 which does not bring a new
insight into the microscopic origin of the transient
response.12

In our former work on a low-band-gap polyfluorene co-
polymer and its blend with PCBM, we tried to interpret the
transient subnanosecond response in terms of dielectric re-
laxations with two distinct relaxation times.21 In this paper,
we achieve a time resolution of �200 fs and develop a mi-
croscopic model of conductivity showing that these relax-
ations correspond to the intrachain motion of carriers over
two distinct length scales delimited by potential barriers on
polymer chains and by the chain terminations. We show that
the carriers are initially mobile: they have a certain excess
energy which allows them to pass easily over the potential
barriers. As the carriers cool, the barriers progressively start
to limit their motion. The ultrafast response we observe can
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be envisaged for a design of ultrafast switches based on or-
ganic materials. The quantitative information about the po-
tential barriers may provide helpful hints for optimizing the
film morphology aimed at obtaining much better macro-
scopic mobility.

II. EXPERIMENTAL

The investigated polymer LBPP-1 consists of an alternat-
ing sequence of two types of monomer units: a low band-gap
segment and a dialkoxy-phenylene unit. The low band-gap
segment contains a central electron accepting 2-thia-1,3,5,8-
tetraaza-cyclopenta�b�naphthalene unit bordered by electron
donating thiophene units on each side.22 This copolymer was
dissolved in chloroform and blended with the soluble
fullerene derivative PCBM in a weight ratio 1:4 �polymer-
:PCBM�. An approximately 1-�m-thick film was prepared
by drop casting the solution on a fused silica substrate. Un-
like most conventional polymers, LBPP-1 exhibits an addi-
tional near-infrared absorption band extending to more than
1100 nm.

The transient THz conductivity was measured in usual
setups for optical pump-THz probe experiments.23 The
sample was excited by ultrashort optical pulses at 800 nm or
620 nm at excitation densities 7–9�1019 cm−3. The key
output of these experiments was the transient THz waveform
�photoinduced change in the THz pulse transmitted through
the sample� �E�� ,�p� measured as a function of time � and
of the pump-probe delay �p. Depending on the investigated
time scales, the retrieval of transient conductivity �� from
these data then requires different approaches.

For dynamics slower than the THz probe pulse length, the
state of the sample does not change during the probing event
and the quasi-steady-state approximation applies. The spec-
tral information about the investigated dynamics is contained
in the time-dependent transient conductivity spectrum
���f ,�p� �f is the probing THz frequency� which is directly
proportional to the photoinduced change �E�f ,�p�; the pro-
portionality function depends on the ground-state properties
of the sample, and it can be determined easily.23,24 In this
regime, it is sufficient to measure the conductivity spectra for
several representative pump-probe delays. We also checked
the conductivity behavior with attenuated excitation beam
intensity.

For short pump-probe delays and for dynamics faster or
comparable to the THz probe pulse length, it is essential to
treat correctly the frequency mixing due to the ultrafast evo-
lution of the sample properties.25,26 Here we employ the
analysis in the two-dimensional �2D� frequency space �f , fp�
which shows that the transient conductivity ���f , fp� is di-
rectly proportional to �E�f , fp� in the 2D frequency
space.24,26 The frequency f is conjugated to the delay �, and
it denotes the spectral components of the transmitted THz
pulse, while the frequency fp is conjugated to the delay �p
and it is related to the dynamical evolution of the system.
The measurement and its analysis closely followed the pro-
cedures described in Refs. 23 and 27 and a few further tech-
nical details are discussed in Appendix A. The transient THz
waveforms at subpicosecond times were measured in a care-

fully aligned collinear pump-probe arrangement on a uni-
form grid of 82�76 points separated by 80 fs steps in both
directions ����p�, providing data in a rectangle with dimen-
sions 6.56�6.08 ps2. The pump-probe delay was varied
from �p,min ��0 ps� to �p,max, where the time origin �0 ps�
represents the temporal overlap of the pump and probe
pulses. Note that due to the large amount of data collected in
this experimental regime, it was not possible to investigate
the dependence of the ultrafast transient conductivity on the
excitation fluence. The setup for the ultrafast conductivity
measurements was available for the 800 nm excitation only.

III. RESULTS AND DISCUSSION

A pump-probe scan without the spectral resolution, ex-
pressing the time dependence of the photoconductivity of the
studied system, is shown in Fig. 1�a�. It displays an instan-
taneous activation followed by a subpicosecond decay. The
decay then slows down considerably so that a nonvanishing
signal is observed even 1 ns after photoexcitation. These two
regimes will be addressed separately in the following two
sections as they need to employ the two different methods
for the conductivity analysis described above.

We suppose that the observed transient conductivity is
dominated by the response of holes on polymer chains. The
measured response cannot originate from the response of
electrons accepted by the PCBM: their mobility character-
ized by transient Stark spectroscopy9 is considerably lower
than mobilities observed in the blend and presented later on.
The large gap of PCBM also prevents its direct excitation
due to the long excitation wavelengths employed in the ex-
periments.

A. Slow conductivity component

Examples of transient conductivity spectra for a few
pump-probe delays measured with the 620 nm excitation are
shown in Fig. 1�b�. The observed spectrum �increasing real
part and negative imaginary part� is characteristic for the
response of localized charge carriers. We fit the spectra by a
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FIG. 1. �Color online� �a� Pump-probe scan measured without
spectral resolution. �b� Measured spectrum of yield-mobility prod-
uct at three representative pump-probe delays �symbols, left axis�
and mobility obtained in the Monte Carlo calculations �lines, right
axis�. Excitation wavelength was 620 nm in both graphs.

NĚMEC et al. PHYSICAL REVIEW B 79, 245326 �2009�

245326-2



sum of two Debye relaxations28 �later we demonstrate that
the two relaxations have their counterparts in the subpicosec-
ond spectra and that the first relaxation is due to the finite
polymer chain length and the second one arises from the
potential barriers on the chains�:

���f ,�p� = n0e0���p��
j=1

2

� j
2�if� j

2�if� j − 1

��f�

,

�1�

where n0 is the number of absorbed pump photons per unit
volume, e0 is the elementary charge, � j is the high-frequency
mobility of the jth relaxation, and 	 j is its relaxation time.
The term n0
��p� expresses the density of mobile charge car-
riers and ��f� is their mobility spectrum. The quantity 
��p�
thus identifies the �instantaneous� density of mobile charge
carriers normalized by the excitation density—for the sake of
simplicity, we will call this quantity a yield of carriers. Note
that in Eq. �1�, 
 may decrease due to both carrier capture
and recombination and � is the mobility of mobile—
noncaptured—carriers.

The shape of the experimental spectra does not change
significantly with �p. Their fit by Eq. �1� yields time-
independent relaxation times 	1=60 fs and 	2�10 ps and
the conductivity amplitudes, e.g., at �p=2.5 ps we find 
�1
=0.12 cm2 V−1 s−1 and 
�2=0.016 cm2 V−1 s−1. Fitting pa-
rameters of the spectra measured with 800 nm excitation
differ by less than 20%.

A single Debye relaxation appeared as the leading term in
the expression for the mobility derived by Prins et al.,29

where the transport mechanism was the carrier diffusion lim-
ited by infinite barriers representing chain ends. Inspection of
Eq. �6� in Ref. 29 allows one to deduce the corresponding
relaxation time

	 =
e0�Na/��2

�intkBT
, �2�

where N is the number of repeat units enclosed with the
barriers, a is the repeat unit length ��1.5 nm for LBPP-1�,
�int is the intrinsic mobility �intrachain mobility along infi-
nite polymer chains without defects�, kB is the Boltzmann
constant, and T is temperature.

Below we extend the Prins’ model of mobility by consid-
ering potential barriers or potential wells on the polymer
chain. We show that the two observed relaxation terms
from Eq. �1� can be accounted for when the polymer chains
contain finite potential barriers, while the presence of poten-
tial wells influences mainly the mobility amplitude, not its
spectrum.

In the Monte Carlo calculations we consider straight poly-
mer chains consisting of N equidistantly spaced repeat units
and terminated by perfectly reflecting �infinite� potential bar-
riers. The holes can hop between the nearest-neighboring
unit and the mean time for the hop to a given neighbor is
�hop=a /v. Later we prove that �hop is very short which can be
achieved by taking the mean velocity v as the thermal veloc-
ity �kBT /m �with the hole effective mass m equal to the mass

of a free electron we get �hop�22 fs�—in this case the trans-
port is very fast and its bandlike character cannot be ex-
cluded.

Further on, we introduce two types of defects on the poly-
mer chains. First, we investigate the influence of potential
barriers enclosing segments of N repeat units �Fig. 2�a��.
The mean time for passing over the barrier is then denoted
�. Infinite barriers are characterized by �=�, while the
absence of barriers can be mimicked by setting �=�hop. Sec-
ond, we study the response of chains containing potential
wells �traps� placed regularly at each N�th repeat unit �Fig.
2�b��. In this case, the mean release time is �� /2 and absence
of traps is represented by the value of ��=�hop. A Monte
Carlo simulation is used to find trajectories of individual
carriers. The mobility spectrum ��f� is calculated using the
modified Kubo formula30 in which the averaging takes place
over a canonical ensemble of carriers and over all orienta-
tions of straight polymer chains. We also define an intrinsic
on-chain mobility of oriented infinite chains without defects
�N→��. In this limit, the diffusion coefficient equals a2 /�hop
and the Einstein’s relation then provides the mobility
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FIG. 2. �Color online� Upper row: sketch of the potential profile
used in the simulations of mobility on polymer chains with �a�
potential barriers and �b� potential wells. �c� Calculated mobility
spectra of holes moving on polymer chains with infinite ��=�,
closed symbols� and finite barriers ��=50�hop, open symbols� and
for several numbers N of repeat units enclosed between the barri-
ers �the polymer chain always contained N=32 repeat units in to-
tal�. Solid lines: fits of spectra calculated for the infinite barriers by
a single relaxation term: dashed lines: fits of spectra calculated for
the finite barriers by two relaxation terms. �d� Symbols: calculated
mobility spectra of holes moving on polymer chains with variable
density of potential wells �N=32 and ��=20�hop�. Lines show the
fits by a single relaxation term. Bottom row: relaxation times ob-
tained from fits of the calculated spectra by one or two relaxation
terms.
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�int =
e0a2

kBT�hop
. �3�

A similar simulation considering either the barriers or the
traps has been employed in Ref. 31 for the calculation of
time dependence of the diffusion coefficient and mobility
along polymer chains containing a Gaussian distribution of
energies of barrier heights or trap depths. In our work, we
concentrate on the calculations of the mobility spectra at
THz frequencies. Furthermore, we set the height of the bar-
riers or the depth of the traps to one given value. On the one
hand, taking a realistic distribution of barrier heights or trap
depths would be more adequate for comparison with experi-
mental data. On the other hand, the employment of the delta
distribution provides a clear picture of influence of defects
on polymer on the THz mobility spectra.

In Fig. 2�c�, we illustrate the mobility spectra for carriers
moving along chains containing infinite and finite potential
barriers. When the barriers are infinite ��→��, the spec-
trum can be accounted for by a single relaxation term. Its
relaxation time 	1 is very short for short-segment lengths and
it increases with N: by inspection of Eqs. �2� and �3�, we
can derive 	1��hop�N /��2 which is confirmed by the simu-
lations. The high-frequency mobility approaches one third of
the intrinsic mobility �int—the factor of 1/3 accounts for the
random orientations of polymer chains. Lowering the barri-
ers �i.e., making � finite� results in the growth of the low-
frequency mobility; the second relaxation with a long relax-
ation time 	2 is then required to fit the calculated spectra.
The short and long relaxation times correspond to the diffu-
sion times along the segments and the entire chain, respec-
tively. Since N must be greater or equal to 2, it turns out that
	1 cannot be shorter than �hop· �2 /��2—in other words, the
value of 	1 imposes the upper limit on the value of the hop-
ping time �hop.

The influence of potential wells is shown in Fig. 2�d�.
Regardless the density of traps and ��, the spectra are always
described essentially by a single relaxation term. The most
remarkable change with increasing density of potential wells
�i.e., with decreasing N�� is a decrease in the mobility am-
plitude while only a slight increase in the relaxation time is
observed. These findings allow us to assume for simplicity
that a part of the carriers �n0
 in terms of Eq. �1�� moves
along the chains without traps and the time decrease in the
yield 
��p� describes the carrier trapping into states not con-
tributing the THz conductivity. A given value of 
 can be
achieved by various combinations of �� and N� and it is not
possible to determine unambiguously, e.g., the density of
traps N /N�.

Since the measured spectra are represented by two relax-
ation terms and not by a single one, the model above indi-
cates the existence of potential barriers within the LBPP-1
chains. The spectra are dominated by the relaxation with the
short relaxation time �	1�. The small value of 	1 found ex-
perimentally evidences that the distance between the barriers
�N� is small and the intrasegment transport is short range. It
also justifies the estimate of �hop entering the simulations and
shows that the intrinsic carrier mobility along �nondefective�
LBPP-1 chains is high: �int�40 cm2 V−1 s−1. The relaxation
with the long relaxation time �	2� expresses the intersegment

transport. Its low amplitude indicates that the barriers be-
tween the segments are rather high. The experimental data
can be matched with N=4 and �=1.9 ps �Fig. 1�b��. No
drop in the real part of the mobility spectra is observed at
low frequencies. This is possible only for long relaxation
time: we estimate that 	2�10 ps. The simulations confirm
that this occurs for chains containing �26 repeat units,
which is consistent with the number average of repeat units
per chain xn of LBPP-1.22 We can further assume that the
jumps over the barriers are thermally activated, i.e., �
=�hope

�E/�kBT� which provides an estimate of the barrier
height �E�120 meV.

The large difference between the simulated mobility and
the measured yield-mobility product �Fig. 1�b�� demonstrates
that the majority of carriers is trapped and does not contrib-
ute to the conductivity. This means that either there is a high
density of shallow potential wells �with short ��� or that
there is a lower density of deep potential wells �long ���.
Note also that we did not observe any nonlinear phenomena
at the excitation densities employed: decreasing the excita-
tion fluence by a factor of 10 led to a tenfold decrease in the
conductivity without a significant change in the shape of the
conductivity spectrum.

In Ref. 21 we speculated that a part of the response may
be due to bound polaron pairs. However, the presented simu-
lations show that the observed response arises from a fast
motion over rather long distances ��aN�, which means that
the observed conductivity must be mediated by separated
charge carriers.

It should be also noted that the defects on real polymer
chains always show some distribution. In this respect, the
particular value of N=4 found by the simulations mainly
indicates that there is a high density of potential barriers.
These may appear due to conjugation defects or torsional
disorder.16 We have also shown that the influence of the den-
sity of traps and their occupation can be fully encoded into
the evolution of 
��p�. However, this is only true for the
conductivity spectra in the THz range which are sensitive
mainly to the most mobile carriers. In contrast, accounting
for the distribution of release times and of the occupancy of
the trap levels is essential in calculating low-frequency con-
ductivity which is determined by all �not only the most mo-
bile� charge carriers.8

With the help of the Monte Carlo simulations we pro-
posed microscopic mechanisms on which our conductivity
model is built. It is possible to devise several ways of its
validation. The temperature of carriers—regardless their ini-
tial energy—should be close to the temperature of the poly-
mer backbone for long pump-probe delays. This means that
in the first approximation, the mobility spectrum should be
independent of the excitation wavelength. In the present
work, no significant difference in mobilities was observed
for photoexcitation at 800 and 620 nm. Transient conductiv-
ity spectra practically independent of the excitation wave-
length were also observed in P3HT.18,19 Measurements of the
temperature dependence then should provide an independent
validation of the transport model employed. Assuming that
the passage over the barriers is a thermally activated process,
decreasing the temperature should dramatically lengthen the
time �. This would result in a decrease in the amplitude �2
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of the slow relaxation which means that the conductivity in
the low-frequency part of our THz spectrum would drop to
zero as demonstrated in Fig. 2�c�. This reasoning is not con-
tradicted by the measurement of the temperature dependence
of conductivity of P3HT.18

B. Ultrafast conductivity component

The measured transient conductivity spectra in the 2D fre-
quency domain are plotted in Figs. 3�a� and 3�c�. We find
that the model expressed by Eq. �1�—describing the slow
dynamics—must be complemented by two additional relax-
ation terms activated immediately after photoexcitation to
obtain a good match with the measured spectra �Figs. 3�b�
and 3�d��. While the expression for time-dependent
conductivity—or equivalently permittivity—spectrum of a
relaxation is well known, the corresponding expression de-
scribing the ultrafast dynamics in the two-dimensional fre-
quency domain is more complicated and we need to account
for the decay of the carrier density

n��p� = n0
0� exp�− �p/Ttrap� � �4�

and for a possible time dependence of the high-frequencies
mobilities, e.g.,

� j���p� = �0,j� exp�− �p/Tj�� . �5�

Here 
0� is the initial quantum yield, Ttrap� is the decay time of
carrier population �either due to trapping or recombination�,
�0,j� are the initial high-frequency mobilities, and Tj� are the
mobility decay times �the primed quantities refer to the ul-
trafast component of conductivity�. Since the relaxation is a
specific case of the damped harmonic oscillator, we apply the
general result derived in Ref. 32 �Eq. �49�� and calculate the
relaxation response as a limit of an overdamped harmonic
oscillator. In terms of Ref. 32 this means that the Green’s
function of the ground state vanishes �GG=0� and that the
relaxation time 	���E /�E

2 is related to the eigenfrequency
�E and damping �E in the excited state, where �E�2�f and
�E�2�f . We can thus obtain for the ultrafast component of
the conductivity

��ultrafast�f , fp�

= n0e0
0�	
j=1

2 
 �0,j�
1
Tj�

+ 1
Ttrap�

− 2�ifp

2�if − 1
Tj�
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FIG. 3. �Color online� Spec-
trum �in �−1 m−1 THz−1� of tran-
sient conductivity �� in two-
dimensional frequency domain.
��a� and �b�� Real part and ��c� and
�d�� imaginary part of transient
conductivity. ��a� and �c�� Mea-
sured data and ��b� and �d�� fit. �e�
Amplitude of the residuals �ampli-
tude of the difference between
complex theoretical and measured
conductivity�. �f� Amplitude of the
ultrafast component of the con-
ductivity as obtained in the fit.
The maximum of the color scale is
common to all graphs. ��g� and
�h�� Cuts of the real and imaginary
parts of conductivity for various
values of fp. Symbols: experi-
ment; lines: fit. The excitation
wavelength for this kind of mea-
surements was 800 nm.
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Despite its certain complexity, the model of the ultrafast
conductivity defined by Eq. �6� involves only six fitting
parameters: 
0��0,1� , 	1�, 1 /T1�+1 /Ttrap� , 
0��0,2� , 	2�, and 1 /T2�
+1 /Ttrap� . The following parameters provide the best match
of the measured transient conductivity �Appendix B�:
1 /Ttrap� +1 /T1�=1 / �860 fs�, 	1�=115 fs, and 
0��0,1�
=0.34 cm2 V−1 s−1; 1 /Ttrap� +1 /T2�=1 / �150 fs�, 	2��10 ps,
and 
0��0,2� =0.57 cm2 V−1 s−1.

We assume that the ultrafast conductivity has the same
physical origin as the slow component �i.e., origin of the
primed parameters should be the same as that of the appro-
priate unprimed ones�; the only difference consists in a
higher excess energy of the nascent holes. The hot holes then
pass more easily over the potential barriers. We find that the
Monte Carlo calculation with the parameters inherited from
modeling of the slow component �N and �hop� and with a
shorter hopping-over-barrier time ��� =0.3 ps� reproduces
well the experimental results on the ultrafast scale and it
allows to determine the initial high-frequency mobilities
�0,1� =1.7 cm2 V−1 s−1 and �0,2� =2.7 cm2 V−1 s−1. The ratio
of the measured conductivity and the calculated mobilities
then provides an estimate of the initial yield 
0��0.2.

The dynamics of holes is controlled by the hopping-over-
barrier time �� . The finding that �� �� indicates that hops
over the barriers are more frequent at ultrashort times; hence
the long-range �intersegment� transport is more efficient at
the early transport stages ��0,2� ��2�. We infer that the initial
value �� =0.3 ps progressively increases with the pump-
probe delay �p as the carriers cool down to approach finally
the value of �=1.9 ps for �p�2.5 ps. The implications of
this transition can be understood by the calculations of the
mobility spectra with �� varying between these limits. The
resulting spectra can be fitted by a sum of two relaxations
and the high-frequency mobilities corresponding to these re-
laxations are plotted in Fig. 4. We observe that �2� is decreas-
ing, i.e., the intersegment transport becomes less effective as
the potential barriers become effectively higher ��� grows�.
Conversely, �1� increases, meaning that the intrasegment
transport becomes dominant, i.e., that the carrier moves
within one segment rather than between the segments. Note
finally, that �1�+�2� equals �int within our model: this can be
understood given the fact that the high-frequency mobilities

are insensitive to the presence of potential barriers.
Based on the results in Fig. 4, we can identify the mean-

ing of the times T2� and Ttrap� . The amplitude �1� does not
decay and for a qualitative view, we can consider that the
mobility decay time T1� in Eq. �5� is infinite. The trapping
time Ttrap� then becomes approximately equal to the measured
longer decay time: Ttrap� =860 fs. In contrast, the amplitude
�2� decreases rather markedly as the carriers cool down and
the shortest decay time of 150 fs then includes both Ttrap� and
T2�. The time T2� is thus apparently the carrier cooling time,
and we obtain T2��180 fs.

The estimate of the initial photon-to-charge yield 
0� is
consistent with the external quantum efficiency of LBPP-
1:PCBM-based solar cell ��10%�.22 However, we cannot
state with certainty that the fraction of 1−
0� of incident pho-
tons is not converted into separated charges. First of all, the
estimate of the absolute value of 
0� is inherently related to
the mobility model developed in the paper, and it should be
taken with a certain care. Moreover, the determination of the
measured conductivity may be quite inaccurate due to the
inhomogeneities of the investigated film. Finally, 
0� does not
account for separated charges possibly produced via interme-
diate states.5 The yield of mobile charges at longer times is
low �e.g., 
�75 ps��0.01� and it further decreases �Figs.
1�a� and 1�b��. The process responsible for the low values of

 is carrier trapping rather than carrier recombination, such a
fast recombination would be incompatible with the external
quantum efficiency of the LBPP-1:PCBM-based solar
cells.22 Moreover, transient absorption measurements of
similar blends showed that there is no recombination on the
time scale faster than 1 ns.5 This means that after 1 ps the
majority of holes is trapped: these do not contribute to the
transient far-infrared spectra but they can still participate in
the slow interchain transport and thus allow the solar cell
operation. The observed slow �tens of ps� conductivity decay
can be regarded as a slow approach toward equilibrium be-
tween populations of mobile and trapped holes.

Note that the assignment of the processes occurring on the
subpicosecond time scale is to a large extent indirect and it
relies on the observation of two dynamical components. The
first one �860 fs� is related mainly to the population decay
while the second one �150 fs� is related mainly to the mobil-
ity decay. Further confirmation of this assignment would re-
quire a use of other experimental methods. For example,
time-resolved THz spectroscopy in multi-THz spectral re-
gion offers a better time resolution and also extra informa-
tion about the transport mechanisms could be gained in a
higher-frequency spectral range.33

IV. SUMMARY

We have used time-resolved THz spectroscopy to investi-
gate microscopic transport of photogenerated carriers in a
LBPP-1:PCBM blend and we have developed a simple the-
oretical model for understanding distinct stages of the trans-
port. The microscopic transport is controlled by potential
barriers on polymer chains which enclose segments of �4
repeat units. The holes are initially hot and they easily pass
over the potential barriers—as a result, the initial hole mo-
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FIG. 4. �Color online� High-frequency mobilities as a function
of �� . The graph indicates the transition between the initial regime
of hot carriers �effectively low potential barriers passed with the
mean �� =0.3 ps� and the quasiequilibrium state characterized by
�� =�=1.9 ps.
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bility is comparable to the polymer intrinsic mobility. Sub-
sequently, the holes cool down at a fast rate of �1 /180 fs�−1,
and they are trapped at an initial rate of �1 /860 fs�−1—these
processes manifest themselves as a steep conductivity drop.
At longer times, the conductivity decrease slows down con-
siderably and it represents the equilibration of populations of
mobile and trapped charge carriers.
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APPENDIX A: ANALYSIS OF THE ULTRAFAST
CONDUCTIVITY

In most of all-optical pump-probe experiments, the time
lengths of the pumping and probing pulses are short com-
pared to the time scale of the investigated processes. Optical
pump-THz probe �OPTP� experiments provide a possibility
to investigate ultrafast processes on a time scale shorter than
the length of the probing THz pulse ��1 ps�. However, in
such a case, the spectral components of the broadband THz
pulse mix with the spectral components of the ultrafast dy-
namical processes in the sample.25,26 One needs to account
for this phenomenon by using appropriate methods of the
data analysis.24,27,32,34–36

In this paper, we used the recently developed approach
based on a Fourier transformation into two-dimensional fre-
quency domain.24,26,27,32 This method applies to a weak
photoinduced response, and its major advantage is that the
transient photoconductivity �� is calculated directly from
the measured data using elementary mathematical operations
only.

The total measured signal �E�� ,�p� contains both the ul-
trafast component �Eultrafast�� ,�p� and the slow component
�Eslow�� ,�p�:

�E��,�p� = �Eultrafast��,�p� + �Eslow��,�p� . �A1�

While the ultrafast component vanishes for long pump-probe
delays ��Eultrafast�� ,�p�=0 for �p��p,max�, the slow compo-
nent persists for �p��p,max. This implies that a straightfor-
ward application of the Fourier transformation to �E�� ,�p�
in the time-window �p,min��p��p,max would give rise to an
artificial ringing in the spectra. To avoid the ringing, we ex-
trapolated the slow component of the transient THz signal
along �p:

�Eslow��,�p� = �E��,�p,max�g��p� �A2�

so that the Fourier transformation of �E�� ,�p� in the variable
�p could be performed in an extended time window �p,min
��p��p,MAX, where �p,MAX��p,max. The extrapolation func-
tion g describes the dynamical evolution of the slow compo-

nent and it satisfies the following conditions: g=0 for �p
�0 ps, g=1 for �p=�p,max and g decays to zero for �p
��p,max. To emulate the real conditions, an exponential func-
tion g was selected with the time constant determined from
the pump-probe scan. This procedure does not affect the ul-
trafast components �their response completely vanishes for
�p��p,max�, but it reproduces the slow components only ap-
proximately.

The extrapolation strategy must be correctly reflected in
the modeling of the transient conductivity spectra. Analogi-
cally to Eq. �A1�, the transient conductivity spectrum is de-
composed into the ultrafast and the slow �extrapolated� com-
ponent:

���f , fp� = ��ultrafast�f , fp� + ��slow�f , fp� . �A3�

While an appropriate model for ��ultrafast�f , fp� must be set
up to learn about the ultrafast conductivity processes, the
slow part of the conductivity ��slow�f , fp� is unambiguously
determined by the extrapolation procedure. In fact, the slow
part of the transient conductivity in the two-dimensional fre-
quency domain is calculated from the two-dimensional Fou-
rier transformation of Eq. �A2� and it reads

��slow�f , fp� = ��slow�f ,�p,max�g�fp� , �A4�

where the spectrum of the transient conductivity at the end of
the scan ���f ,�p,max� is calculated within the quasi-steady-
state approximation in which one-dimensional Fourier trans-
formations ���f ,�p� and �E�f ,�p� are mutually
proportional.23 The slow conductivity component being de-
termined by Eq. �A4�, the problem of fitting the entire con-
ductivity of Eq. �A3� is reduced to the modeling of the ul-
trafast conductivity component ��ultrafast by Eq. �6�.

APPENDIX B: FITTING PROCEDURE

From the properties of Fourier transformation it is clear
that the transient conductivity of the slow component is lo-
calized in a close proximity of fp=0 and that the spectrum of
the ultrafast component is much flatter around the fp axis and
it decays slowly with fp. To make the fitting procedure as
insensitive as possible to the long-delay extrapolation proce-
dure described in Appendix A, data with low fp �fp
�0.1 THz� were cutoff. As a result, the parameters obtained
from the fitting procedure are insensitive to the profile of the
extrapolation function g.

This treatment allowed a reliable determination of the six
parameters describing the ultrafast components. The param-
eters are not much correlated among themselves: the param-
eters 
0��0,1� and 
0��0,2� define the amplitudes of the conduc-
tivity, the decay rates 1 /T1�+1 /Ttrap� and 1 /T2�+1 /Ttrap�
determine the extent of the transient conductivity spectrum
in the fp direction and the relaxation times 	1� and 	2� control
the conductivity shape in the f direction. The quality of the
fit is demonstrated in Fig. 3�e�. The residua are featureless
which demonstrates the pertinence of the model and they are
small compared to the amplitude of the ultrafast component
of conductivity �Fig. 3�b��. For clarity, one-dimensional
spectral cuts for a few values of fp are displayed in Figs. 3�c�
and 3�d�.
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